2,108 research outputs found

    Space-time domain decomposition for advection-diffusion problems in mixed formulations

    Get PDF
    This paper is concerned with the numerical solution of porous-media flow and transport problems , i. e. heterogeneous, advection-diffusion problems. Its aim is to investigate numerical schemes for these problems in which different time steps can be used in different parts of the domain. Global-in-time, non-overlapping domain-decomposition methods are coupled with operator splitting making possible the different treatment of the advection and diffusion terms. Two domain-decomposition methods are considered: one uses the time-dependent Steklov--Poincar{\'e} operator and the other uses optimized Schwarz waveform relaxation (OSWR) based on Robin transmission conditions. For each method, a mixed formulation of an interface problem on the space-time interface is derived, and different time grids are employed to adapt to different time scales in the subdomains. A generalized Neumann-Neumann preconditioner is proposed for the first method. To illustrate the two methods numerical results for two-dimensional problems with strong heterogeneities are presented. These include both academic problems and more realistic prototypes for simulations for the underground storage of nuclear waste

    Multiscale differential Riccati equations for linear quadratic regulator problems

    Get PDF
    We consider approximations to the solutions of differential Riccati equations in the context of linear quadratic regulator problems, where the state equation is governed by a multiscale operator. Similarly to elliptic and parabolic problems, standard finite element discretizations perform poorly in this setting unless the grid resolves the fine-scale features of the problem. This results in unfeasible amounts of computation and high memory requirements. In this paper, we demonstrate how the localized orthogonal decomposition method may be used to acquire accurate results also for coarse discretizations, at the low cost of solving a series of small, localized elliptic problems. We prove second-order convergence (except for a logarithmic factor) in the L2L^2 operator norm, and first-order convergence in the corresponding energy norm. These results are both independent of the multiscale variations in the state equation. In addition, we provide a detailed derivation of the fully discrete matrix-valued equations, and show how they can be handled in a low-rank setting for large-scale computations. In connection to this, we also show how to efficiently compute the relevant operator-norm errors. Finally, our theoretical results are validated by several numerical experiments.Comment: Accepted for publication in SIAM J. Sci. Comput. This version differs from the previous one only by the addition of Remark 7.2 and minor changes in formatting. 21 pages, 12 figure

    Partitioning strategies for the interaction of a fluid with a poroelastic material based on a Nitsche's coupling approach

    Full text link
    We develop a computational model to study the interaction of a fluid with a poroelastic material. The coupling of Stokes and Biot equations represents a prototype problem for these phenomena, which feature multiple facets. On one hand it shares common traits with fluid-structure interaction. On the other hand it resembles the Stokes-Darcy coupling. For these reasons, the numerical simulation of the Stokes-Biot coupled system is a challenging task. The need of large memory storage and the difficulty to characterize appropriate solvers and related preconditioners are typical shortcomings of classical discretization methods applied to this problem. The application of loosely coupled time advancing schemes mitigates these issues because it allows to solve each equation of the system independently with respect to the others. In this work we develop and thoroughly analyze a loosely coupled scheme for Stokes-Biot equations. The scheme is based on Nitsche's method for enforcing interface conditions. Once the interface operators corresponding to the interface conditions have been defined, time lagging allows us to build up a loosely coupled scheme with good stability properties. The stability of the scheme is guaranteed provided that appropriate stabilization operators are introduced into the variational formulation of each subproblem. The error of the resulting method is also analyzed, showing that splitting the equations pollutes the optimal approximation properties of the underlying discretization schemes. In order to restore good approximation properties, while maintaining the computational efficiency of the loosely coupled approach, we consider the application of the loosely coupled scheme as a preconditioner for the monolithic approach. Both theoretical insight and numerical results confirm that this is a promising way to develop efficient solvers for the problem at hand
    • …
    corecore