
 

 

 

 

 

 

 

 

 

Copyright 

by 

Yashar Mehmani 

2014 

 

 

  



The Dissertation Committee for Yashar Mehmani Certifies that this is the approved 

version of the following dissertation: 

 

 

Modeling Single-Phase Flow and Solute Transport across Scales 

 

 

 

 

 

Committee: 

 

Matthew Balhoff, Supervisor 

Todd Arbogast 

Steven Bryant 

Maša Prodanović 

Mary Wheeler 

 



Modeling Single-Phase Flow and Solute Transport across Scales 

 

 

by 

Yashar Mehmani, B.S.; M.S.E 

 

 

 

Dissertation 

Presented to the Faculty of the Graduate School of  

The University of Texas at Austin 

in Partial Fulfillment  

of the Requirements 

for the Degree of  

 

Doctor of Philosophy 

 

 

The University of Texas at Austin 

December 2014 



Dedication 

 

To my mother Soraya 

 

 



 v 

Acknowledgements 

 

My sincerest gratitude is due foremost to my graduate advisor Matthew Balhoff 

for his guidance and feedback throughout this research. I am particularly indebted to him 

for giving me the freedom and opportunity to pursue some of my own ideas and showing 

consistent support and confidence in them, even in the face of my own self-skepticism. 

Without him none of this work would have been possible. 

My appreciation goes to my committee members, Todd Arbogast, Steven Bryant, 

Maša Prodanović, and Mary Wheeler, with whom I have had countless stimulating 

discussions over various topics inside and outside their classrooms. I would additionally 

like to thank Todd Arbogast, Clint Dawson, Hans Koch, and Serge Prudhomme for 

allowing me to take part in their classes and indulge my curiosity with abstract/applied 

mathematics (a pleasure unfortunately engineering students rarely get to experience), and 

my advisor Matthew Balhoff for giving me the uncommon permission to do so. 

I would like to acknowledge the Center for Subsurface Modeling and Mary 

Wheeler for allowing me to use the computational resources essential to the modeling 

work herein. My special thanks go to the faculty and staff of the department of Petroleum 

and Geosystems Engineering especially Kamy Sepehrnoori, Frankie Hart, Heather 

Felauer, and Barbara Messmore for their help and support throughout my graduate 

studies. I would also like to extend my gratitude to Steven Bryant and Peter Eichhubl for 

their valuable inputs on the geological as well as geochemistry aspects of this work. I 

must credit Mart Oostrom for providing the excellent and invaluable (micromodel) 

experimental data set used for validating one of the models developed in this work. I have 



 vi 

very much enjoyed our collaborative work and hope for many more alike to come in the 

future. 

I am thankful to a number of colleagues and friends over the years including (but 

certainly not limited to) Pengpeng Qi, Hongtao Yang, Shaina Kelly, Amirreza Rahmani, 

Greg Jackson, Daniel Ehrenfried, Daniel Sanchez-Rivera, Tie Sun, Ben Ganis, Gergina 

Pencheva, Reza Tavakoli, Pexi Zhu, Zhuang Sun, Ke Xu, Joe Tansey, Ali Afsharpoor, for 

their camaraderie and thought-provoking discussions.  

The implicit contribution of my family towards this work cannot be overstated. 

The constant love and support of my parents Soraya and Ali is the crucial prerequisite for 

all current/future success in my career. I am also grateful to my brother Ayaz with whom 

I constantly exchanged research ideas and constructive criticism during our simultaneous 

studies here at UT. Finally, I want to thank Kara for rendering my graduate life fun and 

full of adventure while making certain that I sustained a social life outside of school. 

The financial support for this work was sponsored by the U.S. Department of 

Energy, Office of Science, and Office of Basic Energy Sciences under Award Number 

DE-SC0001114 as part of the Center for Frontiers of Subsurface Energy Security, and 

Energy Frontier Research Center. The micromodel experiments were performed using 

EMSL, a national scientific user facility sponsored by the Department of Energy’s Office 

of Biological and Environmental Research and located at Pacific Northwest National 

Laboratory. 



 vii 

Modeling Single-Phase Flow and Solute Transport across Scales 

 

Yashar Mehmani, Ph.D. 

The University of Texas at Austin, 2014 

 

Supervisor:  Matthew Balhoff 

 

Flow and transport phenomena in the subsurface often span a wide range of 

length (nanometers to kilometers) and time (nanoseconds to years) scales, and frequently 

arise in applications of CO2 sequestration, pollutant transport, and near-well acid 

stimulation. Reliable field-scale predictions depend on our predictive capacity at each 

individual scale as well as our ability to accurately propagate information across scales. 

Pore-scale modeling (coupled with experiments) has assumed an important role in 

improving our fundamental understanding at the small scale, and is frequently used to 

inform/guide modeling efforts at larger scales. Among the various methods, there often 

exists a trade-off between computational efficiency/simplicity and accuracy. While high-

resolution methods are very accurate, they are computationally limited to relatively small 

domains. Since macroscopic properties of a porous medium are statistically 

representative only when sample sizes are sufficiently large, simple and efficient pore-

scale methods are more attractive. 

In this work, two Eulerian pore-network models for simulating single-phase flow 

and solute transport are developed. The models focus on capturing two key pore-level 

mechanisms: a) partial mixing within pores (large void volumes), and b) shear dispersion 

within throats (narrow constrictions connecting the pores), which are shown to have a 

substantial impact on transverse and longitudinal dispersion coefficients at the macro 
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scale. The models are verified with high-resolution pore-scale methods and validated 

against micromodel experiments as well as experimental data from the literature. Studies 

regarding the significance of different pore-level mixing assumptions (perfect mixing vs. 

partial mixing) in disordered media, as well as the predictive capacity of network 

modeling as a whole for ordered media are conducted. 

A mortar domain decomposition framework is additionally developed, under 

which efficient and accurate simulations on even larger and highly heterogeneous pore-

scale domains are feasible. The mortar methods are verified and parallel scalability is 

demonstrated. It is shown that they can be used as “hybrid” methods for coupling 

localized pore-scale inclusions to a surrounding continuum (when insufficient scale 

separation exists). The framework further permits multi-model simulations within the 

same computational domain. An application of the methods studying “emergent” 

behavior during calcite precipitation in the context of geologic CO2 sequestration is 

provided. 
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Chapter 1: Introduction 

Flow and transport phenomena in the subsurface often span many different length 

(nanometers to kilometers) and time scales (nanoseconds to years), and reliable 

predictions relevant to engineering field applications hinges on our predictive capacity at 

each individual scale as well as our ability to accurately propagate information across 

scales. For example, with the steady rise in global temperatures largely attributed to 

anthropogenic greenhouse emissions, CO2 sequestration has become recognized as an 

increasingly viable mitigating measure. The process involves injecting large volumes of 

supercritical CO2 into abandoned hydrocarbon reservoirs or deep saline aquifers (fig. 

1.1). Upon contact with the resident brine, CO2 dissolves (although at a slow rate) and 

subsequently undergoes a series of dissolution and precipitation reactions with the rock 

minerals. The complex interaction/feedback between the fluid mechanics, transport of 

chemical species, bulk and mineral reactions (interacting via diffusion through boundary 

layers), and geometric alterations of the rock at the pore scale could potentially give rise 

to “emergent” macroscopic manifestations. These manifestations are referred to as 

“emergent” because they cannot be foreseen from the individual behavior of each of the 

mechanisms involved. Prediction under such circumstances behooves multiscale 

modeling strategies. 

Over the past few decades, pore scale modeling (in conjunction with experiments) 

has assumed a predominant role in improving our fundamental understanding of various 

subsurface phenomena at the small scale. Its applications have range from studying 

multiphase flow and reactive transport (Blunt, 2001) to drying processes (Prat, 2002) in 

porous media. Several modeling strategies have been developed, each of which possess 

certain advantages over the rest. Among them, two broad categories can generally be 
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recognized: a) those that simulate on an “exact” geometric representation of the pore 

space (obtained from rock imaging), and b) those that do so on a simplification thereof. 

The first category is typically referred to as direct modeling approaches, while the latter 

is closely related to pore-network modeling. While direct modeling is capable of 

capturing a substantial amount of details of a given phenomenon with very few 

simplifying assumptions, it comes at a higher computational cost limiting the largest 

sample size to which they can be applied. This is particularly important if the 

representative elementary volume (REV), the size at which statistical fluctuations of 

averaged properties due to small-scale variations asymptote, for a given problem is 

beyond this computational limit. Pore network models, on the other hand, relax this 

difficulty by approximating the pore-space geometry with an assemblage of simple 

geometric elements. This is often accompanied by a secondary approximation in 

describing the problem physics, which further reduces the predictive capacity of network 

models. Nevertheless, the substantial flexibility offered by pore networks in 

reformulating the governing equations, provides the modeler with the opportunity to 

rethink/modify the problem description. 

Throughout this dissertation, we develop modeling strategies for single-phase 

flow and (reactive/passive) solute transport at the pore scale as well as across scales. At 

the pore scale, we focus on two important pore-level mechanisms controlling 

macroscopic longitudinal and transverse dispersion: a) partial mixing within pores (i.e. 

larger void volumes), and b) shear dispersion within throats (i.e. narrow constrictions 

connecting the pores). At low Peclet numbers (defined as the ratio of advection to 

diffusion), diffusion is the dominant mechanism and homogenizes solute concentrations 

within pores. This is referred to as the “perfect mixing” or “complete mixing” scenario. 

At moderate to high Peclet numbers, an inflowing stream of solute tends to exit the pore 
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through only a subset of its outflowing throats, while undergoing a small amount of 

Brownian mixing. This is the “partial mixing” scenario, and is the first pore-level 

mechanism we attempt to capture. It is shown in chapter 3, that failure to properly 

account for this mechanism leads to large errors in predicting macroscopic transverse 

dispersion (depending on the pore-space structure). By “shear dispersion” we refer to the 

stretching of the solute due to non-uniform velocity profiles at the pore scale. This is the 

second mechanism we attempt to capture in chapter 4, and is shown to play an important 

role in predicting macroscopic longitudinal dispersion. 

Pore network models of solute transport can be divided into Eulerian and 

Lagrangian methods. All Eulerian methods in the literature (to our knowledge) fail to 

account for either mechanism, while Lagrangian methods fail at describing pore-level 

partial mixing (but elegantly incorporate shear dispersion). In developing our network 

models, we have placed special emphasis on simplicity and computational efficiency. For 

this reason, an Eulerian framework was chosen as they generally provide better 

computational performance. We then verify the models with direct approaches (e.g. 

computational fluid dynamics, CFD) and validate them by comparison against 

experiments. 

In order to propagate pore-scale information to larger scales, one common 

approach involves deriving macroscopic properties (e.g. permeability) from either 

experiments or pore-scale simulations on statistically representative samples, followed by 

their direct substitution into continuum-scale simulators. While such an approach is 

appropriate for situations in which a separation between scales exists, it may lead to 

errors otherwise. Recent theoretical and computational work (Kechagia et al., 2002; Li et 

al., 2006; Battiato and Tartakovsky, 2011; Molins et al., 2012) provides evidence that 

under certain flow and (reactive) transport regimes, a coupling between the scales exists. 
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This means that pore-scale details can no longer be ignored (or interpreted in an average 

sense alone), and predictive modeling must rely to some extent on pore-scale simulations. 

This has given rise to the development of a vast variety of “hybrid multiscale methods” in 

the recent literature, whose essence is to dynamically combine pore-scale and continuum-

scale models over the same computational domain. The hybrid methods differ from each 

other on the particular circumstance to which they are most suitable. The proper choice of 

one hybrid method over another depends primarily on the degree of separation between 

the length and time scales present in the problem, as well as on the fraction of the domain 

to be represented at the pore scale (Sheibe et al., 2014). 

On the other hand, while accurate and efficient pore-scale methods are essential 

for predictive modeling, our ability to simulate on sufficiently large (i.e. statistically 

representative) domains may still remain quite limited. Common limitations are either 

computational (i.e. simulations are time consuming), or due to difficulties in 

characterizing the pore-space geometry/heterogeneity. As an example of the latter, it is 

very difficult to obtain high resolution voxilized images of large samples, since size and 

resolution are inversely correlated (Beckingham et al., 2013). In addition, sudden large-

scale discontinuities in the pore structure may be difficult to characterize within a single 

domain (and impart to further computational problems e.g. ill-conditioned systems). 

In this work, we present a mortar domain decomposition framework to address 

the foregoing issues. Within this framework, we develop methods that allow the coupling 

of pore-scale and continuum-scale models. Therefore, they can be regarded as hybrid 

methods and used to perform “concurrent” simulations (i.e. when insufficient scale 

separation exists; Sheibe et al, 2014) of localized pore-scale inclusions in an otherwise 

continuum domain (e.g. a pore-scale “skin” around wellbores). The domain 

decomposition methods further lend themselves to parallel computing, which renders 
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efficient simulations on large pore-scale samples feasible. Additionally, characterization 

of the pore-space geometry/heterogeneity is easier when abrupt changes in pore structure 

are viewed as subdomain interfaces, and voxilized images of these domains are obtained 

piece by piece each interpreted as subdomains. Finally, various pore-scale modeling 

strategies (each most suitable to the local flow/transport physics at work) can be 

incorporated into the same computational domain under the current framework. 

The dissertation is outlined as follows: in chapter 2 we provide sufficient 

background information and review relevant literature. In chapter 3, we detail the 

development of the streamline splitting method (SSM) for capturing partial mixing within 

pores. Comparison of the model predictions to CFD simulations and micromodel 

experiments is provided. A discussion on the impact and importance of pore-level mixing 

assumptions in disordered granular media is given. In chapter 4, we detail the 

development of the superposing transport method (STM) for capturing shear dispersion 

within throats. The model is compared against CFD simulations as well as experimental 

data from the literature. A discussion on the origins of the supra-linear scaling of 

longitudinal dispersion vs. Peclet number with reference to modeling results from the 

literature, as well as on the predictive capacity of Eulerian network models for ordered 

media is presented. In chapter 5, we develop domain decomposition methods for 

advection-dominated transport on large pore-scale domains. A simplified reactive 

transport model is additionally developed in order to investigate “emergent” behavior due 

to calcite precipitation in the context of geologic CO2 sequestration. In chapter 6, the 

domain decomposition methods are formalized and extended to include diffusive 

transport, and coupling of pore-scale and continuum-scale subdomains. A thorough study 

of the computational efficiency and parallel scalability of the methods is presented. 

Chapter 7 concludes by drawing general conclusions (specific conclusions are limited to 
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each chapter) and implications regarding the presented material. The appendices provide 

substantial detail and supplementary information for the interested reader. 

 

 

 

Figure 1.1: Schematic of the injection of anthropogenic CO2 into deep saline aquifers. 

The insets communicate the fact that relevant in situ flow and reactive 

transport processes span scales starting from the nanometer to several 

kilometers. 
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Chapter 2: Background and Literature Review 

In this chapter, we provide sufficient background and cover literature in relevance 

to the following chapters. Since the dissertation concerns itself with single-phase solute 

transport, the bulk of what follows revolves around this topic with occasional references 

to extraneous physics/applications. It is to be noted that the literature in some instances is 

quite rich and well developed, and the following is by no means a fair representation of 

the whole. Therefore, our strategy is to focus on the most relevant pieces while providing 

useful references for the interested reader. 

 

2.1 MODELING AT THE PORE SCALE 

Over the past few decades modeling flow and transport at the pore scale has seen 

the adoption and development of various computational methods. The first and perhaps 

the most critical step prior to modeling is the accurate characterization of the pore-space 

geometry/topology. Imaging techniques such as X-ray microtomography (XMT) 

(Wildenschild and Sheppard, 2013) have made it possible to obtain accurate 3D 

characterizations of the complex pore-space geometry of rock samples. For granular 

media, Monte Carlo (Maier et al., 2003), cooperative rearrangement (Thane, 2006), and 

sequential sedimentation (Coelho et al., 1997; Øren and Bakke, 2002) are among 

algorithms that have been developed to digitally reconstruct various grain packs, in which 

the pore space geometry is exactly defined. Such reconstructions, although approximate 

in representing real porous media, provide valuable insights into the link between 

depositional processes (e.g. cementation and compaction) and hydraulic/transport 

properties (e.g. permeability) of granular media (Bryant et al., 1993a, 1993b; Bakke and 

Øren, 1997). Modeling can then proceed either by simulating directly on the complex 
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void geometry, or on a simplification thereof. The former approach is typically referred 

to as direct modeling, while the latter is closely associated with pore-network modeling 

(discussed in the following section). In the following, we review a handful of direct 

modeling approaches recently used at the pore scale. 

Direct modeling approaches include computational fluid dynamics (CFD) 

(Anderson, 1995), Lattice-Boltzmann (LB) (Chen and Doolen, 1998), and smoothed 

particle hydrodynamics (SPH) (Monaghan, 1992). While both flow and transport can be 

solved via either of these approaches, Eulerian methods are typically preferred for 

computing flow and Lagrangian methods for transport as they are devoid of numerical 

dispersion. The former requires a spatially discretized mesh, while the latter does not. A 

popular Lagrangian method used for simulating transport at the pore scale is particle 

tracking (PT). In this method, particles (or random walkers) are propagated through the 

void space via a deterministic advection step (following the streamlines) followed by a 

stochastic diffusion step (obeying Einstein’s equation). Maier et al. (2000, 2003) studied 

dispersion on digitally generated sphere packs using LB and PT to solve flow and 

transport, respectively; and reported good agreement with measurements from nuclear 

magnetic resonance (NMR) spectroscopy experiments. Molins et al. (2012) used an 

adaptive meshing CFD method to study the “lab-field discrepancy” of geochemical 

reaction rates. Their study provides invaluable insight into the vital role of pore-scale 

modeling as a crucial guide towards predictive macro-scale modeling. Yang et al. (2013) 

used CFD to solve the Navier-Stokes flow equations on a bead pack and successfully 

compared the velocity field to that obtained from magnetic resonance velocimetry 

measurements. Zaretskiy et al. (2010) used a finite-element-finite-volume method to 

study longitudinal dispersion on a digitized sample of Fontainebleau sandstone. They 

highlighted the sensitivity of the pore-scale modeling results to the computational mesh 
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employed. Mostaghimi et al. (2012) used a combination of finite difference and PT for 

flow and transport, respectively, on micro-CT images of Berea sandstone and produced 

longitudinal dispersion coefficients in quantitative agreement with experimental data. 

Ovaysi and Piri (2011) used a Lagrangian approach referred to as the modified moving 

particle semi-implicit (MMPS) method to solve flow and transport on sandstone samples. 

They obtained longitudinal dispersion coefficients in favorable agreement with 

experimental data, and included non-inertial effects in their simulations. 

Despite the high fidelity of direct modeling predictions and the fundamental 

insights they provide about the underlying physical mechanisms of a given phenomenon, 

they often demand high performance computational resources and massive parallelism 

(Oostrom et al., 2014). This poses a computational limit on the size and scale of the 

problems to which they can be applied. Such limitations have made pore-network 

modeling very popular over the past few decades, which overcome this limitation by 

simplifying the void space geometry while preserving essential features thereof. 

However, the predictive capacity of network models has been somewhat elusive in the 

literature with a few important exceptions discussed in section 2.2. Even so, it is the aim 

and contention of the author that modeling efforts shall be directed towards reducing 

complexity, while preserving only the most essential features of a given phenomenon. 

The first step in this effort is identification of these features for which direct modeling 

serves as an invaluable guide. 

 

 2.2 PORE NETWORKS 

The popularity of pore networks arose out of the pioneering works of Fatt (1956a, 

b, c), who studied two-phase drainage on a 2D lattice network of randomly assigned 
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throat radii. This was a radical shift from the hitherto bundle-of-tubes representation of 

porous media for computation of various macroscopic properties. Pore networks are 

simplified representations of the complex pore-space geometry and consist of an 

interconnected network of pores (or nodes) and throats (or bonds). These elements are 

typically assigned relatively simple shapes amenable to analytical treatment (e.g. spheres 

for pores and cylinders for throats). Scenarios in which either pores or throats are 

assigned zero volumes have also been considered. A summary of various pore/throat 

shapes used in the literature can be found in Joekar-Niasar (2010). The manner in which 

pores are connected to their nearest neighbors constitutes the network topology 

(coordination number is a parameter closely related to the network topology and is 

defined as the number of connected neighbors to a given pore) while the specific 

geometric idealizations used to represent pores/throats comprise the network geometry. 

Proper characterization of both the topological and geometric aspects of porous samples 

is the first necessary step, if pore networks are to be predictive. Early works on pore-

network characterization typically involved statistical mappings of pore/throat properties 

(e.g. radii, coordination number, etc.) onto a lattice structure (e.g. Mohanty et al., 1987), 

or adjusting pore/throat properties to match one set of measurements (e.g. capillary 

pressure) followed by predictions of more difficult-to-measure properties (e.g. relative 

permeability) (e.g. Fischer and Celia, 1999). However, statistically mapped networks 

often ignore spatial correlations present in real rocks (due to the random assignment of 

pore/throat properties), and adjusted networks (to match one set of measurements) 

suffered from non-uniqueness in their representation. For these reasons, statistically 

generated networks are typically not considered to be predictive. Bryant and coworkers 

(Bryant et al., 1993a, 1993b and Bryant and Blunt, 1992) introduced the concept of 

physically representative networks, which marked the beginning of truly predictive 
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network modeling. In their work, permeability, relative permeability, capillary pressure, 

and permeability-porosity relationships, were all accurately and directly predicted (with 

no adjustable parameters) from shear knowledge of grain positions in a disordered sphere 

pack (measured by Finney, 1968). The network was extracted via Delaunay Tessellation 

of the sphere centers, and its main attraction was that spatial correlations of the pore 

space were elegantly imbedded into the extracted network. Recent advances in computer 

and imaging facilities has given rise to various image analysis techniques whereby 

physically representative networks can be obtained from digitized images of real samples. 

These include medial-axis (Thovert et al, 1993; Lindquist et al, 1996; Lindquist and 

Venkatarangan, 1999; Prodanovic et al., 2006), water-shed (Sheppard et al., 2006; 

Thompson et al., 2008), and maximal-ball (Silin and Patzek, 2006; Dong and Blunt, 

2009) algorithms. These techniques have resulted in further quantitative predictions of 

single-phase and multi-phase flow properties in water-wet and mixed-wet media (e.g. 

Bakke and Øren, 1997; Øren et al., 1998; Patzek 2001). In this dissertation we employ a 

modified Delaunay tessellation algorithm (Al-Raoush, 2003) to extract networks from 

digitally created sphere packs as well as imaged sandstone samples. 

Since Fatt (1950a, b, c), pore networks have been used in many other applications 

including: non-Newtonian flow (Lopez et al., 2003; Balhoff, 2005), non-Darcy flow 

(Thauvin and Mohanty, 1998; Balhoff and Wheeler, 2009), solute dispersion (Sahimi 

1986; Sorbie and Clifford, 1991; Bijeljic et al., 2004, Bijeljic and Blunt, 2007; Acharya et 

al., 2007b), reactive transport (Hoefner and Fogler, 1988; Li et al., 2006; Algive et al., 

2010; Kim et al., 2011), multi-phase flow (Koplik and Lasseter, 1985; Al-Gharbi and 

Blunt, 2005; Piri and Blunt, 2005; Joekar-Niasar et al., 2010), biofilm growth (Suchomel 

et al., 1998a, 1998b), etc. A larger portion of this literature is devoted to two-phase flow 

(drainage and imbibition), due to its significance in petroleum engineering (oil recovery) 
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and soil sciences. As this is not the focus of our work, the reader is referred to 

comprehensive reviews by Celia et al., (1995) and Blunt (2001) for more information. An 

excellent review by Berkowitz and Ewing (1998) further provides insights into the close 

connection between (quasi-static) two-phase flow and (invasion) percolation theory. In 

this dissertation, a portion of the effort is directed towards developing simple, efficient, 

and accurate pore-scale modeling methods for simulating single-phase flow and solute 

transport, for which pore networks appeared to be an appropriate starting point. The 

following section reviews various network modeling approaches developed/applied in the 

literature. 

 

2.3 NETWORK MODELING OF SOLUTE TRANSPORT 

Pore-network modeling of solute transport has received special interest amongst 

many authors in the past few decades and several methodologies have been proposed. A 

prerequisite to simulating transport is the computation of the velocity field within throats. 

The procedure is quite standard and involves: imposing pressure boundary conditions on 

the network, describing flow rates within throats via a constitutive equation (e.g. Hagen-

Poiseuille for Newtonian fluid in a cylindrical throat), writing mass balance at each pore, 

solving the resultant system of (linear or nonlinear depending on the fluid rheology 

and/or flow regime) equations for pore pressures, and computing throat flow 

rates/velocities from said constitutive equation (mathematics detailed in chapter 3). The 

simulation of transport then resumes using computed throat flow rates/velocities.  

 Bryntesson (2002), Acharya et al. (2005, 2007b), Li et al. (2006), Kim et al. 

(2011) and Nogues et al. (2013) are among those who have adopted the popular mixed 

cell method (MCM), in which solute balance equations are written for each pore. In this 



 13 

method, throats are assumed to be volumeless and the solute within pores perfectly 

mixed. Solute flow rates within throats are formulated as the algebraic sum of an 

upwinded advection term and a linearly varying diffusion term. Essentially, MCM can be 

regarded as a low-order finite volume method on an unstructured pore network 

(mathematics detailed in chapter 3). The advantage of MCM is that it is very 

computationally efficient and highly adaptable to various transport scenarios. For 

example, Acharya et al. (2005) used MCM to study non-linearly adsorbing solute 

transport, and determined that more than a million pores were required for their results to 

be statistically representative. Li et al. (2006) and Kim et al. (2011) studied complex 

geochemical reaction kinetics of anorthite and kaolinite precipitation/dissolution relevant 

to CO2 sequestration. Nogues et al. (2013) studied porosity/permeability evolutions in 

carbonates due to carbonic-acid driven precipitation/dissolution reactions. They 

considered 18 aqueous species and 5 mineral species undergoing 14 independent 

reactions. The flexibility and computational efficiency of MCM is why such complex 

systems acting on sufficiently large pore-scale domains can even be considered.  

A number of variants and/or modifications of MCM have also been developed in 

the literature. For instance, Raoof et al. (2013) assign volume to both pores and throats 

(solute still perfectly mixed in both) and sub-discretize the wetting filaments in the 

corners of partially drained pores to account for the partial mixing of solute within them. 

Milligen and Bons (2014) propose a modification to the throat rate expressions used in 

MCM (i.e. algebraic sum of an upwinded advection term and a linearly varying diffusion 

term) by deriving analytical expressions based on a steady-state plug-flow assumption 

within throats (a generalization of this method for non-uniform velocity profiles is given 

in chapter 4). They occasionally sub-discretized throats into smaller “pores” for increased 

modeling resolution. Algive et al. (2009, 2012) and Varloteaux et al. (2013) similarly 
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modified throat rate expressions in the context of reactive transport. They employed 

moment theory to derive corrected macroscopic parameters (i.e. solute mean velocity, 

dispersion coefficient, reaction source term) for each pore/throat element in the long-time 

asymptotic regime. The model was used to study the effects of dissolution/precipitation 

reactions on macroscopic single- and two-phase flow properties in the contexts of CO2 

sequestration and diagenetic alterations in carbonate rocks. Suchomel et al. (1998b) 

developed a model in which pores were assumed volumeless and throats were sub-

discretized into finite difference grids. Interpore diffusion was implicitly incorporated by 

adjusting numerical diffusion via grid size and time step (although this does not account 

for diffusion countercurrent to the flow direction), and perfect mixing was assumed 

within pores. The model was used to study permeability/porosity alterations during 

bacterial biofilm growth in porous media. A simple but interesting model was developed 

by Martins et al. (2009), in which the solute balance equations at the pores were 

formulated as a system of delay-differential equations. In essence, the model took into 

account pore concentrations from previous time steps for computing solute flow rates 

in/out of pores in the current time step. This was implemented by sub-discretizing throats 

and marching pore concentrations forward within the sub-discretized segments (akin to a 

traveling wave). However, several limiting assumptions were made including the neglect 

of diffusion, plug-flow within throats, and perfect mixing within pores. Despite these 

limitations, their model shares similar spirit with the more accurate and general 

superposing transport method (STM) developed in chapter 4 (i.e. pore concentrations 

from previous time steps are used in evolving the concentration field). 

A different set of models formulate transport equations in the Laplace domain 

(with respect to time). There is a certain extent of elegance and convenience associated 

with working in the Laplace domain, mainly due to the fact that convolutions of transit-
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time probabilities are converted to simple multiplications. Another advantage is that 

computation of temporal moments becomes rather straightforward. De Arcangelis et al. 

(1986) developed first-passage-time probabilities for tracer particles in moving from one 

pore to the next. They assumed perfect mixing at the (volumeless) pores, and plug flow 

with simultaneous diffusion at the throats. Under these conditions, they derived exact 

probabilities (in the Laplace domain) for particle motions in a network. They then used a 

“probability propagation” algorithm to determine the first-passage-time distribution of a 

10×10 diamond lattice network and computed longitudinal dispersion coefficients for 

various Peclet numbers. At no point was the time-domain concentration field computed. 

Using the same set of equations, Koplik et al. (1988) diverged in their analysis by writing 

species balance equations for each pore in the Laplace domain. The linear system of 

equations was then solved and numerically inverted into the time domain using the 

Stehfest (1970) algorithm. A strategy for computing higher order moments of the first-

passage-time distribution of the network was further outlined. This method was later 

extended by Alvarado et al. (1997) to reversible adsorption/reaction scenarios, where 

they arrived at the interesting conclusion that dispersion coefficients depend on the 

degree of spatial heterogeneity of reactive sites in a porous sample and scale non-linearly 

with Peclet number. However, they noted that the numerical Laplace inversion step was 

prohibitive for networks larger than 20×20 pores and inaccurate for large Peclet numbers 

(>10). Indeed numerical inversion of the Laplace transform is known to be notoriously 

difficult (often unstable) and ill-posed in computational and applied mathematics. For this 

reason, (although valuable for performing moment analyses) time-domain predictions via 

these methods on representative sample sizes seems impractical and unlikely. 

All network models discussed so far describe solute transport from an Eulerian 

perspective. A more natural description is provided by Lagrangian models, among which 
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particle tracking (PT) is almost exclusively employed. In this method, the steady-state 

flow equation is solved on the network (as described in the beginning of the section) to 

obtain mean fluid velocities within each throat. Depending on the specific throat 

geometry, a (rectilinear) velocity profile is assumed and used to track particles from pore 

to pore subject to simultaneous convection and molecular diffusion. PT methods on pore 

networks can be divided into two categories: a) those that trace particle motions in detail 

within throats following a discrete-time random walk process (Bruderer and Bernabe, 

2001; Bijeljic et al., 2004; Acharya et al., 2007a; Jha et al., 2011), and b) those that 

perform continuous-time random hops from one pore to the next (without explicit throat-

level simulations) using throat transit-time distributions (Sahimi et al., 1986; Sorbie and 

Clifford, 1991; Rhodes and Blunt, 2005; Bijeljic and Blunt, 2006; Picard and Frey, 2007). 

We refer to the first class as DPT (discrete-time particle tracking) and to the second as 

CPT (continuous-time particle tracking). Compared to CPT, DPT simulations are more 

time consuming since computational performance is limited by the time step size 

(controlled by the minimum throat transit time within the network). However, it can be 

quite accurate and has been successfully used to predict dispersion coefficients in 

unconsolidated granular media (e.g. Bijeljic et al., 2004; Jha et al., 2011). It is also very 

flexible in the sense that throats can assume various velocity profiles (e.g. parabolic or 

plug-flow) and substantial control is granted over particle reassignments to new throats 

upon their arrival at the pores (i.e. particles can be reassigned to any desired throat 

connected to the arrival pore, and even any desired location on the cross-section of that 

throat). In contrast, CPT is computationally more efficient but comparatively less flexible 

and less accurate (depending on the problem). The efficiency is due to the fact that 

particle motions within throats are not explicitly simulated, but are imbedded in the throat 

transit-time statistics instead. The reduced flexibility/accuracy is due to the loss of control 
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in reassigning particles to arbitrary cross-sectional locations of outlet throats in the arrival 

pores. This is particularly important in simulating dispersion in ordered media, for which 

CPT will not yield the expected (e.g. Edwards et al., 1991) DL ~ Ped
2 scaling (DL is the 

longitudinal dispersion coefficient, and Ped is the Peclet number defined as the ratio of 

advection to diffusion) (discussed further in chapter 4).  

CPT methods can be further subdivided into those that use deterministic transit-

time distributions in passing particles from pore to pore (e.g. Sorbie and Clifford, 1991; 

Picard and Frey, 2007), and those that use ensemble-averaged transit probabilities (e.g. 

Bijeljic and Blunt, 2006; Rhodes et al., 2009). Bijeljic and Blunt (2006) derived such an 

ensemble-averaged probability distribution for Berea sandstone by fitting a truncated 

power-law distribution to their simulation results. They provided physically meaningful 

interpretation of the distribution variables and fitted the data with a single adjustable 

parameter. Deterministic transit probabilities are often derived based on similar 

mathematics and assumptions (i.e. perfectly mixed (volumeless) pores and plug flow 

within throats; non-uniform velocity profiles are not amenable to closed-form analytical 

treatments) as those already discussed in the context of Laplace domain Eulerian network 

models (e.g. Rhodes and Blunt, 2005; Picard and Frey, 2007). An exception to this is 

Sorbie and Clifford (1991) who derived transit probabilities based on rigorous single 

throat simulations (assuming non-uniform velocity profiles). 

The most common ambiguity and source of error in both Eulerian and Lagrangian 

network models is in describing mixing conditions within pores, and shear dispersion (i.e. 

spreading due to non-uniform velocity profiles) within throats. Accurate description of 

these fundamental transport physics could have a significant impact on quantitative 

macroscopic predictions of solute dispersion. All Eulerian network models developed in 

the literature (to our knowledge) assume perfect mixing within pores and neglect shear 
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dispersion within throats. While the incorporation of shear dispersion in Lagrangian 

networks is quite straightforward, ambiguity in describing pore-level mixing conditions 

still persists. The ambiguity is sourced in the difficulty in approximating flow streamlines 

within pores, as well as the extent of diffusive mixing taking place therein. Sahimi et al. 

(1986) and Bruderer and Bernabe (2001) developed simple intuitive rules for the 

redistribution of streamlines from the inlet to the outlet throats of a 2D cross-shaped 

volumeless pore. Both ignored any extent of diffusive mixing within pores, in the sense 

that particles could not “hop” from one outlet throat to the next (although Sahimi et al. 

(1986) did include some element of randomness in assigning particles to cross-sectional 

locations of the non-randomly chosen outlet throat). Sorbie and Clifford (1991) 

introduced general heuristic (and admittedly approximate) rules for the redistribution of 

particles (upon their arrival at the pores) among outlet throats. These rules (and variants 

thereof) were subsequently applied and analyzed in later publications (e.g. Acharya et al., 

2004, 2007a, 2007b; Bijeljic et al., 2004; Bijeljic and Blunt, 2007). At high Peclet 

numbers the rules reduce to redistribution based on flow rate-averaged probabilities, 

while at low Peclet numbers they reduce to redistribution based on (throat) cross-

sectional area-averaged (multiplied by other corrective parameters) probabilities. The 

biggest problem with these rules is that the “memory” of a particle is effectively erased 

upon its arrival to the pore (i.e. Markovian), whereas in reality particles retain their 

memory over a given distance (depending on the local Peclet number) before diffusion 

has had enough time to scramble it. At moderate to high Peclet numbers, particle 

memories extend beyond the distance of a single throat, which behooves a modeling 

strategy that preserves this behavior (although inherent limitations apply to Eulerian 

models as discussed in chapter 4). To our knowledge, Jha et al. (2011) seem to have 

come closest to proposing a general rule for mapping incoming particles to outlet throats 
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in a pore. Their rules were developed as an attempt to generalize those of Bruderer and 

Bernabe (2001) and are limited to pores with a coordination number of four or less. 

However, their rules do not take into account important interactions between inflowing 

streams, which causes them to produce erroneous predictions as discussed in chapter 3. 

They also ignored the possibility of diffusive mixing within pores. 

Perhaps the most comprehensive analysis of pore-level mixing has been 

conducted in the field of fracture-network modeling (e.g. Berkowitz et al., 1994, Park and 

Lee, 1999; Park et al., 2001a, 2001b). In particular, Park and Lee (1999) derived 

physically sound, efficient, and accurate transition probabilities for incoming particles at 

fracture junctions. Park et al. (2001a, 2001b) later studied the effect of various mixing 

assumptions (perfect mixing vs. no mixing) at fracture junctions on overall macroscopic 

transport behavior in ordered and disordered fracture networks. They found that mixing 

assumptions have a larger impact in ordered media compared to random media (i.e. less 

than 5% of fracture junctions showed sensitivity in random media), and they attributed it 

to the lower effective coordination number and higher inlet flux ratios (at fracture 

intersections) in random networks. This conclusion is shown to corroborate very well 

with our results in chapter 3 for 3D disordered granular media. However, since fracture 

intersections are essentially 2D cross-shaped pores, the mixing equations of Park and Lee 

(1999) are not applicable in 3D networks of porous media, where non-planar throat 

geometries are connected at various orientations to the pores. Lastly, Park and Lee (1999) 

did not take into account the influence of pore walls in their mixing criterion. 

The foregoing discussion forms the motivation for the studies presented in 

chapters 3 and 4. Therein, we develop efficient Eulerian network models capable of 

predicting (partial) mixing conditions within pores and shear dispersion within throats. 

These transport physics are separately captured in two different modeling approaches, but 



 20 

the approaches are shown to be additive (i.e. combination of the two is straightforward). 

The models compare favorably against direct modeling results as well as experiments. 

Special emphasis was placed on simplicity and computational efficiency, which is why 

development under an Eulerian framework was pursued (generally known to be more 

efficient than Lagrangian methods). Interpretations, considerations, and implications of 

the results as well as the predictive capacity of the models are discussed. 

  

2.3 HYBRID MODELING 

Flow and transport occurs over a wide range of spatial scales (nanometer to 

kilometer) rendering the developments of predictive models capable of bridging all these 

scales a formidable task. One common approach has been to extract macroscopic 

parameters (e.g. permeability) or closure relations (e.g. capillary pressure) from smaller 

scale samples followed by their direct substitution into larger field-scale simulators. 

These data can either be obtained through experiments or modeling on microscale (or 

pore-scale) samples representative of the real medium. However, such an approach may 

not always be applicable when scales are not separable (Kechagia et al., 2002; Battiato 

and Tartakovsky, 2011), in which case modeling at the pore scale becomes imperative. 

Li et al. (2006, 2007a, 2007b) used pore networks to study reaction kinetics of 

kaolinite and anorthite in the context of geologic carbon sequestration. They 

demonstrated that reaction rates obtained from continuum-scale representations of 

transport and/or using volume/flux-averaged concentrations in reaction rate expressions 

leads to large errors, sometimes even wrongly predicting the direction of the reactions 

(i.e. precipitation vs. dissolution). Although their study was qualitative in nature (using 

3D regular lattice networks), it provided an explanation to the commonly reported 
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discrepancy between reaction rates observed at the field scale and those obtained from 

well-mixed batch experiments on crushed samples. Namely, transport limitations at the 

pore scale control overall reaction rates, which are non-existent under well-mixed 

conditions in batch experiments. Effects of flow rate and reactive cluster size/abundance 

were also studied, and it was concluded that the higher the degree of incomplete mixing 

(i.e. spatial variability of concentration) the higher the scaling error. Incomplete mixing 

was found to be the strongest at medium flow rates (i.e. Peclet numbers). Kim et al. 

(2011) and Kim and Lindquist (2012) extended the work of Li and coworkers using 

networks extracted from X-ray computed microtomography (XCMT) images of real 

sandstones. They were able to determine surface mineral distributions from XCMT 

images allowing for better quantitative analysis. Similar conclusions were drawn 

regarding the “lab-field-discrepancy”, and an approximately power-law scaling of 

reaction rates vs. flow rate was reported for anorthite, while a more complex scaling 

emerged for kaolinite. In the context of filtration combustion in porous media, Lu and 

Yortsos (2005) similarly observed that spatially averaged macroscopic reaction rates 

were very different (discrepancies of a factor of two or higher) than those determined 

from using averaged variables in microscopic reaction rate expressions. They attributed 

this to the strong influence of microscopic heterogeneities on macro scale behavior. 

Recently, Molins et al. (2012) conducted sophisticated direct pore-scale simulations of 

calcite dissolution, and showed that pore-scale heterogeneities can result in an 

underestimation of reaction rates (due to mass transport limitations) even when total 

reactive surface area and porosity are held constant between samples. 

Kechagia et al. (2002) demonstrated that for reactive transport with fast/finite 

kinetics, homogenization of microscopic equations via volume averaging does not hold 

except at the limit of macroscopic equilibrium. They further showed that even under 
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these circumstances an eigenvalue problem maintains a coupling between the micro and 

the macro scales. Battiato and Tartakovsky (2011) performed a systematic study to 

identify transport regimes (characterized by Damköhler (Da) and Peclet (Pe) numbers), 

under which the continuum representation of pore-scale advection-diffusion (with 

nonlinear surface reactions) breaks down. They used multiple-scale expansions to upscale 

pore-scale equations, and presented their results in the form of a Pe-Da phase diagram. 

This was concordant with an earlier work (Battiato et al., 2009) that used volume-

averaging, substantiating the independence of their conclusions from the specific 

upscaling method employed. A recent work by Boso and Battiato (2013) extended this 

analysis to three-component systems undergoing two homogeneous and one 

heterogeneous reactions (all reversible). It is interesting to note that Molins et al. (2012) 

located their simulations on the aforementioned Pe-Da phase diagram and determined 

their correspondence to a case in which spatial scales were coupled. 

The implications of the foregoing studies have given rise to a new class of 

modeling approaches referred to as “hybrid multiscale methods” (Sheibe et al., 2007), in 

which micro- and macro-scale simulations are simultaneously performed on the same 

computational domain. Balhoff et al. (2007) were one of the first to couple a pore scale 

model to the continuum. However the iterative coupling strategy had strong limitations in 

terms of flexibility and efficiency. These limitations were lifted in a later work (Balhoff 

et al., 2008) through the introduction of mortars (discussed in section 2.4). The work only 

focused on coupling linear, single-phase Newtonian flow. Tartakovsky et al. (2008a) used 

an SPH formulation for both the pore and continuum scales in a diffusion-reaction system 

and were able to non-iteratively couple the two scales together. Despite the non-iterative 

nature of the method, which makes it very attractive, both domains need to be formulated 

using SPH. Furthermore, advection was ignored in their work. Battiato et al. (2011) 
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developed an overlapping method for coupling pore-scale inclusions to the surrounding 

continua and successfully verified their method for Taylor dispersion through a fracture 

with reactive walls. Despite the increased generality of this approach compared to the 

previous work (inclusion of advection and lifting the restriction to SPH), the method 

appears to be limited to small pore-scale inclusions and is dependent upon the underlying 

macro-grid structure of the domain. The presented interface algorithm is also very 

expensive, because it is far more efficient to solve differential-algebraic systems as a 

whole rather than iteratively switching between the differential and algebraic parts. Such 

effects might not have appeared significant since the number of interface unknowns was 

limited to two. Chu et al. (2012) proposed a different approach in which macroscopic 

conservation equations were written assuming constitutive relations for flow were 

unavailable at the macro scale. Instead, the unavailable data were supplied from network 

simulations sampled locally across the domain. The method was also extended to two-

phase flow (Chu et al., 2013) and provides a superior alternative compared to upscaled 

continuum models in cases where local effects are dominant. However, since pore-scale 

models were used as providers of accurate in/out-fluxes at the boundaries of macroscopic 

control volumes, the extension of this method to heterogeneous reaction scenarios in 

which the macroscopic source/sink term is unknown (and highly coupled to transport 

itself) does not seem straightforward. 

The essence of all foregoing hybrid methods is a two-way “communication” 

between the pore scale and the continuum. Hybrid methods are a relatively recent 

development compared to single-scale modeling strategies such as molecular dynamics 

(MD), pore-scale modeling, and reservoir simulation. Naturally, they have been building 

upon the vast diversity of single-scale methods and various combinations thereof. 

Therefore, they themselves exhibit a vast diversity of strategies, which might raise the 
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natural question as to which hybrid method is most appropriate for any given problem. 

An excellent recent paper by Sheibe et al. (2014) has attempted to provide a general road 

map for choosing an appropriate hybrid strategy (referred to as the Multiscale Analysis 

Platform), depending on the degree of complexity of the hydrological problem at hand 

(i.e. degree of separability of temporal/spatial scales). The reader might find it beneficial 

to view the hybrid modeling methods developed in chapter 6 in the context of this road 

map (i.e. “motif F: concurrent hybrid methods”). Finally, we note that there are other 

physical scenarios in which pore-scale details bear important impact on macroscopic 

manifestations of a given phenomenon. These include wormhole formation and growth 

during reactive dissolution (Hoefner and Fogler, 1988; Fredd and Fogler, 1998), viscous 

instabilities, and viscous-dominated multi-phase flow (Kechagia et al., 2002). 

 

2.4 MORTAR DOMAIN DECOMPOSITION 

Mortar coupling is a domain decomposition method in which sub-domains are 

non-overlapping. It uses an intermediate function space (called the mortar space) to 

represent the state variables (e.g. pressures/concentrations) at the interface between two 

subdomains. These functions are represented by a linear combination of finite element 

basis-functions whose coefficients (referred to as Lagrange multipliers) are unknown. 

The “interface problem” involves solving for these unknowns (Bernardi et al., 1994; 

Arbogast et al., 2000; Peszynska et al., 2002). The accuracy of the mortar solution can be 

improved by using higher order mortars and/or finer mortar mesh (Arbogast et al., 2007). 

The advantages of mortars are that they (a) allow for different physics, scales, and models 

in various parts of the domain, (b) are easily parallelizable, and (c) even in serial 

computing are potentially faster because of (commonly encountered) nonlinear scaling of 
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computational costs with domain size. The basic idea of mortars is to: decompose the 

domain into subdomains; guess the Lagrange multipliers that determine the interface 

conditions (e.g. pressures); solve subdomains independently and compute fluxes at their 

shared interfaces; iterate until fluxes match on both sides of the interface. The described 

algorithm (known as the forward difference (FD) scheme) has been used by various 

authors in the past e.g. Wheeler et al. (1999), Peszyńska et al. (2002), Sun et al. (2012a), 

Sun et al. (2012b). Recently, Ganis et al. (2012) demonstrated that this algorithm can 

become quite inefficient especially in the case of nonlinear problems, and developed 

alternative schemes that resulted in significant computational speed-up. In chapter 6, 

similarly efficient schemes are developed that bear similarities with those of Ganis et al. 

(2012). These similarities as well as differences are highlighted therein. 

Mortars have primarily been used purely at the continuum, but were recently 

extended by Balhoff et al. (2008) to couple flow at multiple spatial scales (i.e. hybrid 

modeling). Their work demonstrated that mortars can provide accurate pressure boundary 

conditions to the pore scale that depend on surrounding media. Subsequently, Sun et al. 

(2012a) showed that mortars can be used as accurate upscaling tools for pore-scale 

models in obtaining macroscopic properties (e.g. permeability). They showed that a large 

heterogeneous pore-scale domain could be decomposed along structural discontinuities 

and coupled via mortars to closely approximate the true permeability. Sun et al. (2012b) 

developed a near-well single-phase reservoir simulator where Darcy grids in the near-

well region were substituted for pore-scale models. The study focused on upscaling 

strategies for the permeability field of the near-well region. In all foregoing literature, 

mortar application was limited to (linear) single-phase Newtonian flow and 

computational aspects were left unexamined. This, in part, forms the motivation for the 
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extension of these methods to solute transport as well as the computational studies 

presented in chapters 5 and 6. 
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Chapter 3: Pore-Scale Modeling of Transverse Dispersion1 

In this chapter, we focus on pore-scale modeling of transverse dispersion. 

Specifically, our goal is to develop a computationally inexpensive and accurate network 

model that is capable of capturing partial mixing within pores. It is shown that the 

streamline splitting method (SSM) developed herein, produces predictions that are in 

excellent agreement with micromodel experiments and direct modeling results. 

Implications of pore-level mixing assumptions in disordered granular media are further 

studied and discussed. 

 

3.1 MOTIVATION 

Solute transport on pore networks is commonly solved using the mixed cell 

method (MCM) (e.g. Bryntesson, 2002; Acharya et al., 2005) due to its simplicity and 

computational efficiency. The mathematical details of this method are outlined later in 

section 3.2.2. The modeling proceeds by first solving a flow equation, which yields the 

velocity field inside the pore space. Then the MCM transport equation is solved, which 

yields the evolution of the concentration field within the pore space in time. Although the 

simplistic MCM transport equation is an adequate description of (non-) reactive transport 

in many situations, it has an important deficiency that comes at the cost of its simplicity. 

The model assumes, by default, that concentrations are perfectly mixed within each pore 

regardless of the flow regime. At low Peclet numbers (= vR/Dm where v, R and Dm are the 

throat fluid velocity, throat radius and molecular diffusion coefficient respectively), this 

                                                 
1 The material in this chapter was published under the following reference, which was completed under the 

supervision of Matthew Balhoff. The experimental data in this chapter was provided by Mart Oostrom. 

 

Mehmani, Y., M. Oostrom, and M. Balhoff. "A Streamline Splitting Pore-Network Approach for 

Computationally Inexpensive and Accurate Simulation of Species Transport in Porous Media." In AGU 

Fall Meeting Abstracts, vol. 1, p. 1514. 2013. 
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assumption is reasonable because the solute particles diffuse much faster than they 

convect. However, at moderate to high Peclet numbers, such an assumption is no longer 

valid and large concentration gradients may exist within individual pores. 

Figure 3.1 shows the steady state concentration fields and streamlines obtained for 

a typical pore from direct COMSOL simulations. Boundary conditions consist of constant 

concentrations at the inlets and zero concentration gradients at the outlets. The figures 

clearly demonstrate that at low Peclet numbers (<1) the contents within the pore are 

perfectly mixed. However, at moderate to high Peclet numbers (>1), large concentration 

gradients within the pore exist. Under such transport regimes MCM could yield large 

errors in predicting transverse dispersion (as shown in section 3.3.2). This work presents 

a novel alternative approach for formulating the transport equation in a pore network, 

devoid of such restrictions to low Peclet regimes. The new streamline splitting method 

(SSM) circumvents the perfect-mixing assumption by taking into account the distribution 

of streamlines within the pores (fig. 3.1d). 

 

Figure 3.1: (a), (b), (c) Schematic of steady state concentration fields for a typical pore at 

three different Peclet numbers. Inlet/outlet flow directions as well as inlet 

concentrations are annotated. (d) Streamline field obtained from flow 

equation. 
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One of the more common direct modeling approaches for simulating transport in 

pore networks (or voxelized media) is particle tracking (PT) (e.g. Bruderer et al., 2001; 

Bijeljic et al., 2004, 2007). In this method, (given the velocity field) transport is 

simulated by tracking individual solute particles, which consists of a deterministic 

advection step followed by a stochastic diffusion step. Within the throats the particles 

have a well-defined advection path, as velocity profiles are straightforward to compute 

(especially for simple geometries). However, difficulties arise when particles arrive at the 

pores. One typical approach (e.g. Bijeljic et al., 2004) is that depending on the arrival 

mechanism (advection/diffusion), either a “complete mixing” or a “stream-tube routing” 

method is employed. If particles arrive via diffusion, they are assigned to a new throat 

based on an area-weighted probability (i.e. “complete mixing”). And if they arrive via 

advection, they are assigned (only to outflowing throats) based on a flow rate-weighted 

probability (i.e. “stream-tube routing”). This means that the probability of assignment to 

an outflowing throat o is given by eq. 3.1. It is shown, in section 3.2.3.2, that “stream-

tube routing” in PT is equivalent to “perfect mixing” in MCM and, therefore, limited. 

Another approach is taken by Bruderer et al. (2001) and Jha et al. (2011) who recognized 

the importance of determinism of advection in pores. Bruderer et al. (2001) proposed 

simple rules for mapping streamlines from the inflowing to the outflowing throats of the 

pores in a 2D regular lattice network. Jha et al. (2011) generalized these rules for a 3D 

disordered pack of equal spheres, where each pore is connected to exactly 4 neighbors. 

However, both authors eliminated any mechanism responsible for randomness 

(characteristic of diffusion) within pores. Considering that fluid residence times are 

longer in pores than in throats, this assumption leads to the absence of a critical 

mechanism responsible for transverse dispersion i.e. pore-level mixing (this is discussed 

further in section 3.3.2). Finally, the rule-based mapping of Jha et al. (2011) are shown to 
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neglect important physics rendering them incorrect even for simple 2D pores. The only 

proper characterization of partial mixing (to our knowledge) has been that of Park and 

Lee (1999), who derived transit probabilities for incoming particles at fracture junctions 

(in a fracture network). However, since fracture intersections are essentially two-

dimensional cross-shaped “pores”, the equations developed by them are not applicable in 

3D networks of porous media (where throats are non-planar and assume arbitrary 

orientations). Moreover, Park and Lee (1999) did not take into account the influence of 

pore walls in their mixing criterion (considered herein). It is proposed that the streamline 

splitting algorithm presented in this work could serve as a more realistic alternative to 

“stream tube routing” in the methodology employed by Bijeljic et al. (2004) (i.e. 

described above) for capturing pore-level mixing in PT. 
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The rest of the chapter is organized as follows: in section 3.2 we present the 

mathematical formulation of SSM for flow and transport and a brief account on the MCM 

formulation. In sections 3.31 and 3.3.2, we present verification of SSM against direct 

CFD simulations and validations against micromodel experiments. Finally, section 3.3.3 

discusses effects of pore-level mixing on transverse dispersion in 3-D disordered granular 

media. 

 

3.2 MODEL DEVELOPMENT 

Pore-network models are comprised of an assembly of pore bodies and 

interconnecting pore throats. Thus the domain is naturally discretized into nodes (pores) 
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and bonds (throats). Such simplification of the pore-space geometry significantly reduces 

the computational complexity of the flow and transport equations to be solved. In the 

following sections we discuss the details of our pore-network model and compare to 

existing approaches in the literature. 

 

3.2.1 The flow equation 

Solving flow and transport in a network involves two steps: a) solving the flow 

equation to obtain the velocity field, and b) solving the transport equation using the 

computed velocity field. The flow equation is formulated by assuming a single pressure 

value per node and writing mass balance for each node (eq. 3.1). The bulk fluid is 

assumed to be Newtonian with creeping flow (Re<<1), hence the constitutive relation 

describing flow inside a throat is given by q = (g/μ)Δp; where g and µ are throat 

conductivity and viscosity, respectively. Thus, the resultant system arising from the 

balance equations is linear. At the pore-scale, the flow equation is typically formulated in 

elliptic form for typical liquids present in the subsurface, since pressure pulses generally 

have negligible effects at small domain sizes. Therefore, we have assumed that the fluid 

of interest is incompressible. In the following mass balance, pi is pressure at pore i, μ is 

fluid viscosity,  gij is the conductivity of the throat connecting pore i to j and Ni
th is the 

number of throats connected to pore i (i.e. coordination number): 
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The resulting linear system of equations (i.e. eq. 3.1) is solved using the 

mldivide routine in MATLAB which attempts Cholesky factorization for the resultant 

symmetric positive definite system. 

 

3.2.2 The traditional mixed cell method (MCM)  

The transport equation (also known as the advection-diffusion-reaction (ADR) 

equation) for a pore network is traditionally written by imposing a species mass balance 

per node. Such formulation assumes a single concentration value per node, which is 

equivalent to assuming perfect mixing at the pores. However, this may not hold at 

moderate to high Peclet numbers which could give rise to high concentration gradients 

within a node. In the following MCM formulation of species balance for node i (eq. 3.3), 

Vp is the pore volume, ci the pore concentration, Dm the molecular diffusivity, R(ci) the 

reaction term and  qij , lij and aij are the flow rate, length and cross-sectional area of the 

throat connecting pore i to j, respectively. The throat flow rates come from solving the 

flow equation (eq. 3.2) and the throat cross-sectional areas are calculated by assuming 

cylindrical tubes with equivalent throat conductivities. 
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The reaction term is ignored here since, in this chapter, we are merely interested 

in the pore-level competition between diffusion and advection. In eq. 3.3, we have 

deterred from discretizing the time derivative for the benefit of using an adaptive time-

stepping ODE solver. The transport equation (eq. 3.3) is solved using the adaptive time 
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stepping ode23tb solver in MATLAB which is an implementation of TR-BDF2, an 

Implicit Runge-Kutta formula. 

 

3.2.3 The streamline splitting method (SSM) 

The streamline splitting method (SSM) is based on an a priori estimate of how the 

streamlines of an inflowing throat distribute among the outflowing throats of a pore. In 

particular, the inflowing stream is split into several portions, each of which enters one of 

the outflowing throats. Subsequent to “splitting” the streamlines, a species balance is 

written on each inflowing stream. Each stream is assumed to occupy a separate 

compartment within the pore, which we refer to as a “pocket”. Pockets consist of only 

one inlet (the inflowing throat) and several outlets (equal to the number of outflowing 

throats). Pockets within a pore are allowed to exchange mass between one another (which 

accounts for pore-level mixing). For this reason, SSM can be viewed as dividing the 

network into several interconnected sub-networks. Figure 3.2 shows an abstract 

schematic of the configuration of these pockets within a pore, and their connection to 

other neighboring pockets. Such a construct allows one to circumvent the perfect-mixing 

assumption in the formulation of the transport equation, which results in more accurate 

prediction of transverse dispersion at moderate to high Peclet numbers. In the following, 

we present the details of each step in the streamline splitting method (SSM). 
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Figure 3.2: Schematic of the pockets within pore 0 in connection with the pockets inside 

the neighboring pores (1, 2, 3 and 4). Here, each pocket is an abstract 

representation of an inflowing stream (it does not represent the actual stream 

nor its configuration). Dark arrows indicate flow directions within throats. 

Note that throats have the same indices as the pockets they flow into. 

 

3.2.3.1 Streamline splitting algorithm 

The algorithm developed in this section is based on two physical principles 

regarding the flow field: 1) inflowing streams are conserved (sum of the split sub-streams 

equals the original stream), and 2) streamlines cannot intersect. It also relies on an 

important observation made from numerous CFD simulations on single pore geometries: 

the splitting of streamlines is generally independent of throat radii, velocities, pore shape 

and size. The splitting depends primarily on throat orientations and their flow rates. This 

is plausible since regardless of the origin of the inflowing streams (throat size, velocity) 

they all expand into a common larger space (i.e. the pore). Pore shapes also have a 

negligible effect in the splitting of inflowing streams. That said, the authors have 
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observed rare cases in which concave structures (protruding inward from the pore wall) 

cause the creation of vortices which promote mixing. Such occurrences are deemed rare 

in the typical porous media encountered in hydrology/biology/petroleum and chemical 

engineering (e.g. sandstones, carbonates, micro-fluidic devices, etc.). Pores are typically 

convex as they are larger openings connected by narrower paths. 

Consider pore p0 with N throats connecting it to its neighboring pores; denoted by 

pk (k = 1,..,N). We assume that the flow system given by eq. 3.2 is already solved. 

Therefore, the total inflowing flow rate into pore p0 equals the total outflowing flow rate. 

We identify the inflowing throats by indexing them with i = 1 to Ni and the outflowing 

throats by indexing them with o = 1 to No (note that N = Ni + No). Note the difference in 

the indexing convention compared to that used for MCM (section 3.2.2). The objective is 

to determine how the inflowing stream (or flow rate) from a throat is to be distributed 

among the outflowing throats. We denote the fraction of the outflowing flow rate of 

throat o, originated from the inflowing flow rate of throat i by xio (eq. 3.4a). Let qi and qo 

denote the flow rates of the inflowing and outflowing throats respectively. Equations 3.4b 

and 3.4c must be satisfied for pore p0. Equation 3.4b simply states mass balance for an 

inflowing stream. 
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The system (i.e. eq. 3.4b and 3.4c written for all throats) consists of Ni + No (= N) 

equations in Ni × No unknowns (i.e. xio). One of these equations is redundant because 
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summing up eq. 3.4b over i = 1 to Ni, and combining with eq. 3.4c yields the overall mass 

balance equation in the pore which was assumed to hold in the first place. Therefore, the 

number of independent equations is N – 1. Depending on the total number of inflowing 

and outflowing throats there may exist more than one solution to this system. If (N -

 1) = (Ni × No), the system has only one solution (in the case of one inflowing or one 

outflowing throat). However, if (N - 1) < (Ni × No), the system has more than one solution 

and is under-determined (the other direction for the strict inequality is not possible for a 

flowing pore). In this case, an optimization problem must be solved, the details of which 

are outlined in the following. 

The optimization problem must take into account the preference of an inflowing 

stream towards a select subset of the outflowing throats. This is because the inflowing 

stream is assumed to be deflected as a result of the influence of other inflowing streams. 

Therefore, any inflowing stream is inclined to exit the pore through a few select throats 

while avoiding others. To this end, the orientation of the opposing inflowing streams 

needs to be taken into account (which was neglected by Jha et al., 2011). The interaction 

of the opposing influx on any given inflowing stream results in an imaginary barrier 

which the streamlines cannot intersect. Such a barrier surface (denoted by Sbar hereafter) 

exists whenever two (or more) laminar streams merge or coincide. A schematic of the 

barrier surface is presented in figure 3.3a. One can certainly envision such a barrier in 

the streamline field given in figure 3.1d as well. In pores with large numbers of inflowing 

throats, the complexity of the barrier surface increases. However, one can account for 

most of the complexities using the approach outlined later in the section. 

For now assume that the preferred outlets for inlet i have been identified (denote 

them by the set Pri). Subsequently, the xio values corresponding to these outlets must be 

maximized and the xio values for the outlets in Pri
c
 (i.e. complement of Pri) must be 
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minimized (for all i); all while satisfying eq. 3.4b and 3.4c. However, since some of the 

xio values are to be maximized and others minimized, it is difficult to define an objective 

function for optimization. Therefore, the xio values that correspond to the throats in Pri 

are replaced by (1-yio) in eq. 3.4b and 3.4c, and those for the throats in Pri
c
 are simply 

renamed to yio (eq. 3.7). Now, all yio values can be minimized by minimizing the 

objective function given by eq. 3.5 constrained by the conditions given by eq. 3.6a and 

3.6b. The right-hand-side constants iC and iC in eq. 3.6a and 3.6b are determined by 

substituting eq. 3.7 into eq. 3.4b and eq. 3.4c. 
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The ωio coefficients in eq. 3.5 are weighting factors and their significance is 

described at the end of the section. In this work, we use ωio = |qo| for all values of i and o. 

Thus, the streamline splitting algorithm (referred to as such hereafter) for pore p0 

involves solving a bounded (i.e. 0≤ yio ≤1) and constrained (i.e. eq. 3.6a and 3.6b) 

optimization problem. Here we use the quadprog routine in MATLAB, to perform the 
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optimization. Once the yio (and hence xio) values are determined, an estimate of how each 

of the inflowing streams distributes among the outflowing throats is obtained. In the 

following, the process for selecting outlet throats that an inflowing stream has preferred 

access to (i.e. members of the set Pri), is explained. 

We first differentiate between the three ways an inlet may access an outlet: a) the 

inlet stream is the only stream that flows into an outlet (referred to as full access), b) the 

inlet stream is not the only stream flowing into an outlet (referred to as partial access), 

and c) limited access which is discussed later in the section. If an inflowing stream i has 

full access to an outflowing throat o, then its corresponding xio value is equal to one. 

Consequently, the xjo values for any other inflowing stream j are equal to zero. Note that 

this reduces the number of unknowns in the system represented by eq. 3.6a and 3.6b and, 

thus, greatly simplifies the optimization problem to be solved. Considering the inflowing 

stream i, the barrier surface (Sbar) determines which outlets are accessible to the inlet (i.e. 

ϵ Pri). Namely, these are the outlets that fall on the same side of the barrier surface as the 

inlet itself. A schematic of the barrier surface is shown in figure 3.3a, and it can be seen 

that the surface can bend and twist depending on the orientation and magnitude of the 

outflowing streams and the opposing inflowing stream. The following procedure attempts 

to capture the approximate orientation of the barrier surface, and thus allowing us to 

determine the members within each Pri set (for all i). 

Let ui be the unit vector in the direction of inlet i, and uop
i
 the unit vector in the 

direction of its opposing inlet which is calculated using eq. 3.8a. Note that if there are 

more than one opposing inlets, an effective (flow rate weighted) opposing direction is 

computed. 
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Note that an alternative (and perhaps more physical) way of calculating uop
i is 

using eq. 3.8b, which corresponds to the vectorial sum of the inflowing momentum of the 

opposing inflowing streams (ai denotes the cross-sectional area of the inflowing throat). 

Throughout this chapter we have used eq. 3.8a. It was verified that the streamline 

splitting algorithm is quite insensitive to this choice for all cases considered herein. Thus, 

our results and conclusions remain unaffected. 

First we introduce a few frequently-used definitions and figure 3.3 can be used as 

a schematic reference: we denote the centroid of pore p0 with O and draw ui and uop
i from 

this point. We refer to the plane that goes through the two vectors (and O) as the flowing 

plane and denote it by Pfl. The rays (or half-lines) that contain O and are in the opposite 

directions of ui and uop
i are denoted by Li and Lop respectively. The ray bisecting the angle 

between Li and Lop is referred to by Lbi (which lies also on Pfl). On the flowing plane Pfl, 

we refer to the region between Li and Lop (where the rays build an angle less than 180°) as 

the interior region and to the region outside as the exterior region.  We also consider two 

imaginary rays Lbar
ex and Lbar

in drawn from the center of the pore O towards the exterior 

and interior regions respectively (also on Pfl). Lbar
ex and Lbar

in are used to mimic the 

behavior of the barrier surface in the exterior and interior regions respectively (for now 

the barrier surface is assumed to be perpendicular to the flowing plane i.e. Sbar in fig. 
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3.3a). We also refer to the region between Lbar
ex and Lbar

in (on Pfl and containing Li) as the 

territory of inlet i. Finally, let the angles that Lbar
ex and Lbar

in make with Li be denoted by 

θbar
ex and θbar

in in order; and initialized to zero. 

 

Figure 3.3: Schematic of a pore with two inflowing and three outflowing throats. (a) 3D 

schematic of the pore, projection of the outflowing throats onto the flowing 

plane, the barrier surface, and the transverse angle corresponding to the 

twisting of the barrier surface. (b) 2D projection of all throats on the 

flowing plane (on Pfl) with annotations of the interior region, exterior 
region, Li, Lop, Lbi, Lbar

ex, Lbar
in, θbar

ex and θbar
in. 

 

The following main steps are taken to identify preferred outlets (i.e. ϵ Pri) and their 

accessibility (full or partial) for inlet i of pore p0: 

i) Project all outlet throats onto the flowing plane Pfl (see figure 3.3a). 

ii) Keep increasing both θbar
ex and θbar

in from zero (by rotating Lbar
ex and Lbar

in) 

until the sum of the outlet flow rates in the territory of inlet i exceeds (or 

becomes equal to) its own inflowing rate. Hereafter, we refer to this condition 

as reaching overflow. 
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iii) In the process of expanding the inlet’s territory by increasing θbar
ex and θbar

in, 

label the outlets prior to overflow as full-access outlets, and at the moment of 

overflow, as partial-access outlets. 

 

The details of the algorithm used for achieving these three steps are summarized 

in the flowchart presented in figure A.1 (in appendix A). As mentioned earlier, once the 

full-access outlets of any inlet i are identified, the optimization problem given by eq. 3.5-

3.6 can be greatly simplified and reduced in unknowns. This is because if inlet i has full 

access to outlet o, then xko will be equal to one for k = i and zero for all k ≠  i. The 

reduced optimization problem can then be solved for (the xio values corresponding to) the 

remaining partial-access outlets. In short, the streamline splitting algorithm expands the 

territory of any given inlet i until the inlet can access enough outlets that have the 

capacity to accommodate its inflowing rate. In the process, generally, outlets well within 

the inlet’s territory are accessed fully and outlets that verge on the boundaries of the 

barrier surface are accessed partially (refer to figure A.1 for a more detailed description). 

The above procedure is performed for all inlets, and special notes need to be made which 

are discussed at the end of this section. 

Finally, an inlet may additionally have limited access to an outlet outside its 

territory. This is only possible for 3D pores and is due to the twisting of the barrier 

surface, as shown with the dotted surface Sbar
 cor in figure 3.3a. In the foregoing, we had 

implicitly assumed that the barrier surface is perpendicular to the flowing plane and thus 

we were able to represent it with its projection onto Pfl; namely the half-lines Lbar
in and 

Lbar
ex. However, the barrier surface may twist as shown in figure 3.3a by Sbar

 cor, in which 

case we may need to grant limited access to one more outlet (along with imposing an 

inequality condition on the optimization as discussed next). We proceed by example: 
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consider the pore schematized in figure 3.3, its inlet i and its three outlets. Let Sbar, in this 

figure, be the barrier surface obtained from following the aforementioned three steps. 

From figure 3.3b, it is seen that outlets #3 and #2 are within the inlet’s territory. 

However, it is possible for inlet i to have limited access to outlet #1 as well. This depends 

on the transverse angle (ζ), which is the complement of the angle the plane going through 

outlets #1 and #2 (and O) makes with the flowing plane Pfl (indicated in figure 3.3a). The 

following expresses the condition under which inlet i is granted limited access to outlet 

#1: 
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Equation 3.9 states: if we consider the total amount of fluid entering outlets #2 

and #1 combined, the fraction that enters outlet #1 is bounded above by M ϵ [0, 0.5]. This 

upper bound, M, depends on how far deviated the plane going through outlet #1 and #2 

(and O) is from vertical (i.e. magnitude of ζ). If ζ ≥  45°, limited access to outlet #1 is not 

granted and we need not concern ourselves with this condition. However, if ζ < 45°, 

outlet #1 will “steal” some of the fluid (originating from inlet i) that enters outlet #2 (i.e. 

due to the twisting of the barrier surface). The stealing is maximized when ζ = 0° (i.e. 

outlets #1 and #2 are on top of one another when projected onto the flowing plane), 
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where outlet #2 may lose up to half of its flow rate to outlet #1. This dependence on 

transverse angle was investigated via numerous CFD simulations and it was observed 

that beyond a transverse angle of 45° the “stealing effect” is negligible; and it is maximal 

at 90° (more discussion along with comparison against CFD data is provided in appendix 

E). One important remark is that, in this work, we only consider the stealing effect in the 

exterior and not in the interior region. This is because generally pores with more than 

one outlet in the interior region are rare (since flow is unidirectional in most cases). 

Additionally, CFD simulations showed that the stealing effect was much more 

pronounced in the exterior compared to the interior region. 

Equations 3.9-3.10 in the example given above can be adapted to any other pore 

with the correct choice of outlets (instead of #1 and #2 above). See the flowchart in figure 

A.1 for a detailed depiction of where in the algorithm limited accesses are granted. Note, 

that once inlet i is granted limited access to an outlet o, outlet o belongs to the Pri set. 

Thus the change of variable, given by eq. 3.7, from xio to yio is needed (both in the 

optimization problem and in the condition given i.e. eq. 3.5-3.6 and 3.9). Furthermore, if 

limited access is granted to any outlet the condition given by eq. 3.9 needs to be included 

as yet another restriction in the optimization (here we use the quadprog routine in 

MATLAB which accommodates inequality restrictions as well). Lastly, note that for a 2D 

pore (or pores with transverse angles larger than 45o) the condition given by eq. 3.9 is not 

required and the optimization problem is simpler. 

We conclude this section with a few important remarks: a) full access to an outlet 

cannot be granted if another inlet has any kind of access to that outlet. In this case, partial 

access is granted instead. b) In the process of granting full, partial or limited access to an 

outlet, any inlets having full access on that outlet need to be changed to partial access. c) 

One of the additional advantages of formulating the problem as an optimization is that the 
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coefficients of the objective function, ωio, can be chosen in such a way to yield desired 

effects. In this work, we have chosen ωio = |qo| for all i and o, and we demonstrate in 

appendix B that this leads to a flow rate-weighted distribution of the remaining influx 

(after subtracting the portion dedicated to full-access outlets, and in the absence of limited 

access outlets) among the remaining partial-access outlets. Other choices include ωio = 1 

and ωio = |qo|2 (for all i and o) in which low-flow-rate inlets have a tendency towards 

low-flow-rate and high-flow-rate outlets respectively. However, our choice in this work 

produced the best results and seemed to be the most reasonable. A verification of the 

methodology presented in this section against direct CFD simulations (both in 2D and 

3D) is presented in section 3.3.1. 

 

3.2.3.2 Streamline splitting and particle tracking 

The foregoing streamline splitting algorithm is also very useful in a more direct 

(but more computationally expensive) method for solving transport in pore networks (or 

voxelized media) referred to as particle tracking (PT). As mentioned in section 3.1, 

“stream-tube routing” is what is commonly used for redistributing incoming solute 

particles (via the advection step) to pores. Particles are assigned to new (outflowing) 

throats by flow rate-weighted probabilities given by eq. 3.1. This entails that an inflowing 

stream distributes among outflowing throats in proportions given by eq. 3.1. Therefore, 

xio values for “stream-tube routing” are obtained as follows: 
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The last equality in eq. 3.11 comes from the continuity of the total in/out flow 

rates in a pore. Note that, in “stream-tube routing”, xio is equal to the fraction of the total 

inflowing rate comprised by stream i. This is precisely what “perfect mixing” entails: all 

inflowing streams are mixed within the pore in proportion to their flow rates. 

Furthermore, although the flow rate-weighted rule assigns more particles to outflowing 

throats with larger flow rates, the number of particles per outflowing volume remains 

constant. Hence, a “perfectly mixed” concentration is what exits the pore through every 

outflowing throat. Therefore, it is proposed that particles arriving at a pore via the 

advection step in PT be redistributed using the streamline splitting algorithm discussed in 

section 3.2.3.1, which would increase the modeling accuracy of PT in pore networks. 

Bruderer et al. (2001) and Jha et al. (2011) also proposed simple streamline 

splitting rules. Jha et al. (2011) attempted to generalize those of Bruderer et al. (2001) for 

3D pores connected to a maximum of four neighbors. However, they neglected throat 

orientations in developing their rules. In appendix C, we provide counter examples to 

these rules and demonstrate the importance of throat orientations in splitting streamlines. 

A comparison of the predictions made by their method and our streamline splitting 

algorithm vs. CFD is provided. The results show that their method is limited even for 

simple 2D pore geometries, while the algorithm developed herein performs considerably 

better. 

3.2.3.3 Formulation of the SSM transport equation 

Once the distribution of inflowing streams among outflowing throats (in every 

pore) is calculated, species balance can be written on each inflowing stream. We assume 

that each inflowing stream occupies a separate space within the pore, which we refer to as 

a “pocket”. The number of pockets for a given pore is, thus, equal to the number of 
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inflowing streams (or throats). Therefore, each pocket has only one inlet but multiple 

outlets (equal to the number of outflowing throats). For this reason, we enumerate throats 

with the same index as the pockets they flow into (fig. 3.2). Figure 3.2 is an abstract 

schematic of the pockets within pore 0 connected to the pockets in the neighboring pores 

(i.e. pores 1, 2, 3, 4). In this section, we proceed by example and form the species balance 

equation for pocket 1 of pore 0 in figure 3.2. We then provide a general species balance 

expression for the streamline splitting method. 

In figure 3.2, pocket 1 is connected from its inlet to pockets 3, 4 and 5 (in pore 1), 

each of which has a different concentration value. However, the concentration in pocket 1 

is assumed to be homogeneous. This is a sound assumption, since streamlines from the 

three pockets (i.e. 3, 4 and 5) must converge to pass through throat 1. The large reduction 

in flow area causes an even larger reduction in the diffusion time scale. According to 

Einstein’s equation for Brownian motion (i.e. x2∝Dt), diffusion time reduces 

quadratically with reduction in diffusion distance. Therefore, it is quite reasonable to 

assume that contents of different pockets mix almost completely in passing through the 

throats (this can also be seen in the concentration fields of fig. 3.1). Using the streamline 

splitting algorithm of section 3.2.3.1 we know the proportion in which pocket 1 

distributes among throats 9 and 10. Moreover, note that there is mass transfer between 

pockets 1 and 2 as a result of concentration differences. This mass transfer is strictly 

diffusive, since streamlines from two pockets do not intersect. The mass transfer is taken 

into account as a source terms in the species balance equation. Species balance for pocket 

1 can, thus, be written as follows: 
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In eq. 3.12-3.13, qk, ak and lk are the flow rate, cross-sectional area and length of 

throat k, respectively. Concentration and volume of pocket k are denoted by ck and Vk, 

respectively. Dm is the molecular diffusion coefficient and xio (ref. section 3.2.3.1) is the 

fraction of the flow rate of throat o that flows out of pocket i (or throat i). Ψ21 is the inter-

pocket mass transfer rate from pocket 2 to 1, which is a function of their concentrations. 

Finally, R represents the (homogeneous or heterogeneous) reaction rate in pocket 1. 

Throughout this chapter, R is assumed to be zero. 

The general form of the SSM transport equation can now be written as follows. 

Consider pore pk with its connecting throat indices inside the set Sk. We refer to its 

neighboring pores by pl. We denote the throat connecting pores pk and pl by tkl. To 

distinguish inflowing from outflowing throats we define Sk
i and Sk

o as the sets of 

inflowing and outflowing throats of pore pk, respectively (note Sk = Sk
i  Sk

o). Once again, 

pockets are labeled with the same index as their corresponding inflowing throats i.e. 

pkkl = tkl and tkl ϵ Sk
i. The following (eq. 3.14) is the species balance equation for pocket 

pkkn ( = tkn ϵ Sk
i) within pore pk: 
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Eq. 3.14 is solved using the adaptive time stepping ode23tb solver in MATLAB 

which is an implementation of TR-BDF2, an Implicit Runge-Kutta formula. Usually 

pocket sizes vary widely in a pore network, thus an explicit formulation becomes rather 

expensive and severely limited by time step size (i.e. the CFL condition). Therefore, an 

implicit formulation is of great advantage in solving the above transport problem. Finally, 

for no-flow throats, two pockets are assigned, one in each of the connecting pores (called 

stagnant pockets versus flowing pockets). If a pore contains only stagnant pockets then 

the volume of the pore is evenly divided among the pockets. However, if the pore 

contains flowing pockets as well, then an imaginary volume equal to 10% of the pore 

volume is assigned to the stagnant pocket, and the volume of the flowing pockets are kept 

unaltered. This volume is assigned so that the system resulting from eq. 3.14 is solvable. 

Finally, the SSM formulation typically increases the number of transport unknowns by a 

factor of ~2 in comparison with MCM. This is because each pore typically contains two 

pockets on average (this is true for both the micromodels and 3D granular media studied 

in section 3.3). The increase in the number of unknowns is minimal compared to the 

significant gain in predictive accuracy (section 3.3.2). Finally, in section 3.2.3.4 we 

present a condition for checking the validity of the perfect mixing assumption within 
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each pore. If the condition holds, no splitting of streamlines is required and a single 

transport unknown is sufficient for the pore. This leads to a further decrease in the 

number of transport unknowns and hence computational cost. 

The formulation of the SSM transport equation (i.e. eq. 3.14) takes into account  

both the splitting of streamlines as well as the amount of pore-level mixing within the 

pore (via the inter-pocket mass transfer term). However, pore-level mixing is typically 

treated at its extremes in the literature. For instance, Bijeljic et al. (2004) use “stream-

tube routing” (shown to be equivalent to perfect mixing), which is only valid at very low 

Peclet numbers. Whereas Bruderer et al. (2001) and Jha et al. (2011) apply rules that 

eliminate any mechanism responsible for randomness (characteristic of diffusion) within 

the pores which is valid only at very high Peclet numbers. Considering that fluid 

residence time is longer in pores than in throats, this assumption leads to the absence of a 

critical mechanism responsible for transverse dispersion i.e. pore-level mixing (discussed 

further in section 3.3.2). Therefore, solute particles must be allowed to switch streamlines 

within pores (in addition to within throats); an exact point-to-point mapping of 

streamlines from one throat to another (as was done by Jha et al., 2011) may not be 

necessary. The next section focuses on computing the mass transfer term in eq. 3.14. 

 

3.2.3.4 Inter-pocket mass transfer 

The mass transfer term Ψ in eq. 3.14 can be calculated by solving something 

analogous to a Riemann problem for the inter-diffusion of two bounded bodies (i.e. 

pockets 1 and 2 in eq. 3.12). Assuming an idealized geometry (a cuboid) for the pore and 

the containing pockets, this term can be quantitatively approximated. The details of the 



 50 

derivation can be found in appendix D. Here, we only present the final expression for Ψ. 

The average mass transfer rate from pocket 2 to 1 (i.e. Ψ21) can, therefore, be obtained as: 
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Eq. 3.16 is the rate of mass transfer between pockets 1 and 2 (within the same 

pore), and eq. 3.17 is the cumulative mass transferred between the two pockets in a given 

time (i.e. T). Eq. 3.17 is obtained from solving a bounded Riemann problem in the 

idealized cuboid geometry (see appendix D). In eq. 3.16 and 3.17, dimensions of the 

idealized pockets (i.e. L, W, H and a) are required (see figure D.1). If an a priori 

knowledge of these parameters is known from the network and flow geometry (as is the 

case in section 3.3.2), then they can be used in the computations. Otherwise, one can use 

the following approximations: 

 

1/3 1 2 1

2 2
( )p

V V V
V W H L a 
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
        (3.18) 

In eq. 3.18, V1 and V2 are the pocket volumes obtained from eq. 3.13 and Vp is the 

pore volume. It is noteworthy that simply assuming L = γ and a = 0.5 (instead of eq. 

3.18) did not cause a significant difference in the final results of the cases studied in this 

work. In eq. 3.16, T is the transport time scale and is very important in calculating Ψ21. 

Here, we only present the final expression for computing T, however a detailed analysis 

can be found in the appendix D: 
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In eq. 3.19-3.20, Qp is the total flow rate through the pore, and ni is the ith 

components of the n  vector. The values for X, Y, and α are determined through 

comparisons against direct pore-level simulations and were found to be 6, 0.5 and 0.1, 

respectively (see appendix D for details). ta is fluid residence time in the pore and td is the 

time required for a Brownian particle, starting from the inter-pocket interface, to traverse 

the shortest of the two lateral dimensions of the pockets. Therefore, the transport time 

scale, T, varies from an advection-dominated value (i.e. ta) to a diffusion-dominated one 

(i.e. αtd), and r represents the competition of the two transport mechanisms within the 

pore. If r ≤  Y the pore can be safely assumed to be perfectly mixed, which could further 

reduce the number of transport unknown in SSM. 

A remark should be made about the applicability of the current inter-pocket mass 

transfer term in the presence of reactions. There are two kinds of reactions that may occur 

within the pore space: homogeneous and heterogeneous. Homogeneous reactions occur 

within the bulk of the fluid and are typically instantaneous and in equilibrium at all times, 

whereas heterogeneous reactions occur at the mineral-fluid interface and are kinetically 

controlled (i.e. time dependent). Homogeneous reactions occurring within the fluid bulk 
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(e.g. radioactive decay) are not expected to cause large concentration gradients within the 

pockets and can simply be accounted for by a source term in eq. 3.14 (i.e. R(c)) . 

Homogeneous reactions that occur due to mixing of two separate species between two 

neighboring pockets may affect the applicability of the currently derived mass transfer 

term in eq. 3.16-3.17. Moreover, fast heterogeneous reactions at mineral-fluid interfaces 

may cause concentration gradients within individual pockets, rendering the applicability 

of eq. 3.16-3.17 questionable. In these cases, one can solve the appropriate local problem, 

similar to the Riemann problem in appendix D, and derive a modified inter-pocket mass 

transfer term. For heterogeneous reactions appropriate boundary conditions, as opposed 

to the currently used no-flux boundary conditions, at the pore walls needs to be imposed 

(see appendix D). Naturally approximations are inevitable in such analyses and they are 

currently under investigation by the authors. 

 

3.3 RESULTS AND DISCUSSION 

3.3.1 Verification of streamline splitting algorithm against direct simulation 

In this section, we present examples (both in 2D and 3D) for the verification of 

the streamline splitting algorithm discussed in section 3.2.3.1. In particular we attempt to 

compare the xio values obtained from the streamline splitting algorithm to those obtained 

from direct simulations; specifically CFD modeling. For this purpose, one 2D-pore (two 

inlets and three outlets) with different boundary conditions and three distinct 3D-pores 

are considered (see fig. 3.4). Since there is no direct way of computing xio from direct 

simulations, a dummy tracer is injected through one of the inlet throats in the absence of 

diffusion. It should be reemphasized that diffusion must be ignored in the following CFD 

simulations (by assigning it a very small value) in order to be able to draw a comparison. 
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This is because the xio values only quantify the splitting of streamlines, and not the 

amount of intra-pore diffusion (for which Ψ in eq. 3.14 is responsible). The Stokes-flow 

as well as the purely convective steady-state transport equations, with boundary 

conditions summarized in table 3.1, were then solved in COMSOL for each case. Since 

xio is dimensionless, only the relative magnitudes of the flow rates are important; thus, the 

boundary conditions listed in table 3.1 are presented without units. Figure 3.4 

demonstrates the concentration fields obtained. The streamline fields for the 2D pore are 

also shown for clarity. The concentration fields show a sharp separation between the two 

injected fluids, that clearly delineates the boundaries of each pocket. In the presence of 

diffusion, this inter-pocket interface would provide a zone for mass transfer between the 

two fluids. The concentration fields of the dummy tracer were then used to indirectly 

compute xio for the direct simulations using the following simple equation. Here, we 

denote the inlet throats with and without the dummy tracer by a and b, respectively. Thus 

we have: 
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 Throat #1 Throat #2 Throat #3 Throat #4 Throat #5 

Case I qi = 2 

ci = 1 

qi = 1 

ci = 0 

qo = -1 

∂c/∂n|o=0 

qo = -1 

∂c/∂n|o=0 

qo = -1 

∂c/∂n|o=0 

Case II qi = 2 

ci = 1 

qi = 1 

ci = 0 

qo = -0.5 

∂c/∂n|o=0 

qo = -2 

∂c/∂n|o=0 

qo = -0.5 

∂c/∂n|o=0 

Case III qi = 2 

ci = 1 

qi = 1 

ci = 0 

qo = -0.5 

∂c/∂n|o=0 

qo = -0.5 

∂c/∂n|o=0 

qo = -2 

∂c/∂n|o=0 

Case IV qi = 1.5 

ci = 0 

qo = -0.5 

∂c/∂n|o=0 

qo = -0.5 

∂c/∂n|o=0 

qi = 1.5 

ci =1 

qo = -2 

∂c/∂n|o=0 

Case V qi = 1 

ci = 0 

qi = 1 

ci = 1 

qo = -1 

∂c/∂n|o=0 

qo = -1 

∂c/∂n|o=0 

- 

Case VI qi = 2 

ci = 1 

qi = 1 

ci = 0 

qo = -1 

∂c/∂n|o=0 

qo = -2 

∂c/∂n|o=0 

- 

Case VII qi = 2 

ci = 0 

qi = 1 

ci = 1 

qo = -1 

∂c/∂n|o=0 

qo = -0.5 

∂c/∂n|o=0 

qo = -1.5 

∂c/∂n|o=0 

Table 3.1: Flow and transport boundary conditions for inlet/outlet throats of the pores 

depicted in figure 3.4. 
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Figure 3.4: Concentration fields of a dummy tracer (injected through one inlet) obtained 

from COMSOL simulations on one 2D pore (different boundary conditions) 

and three distinct 3D pores. Inlet and outlet throats are annotated for each 

case and streamline fields are provided for the 2D pore only (for clarity). 
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Table 2 summarizes the xio values obtained from direct simulations (i.e. eq. 3.21), 

the streamline splitting algorithm (presented in section 3.2.3.1) and the “stream-tube 

routing” method (discussed in section 3.2.3.2). It is evident from table 2, that the 

predictions made by the streamline splitting algorithm are in excellent agreement with 
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direct simulations. Whereas, the “stream-tube routing” predictions are poor in 

comparison. Thus, we conclude that the streamline splitting algorithm accurately captures 

the realistic distribution of inflowing streamlines among outflowing throats even for 

relatively complex pore geometries. Lastly, it should be noted that for cases V, VI and 

VII the twisting of the barrier surface was taken into account via eq. 3.9. 

 

 

 COMSOL simulations Streamline Splitting Stream-Tube Routing 

Case I x13 x14 x15 x13 x14 x15 x13 x14 x15 

0.98 0.91 0.05 1 1 0 0.66 0.66 0.66 

Case II x13 x14 x15 x13 x14 x15 x13 x14 x15 

0.98 0.73 0 1 0.75 0 0.66 0.66 0.66 

Case III x13 x14 x15 x13 x14 x15 x13 x14 x15 

0.98 0.98 0.48 1 1 0.5 0.66 0.66 0.66 

Case IV x42 x43 x45 x42 x43 x45 x42 x43 x45 

0 0.52 0.59 0 0.6 0.6 0.5 0.5 0.5 

Case V x23 x24 - x23 x24 - x23 x24 - 

0.67 0.33 - 0.72 0.28 - 0.5 0.5 - 

Case VI x13 x14 - x13 x14 - x13 x14 - 

0.92 0.54 - 0.9 0.55 - 0.66 0.66 - 

Case VII x13 x14 x15 x13 x14 x15 x13 x14 x15 

0 0.37 0.52 0 0.41 0.53 0.33 0.33 0.33 

Table 3.2: xio values obtained from COMSOL, streamline splitting and “stream-tube 

routing” for the pores in figure 3.4. 
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3.3.2 Validation against micromodel experiments 

In this section, we compare simulation results from SSM and MCM to data 

obtained from nonreactive tracer micromodel experiments, which were conducted in the 

Environmental Molecular Sciences Laboratory (EMSL) at the Pacific Northwest National 

Laboratory. The 2×1 cm2 micromodels were manufactured in the EMSL clean room 

using standard photolithography and plasma dry etching techniques (Willingham et al. 

(2008) and Chomsurin and Werth (2003)). A general schematic of the micromodels used 

in the experiments is given in figure 3.5. The micromodels consist of cylindrical posts, 

comprising the grain space, bound between two transparent glass plates and are equipped 

with two inlet ports and one outlet port (fig. 3.5). During the experiments, micromodels 

were placed in a horizontal position and de-ionized water and an Alexa 488 dye solute 

were co-injected into the first and second inlet ports, respectively (fig. 3.5). After 

injection, the two fluids come into contact and subsequently mix inside the micromodel. 

The micromodels were then given enough time to reach steady state. As figure 3.9 shows, 

the line of contact between the two fluids grows progressively more diffuse as the fluids 

travel further away from the inlet towards the outlet. Transect concentration profiles of 

the fluorescent tracer along the 0.25, 0.5, 0.75, 1, 1.25, 1.5 and 1.75 cm lines (shown in 

fig. 3.5) were measured. 
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Figure 3.5: General schematic of the micromodels used in the experiments. Inlet and 

outlet ports are annotated and the transect lines, along which concentration 

profiles were obtained, are delineated. 

 

Figure 3.6: Close-up schematic of the single- and double-post micromodel structures. The 

pore space is divided into pores and throats. Dimensions of the micromodels 

are annotated.  
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Figure 3.7: Schematic of the non-periodic (heterogeneous) micromodel used in Exp. 5 

(Table 3). The single- and dual-post areas of the model are identical to the 

configuration used in Exp. 1 and 4, respectively. 

 

A total of eight experiments were performed. Table 3 summarizes the details of 

the parameters used in each experiment. For comparison purposes, the experiments are 

divided into sets 1-5, based on the physical micromodel used in the experiments.  The 

first three experimental sets are completed in periodic micromodels with a single post 

size, as illustrated in figure 3.6a. Experiment 4 is conducted in a periodic micromodel 

with two distinct post sizes (figure 3.6b). A non-periodic model (figure 3.7) is used in 

experiment 5.These sets were designed to focus on investigating the effects of changing 

(a) Darcy velocity (sets 1 and 3) , (b) grain diameter (comparison of Exp. 1a and 2), (c) 

aspect ratio (comparison of Exp. 1a and 3a) , and (d) heterogeneity (comparison of Exp. 

1a, 4 and 5) on model predictions. The molecular diffusion coefficient of Alexa 488 in 

water is 4.3×10-10 m2/s (Nitsche et al., 2004) and the viscosity of water was taken to be 
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1.002 mPa.s. In all experiments, water and Alexa 488 were injected with equal flow rates 

into the inlet ports 1 and 2 (see fig. 3.5). 

The micromodels are divided into pores and throats as indicated in figure 3.6. The 

throat conductivities (i.e. g) were obtained by solving the Stokes equation, in COMSOL, 

on individual throat geometries and using ( / )q g p  . Since the micromodels have 

regular patterns, only one (or two in the case of Exp. 4 and 5) representative throat had to 

be considered. Note that the top and bottom plates of the micromodels provide additional 

no-slip boundary conditions in calculating throat conductivities. Once the conductivities 

are calculated, the flow system (eq. 3.2) can be solved to obtain the velocity field and the 

permeabilites of each micromodel (using Darcy’s law i.e. ( / )( / )cQ KA P L  ). 

Subsequently, transport was simulated using both SSM and MCM until steady state was 

reached. Table 3 summarizes the calculated throat conductivities, and the calculated 

versus measured micromodel permeabilities. Note that there is good agreement between 

the computed and measured permeabilites. For solving the SSM transport equation, the 

following parameters (except for pores in the dual-post regions) were used as a result of 

an a priori knowledge of the pore/flow geometries: 

 

0.5L W A H thickness a         (3.22) 

 

Figure 3.8 demonstrates the simulated (MCM and SSM) and the experimental 

concentration profiles along the 0.5, 1 and 1.5 cm transects (concentration profiles along 

the 0.25, 0.75, 1.25 and 1.75 transect lines are not shown for brevity, however similar 

results were obtained for these lines as well). It should be noted that the “oscillations” in 

the experimental data are due to the fact that the concentration values over the grain 

space (i.e. posts) are measured as zero. On the other hand, the simulation results are 
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expressed in pore concentrations and the values over the grain space is interpolated. 

Therefore, the simulated concentration profiles appear smooth and devoid of any such 

“oscillations”. Thus, correct comparison of the simulated results should be made against 

the “peaks” of the experimental data (i.e. disregarding data points inside the peak 

envelope). 

 

 
Exp. Post-Diam 

(µm) 

A – B 

(µm) (ref. 

fig. 3.6) 

Thickne

ss (μm) 

Darcy Vel. 

(×10-3 cm/s) 

Porosity 

(%) 

Cond. Calc. 

(×10-12 cm3) 

Perm.    

Calc. 

(×10-7 cm2) 

Perm. Meas. 

(10-7 cm2) 

Peclet 

Num. 

1a 300 180.8-40 29 4.52 39.0 308.7 1.0 1.3 11.9 

1b 300 180.8-40 29 45.24 39.0 308.7 1.0 1.3 119.0 

2 600 361.7-80 29 4.52 39.0 385.5 1.3 1.5 14.6 

3a 300 152.5-20 39 6.56 31.2 215.5 0.52 0.48 28.0 

3b 300 152.5-20 39 0.656 31.2 215.5 0.52 0.48 2.8 

3c 300 152.5-20 39 0.0656 31.2 215.5 0.52 0.48 0.28 

4 large:  300 

small: 135 

180.8-40 

 

39 5.76 26.7 large: 723.5 

small: 378.0 

0.62 0.59 13.8 

5 large:  300 

small: 135 

180.8-40 

 

39 14.56 26.7 large: 723.5 

small: 378.0 

1.0 0.84 34.9 

Table 3.3: Summary of the experiments including micromodel parameters, calculated 

throat-conductivities and calculated/measured micromodel permeabilities. 

 

Figure 3.8 shows excellent agreement between SSM simulations and the 

experimental data. The agreement remains very close in all sets, in which (a) Darcy 
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velocity (sets 1 and 3), (b) grain diameter (Exp. 1a vs. 2), (c) aspect ratio (Exp. 1a vs. 3a), 

and (d) heterogeneity (Exp. 1a, 4 and 5) are subject to change. The predictions cover a 

large range of Peclet numbers (= vR/Dm where v, R and Dm are the average throat fluid 

velocity, average throat radius and molecular diffusion coefficient respectively) from 

0.28 to 119.0 as summarized in table 3. On the other hand, predictions made by MCM are 

generally poor and largely over-predict transverse dispersion. This is to be expected, 

since the implicit perfect-mixing assumption naturally aids the dispersion of the solute in 

the transverse direction. MCM predictions are poorer when pore sizes are larger (leading 

to mixing of more fluid e.g. Exp. 2) and Peclet number is higher (>~1). The only cases in 

which MCM yields accurate predictions is Exp. 3c and 4. The MCM solution for Exp. 3b 

appears acceptable, however the two methods deviate further as the distance from the 

inlet increases; thus for longer domains MCM predictions would become inaccurate. 

Experiment 3c is in the diffusion-dominated regime (Pe ≈  0.28), therefore the perfect-

mixing assumption in MCM becomes appropriate and the two methods yield similar 

result. Furthermore, the agreement in Exp. 4 is merely due to the specific symmetric 

structure of the dual-post micromodel. The pores in this network consist of three throats 

(thus a maximum of one flowing pocket), one of which has a zero flow rate (this is the 

throat perpendicular to the flow direction). Transverse dispersion in this network is, 

therefore, solely due to diffusion through the non-flowing throats. Finally, note that in 

Exp. 5, MCM predictions do not even follow the correct trend of the transect 

concentration profiles. This is due to the fact that the single-post region of the 

micromodel (figure 3.6a) consists of fewer but larger pores, thus leading to more lateral 

mixing; whereas the dual-post region (figure 3.6b) consists of more pores per bulk 

volume of the micromodel, thus resulting in less lateral dispersion. 
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Figure 3.8: Concentration profiles along the 0.5, 1 and 1.5 cm transect lines including 

experimental data (dots), SSM transects (solid blue line), and MCM 

transects (dashed red line). 
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Figure 3.8: Contd. 

 

Figure 3.9 compares 2D concentration field plots obtained from SSM and MCM 

for the micromodels in experiments 1b, 2, 3a and 5. These field plots also clearly show 

that MCM largely over-predicts transverse dispersion. Similar behavior was observed for 

all other experiments (except Exp. 4 and 3c where SSM and MCM results agree). It 

should be noted that the concentration fields appear smooth because the simulated pore 

concentrations were interpolated over the grain space. The ripples in the SSM 

concentration field of experiment 2 in figure 3.9 are not numerical artifacts and are the 

result of adjacent pore layers with very different concentration values. Therefore, we 

conclude that SSM provides a much more accurate description of solute transport (in 

particular transverse dispersion) than MCM which is in excellent agreement with 

experimental data. Finally, the number of SSM and MCM transport unknowns for each of 

the experiments is listed in table 4. Note that, on average, the number of SSM unknowns 

is ~2 times the unknowns of MCM. This is generally also true in realistic 3D granular 
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media as shown in section 3.3.3. It is also noteworthy that the longest SSM simulation 

time was ~2 minutes (for Exp. 4) which is less than any direct method known to the 

authors for the domain sizes considered. In closing, we would like to note that if these 

problems were solved via PT with pore-level rules as the ones used by Bijeljic et al. 

(2004) (i.e. “stream-tube routing” for the advection step and “complete mixing” for the 

diffusion step), the resultant predictions would have been the same as the ones obtained 

by MCM. Moreover, if the pore-level rules were adopted from Bruderer et al. (2001) and 

Jha et al. (2011), no transverse dispersion would have been observed in their 

corresponding predictions. This means that the current pore-level rules used in PT verge 

on the extremes of the pore-level Peclet spectrum and the propositions made in section 

3.2.3.2 could rectify this deficiency. 

 

 

Experiment Number of MCM 

Unknowns 

Number of SSM 

Unknowns 

1a 1370 2824 

1b 1370 2824 

2 349 740 

3a,b,c 1914 3918 

4 6888 10500 

5 4126 6798 

Table 3.4: Number of SSM and MCM transport unknowns for each experiment. 
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Figure 3.9: Comparison of 2D concentration fields obtained using SSM and MCM for the 

micromodels in experiments 1b, 2, 3a and 5. The smooth concentration 

fields were obtained by interpolation over the grain space. 

 

3.3.3 Transverse dispersion in 3D disordered media 

In this section, we examine transverse dispersion in 3D disordered granular 

media. Specifically, we attempt to simulate transverse dispersion at high Peclet regimes 

using SSM and MCM (since this is when the two methods diverge the most) in 3D 

disordered networks and draw comparisons between them. We utilize pore networks 

extracted from two different types of porous media: a) a 3D sphere pack obtained from 

using a collective rearrangement algorithm (Jodrey and Tory, 1985); and b) a real and 
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naturally occurring sandstone (Gani and Bhattacharya, 2003) imaged using X-ray 

computed microtomography (Thompson et al. 2008). Both networks were extracted using 

a modified Delaunay tessellation algorithm (Al-Raoush et al., 2003). The sphere pack 

consists of 4094 pores and 10184 throats with permeability and porosity of 24D and 0.38 

respectively. The sandstone consists of 9463 pores and 15555 throats with permeability 

and porosity of 0.19D and 0.17 respectively. Both networks have dimensions of 

1×1×1mm3. 

In each network, the flow problem (eq. 3.2) was solved by imposing a constant 

pressure drop in the x-direction and sealing all other boundaries. For transport, the 

concentration at the inlet was kept at a constant value of one for y≥ 0.5mm and at a 

constant value of zero for y<0.5mm. At the outlet a zero-concentration-gradient boundary 

condition was imposed. The transport problem was then solved both using SSM and 

MCM until steady-state was reached. Here, we define the characteristic Peclet number by 

vR/Dm where v is the interstitial fluid velocity (= U/φ where U is Darcy velocity and φ is 

porosity), R is the average throat radius, and Dm the molecular diffusion coefficient. The 

simulations were carried out at a characteristic Peclet number of ~60 for both the sphere 

pack and sandstone networks (which is advection-dominated). The number of transport 

unknowns in SSM is ~2 times the number of unknowns in MCM for both networks (i.e. 

sphere pack: 9949 for SSM versus 4094 for MCM; sandstone: 16486 for SSM versus 

9463 for MCM).  This is similar to the micromodels studied in section 3.3.2. 

Figure 3.10 shows a 2D plane view of the steady state concentration fields 

obtained using SSM and MCM, and the difference field plots calculated via eq. 3.23. The 

difference field plots quantify the divergence of the two methods from one another 

relative to the maximum inlet concentration value (i.e. one). Figure 3.10 shows that the 

average difference between the two methods is ~5% and ~7% of the maximum 
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concentration value (i.e. one) in the sphere pack and sandstone networks, respectively 

(with some pores registering differences close to ~10%). Furthermore, the difference 

between the two methods is more pronounced in the sandstone in comparison to the 

sphere pack. Despite the fact that such errors could ultimately become important in 

obtaining transverse dispersion coefficients via upscaling for these media, the difference 

is nevertheless not substantial. Similar observations were made for different and much 

(up to ten times) larger sphere packs. This is contrary to the observations made for the 

micromodels in section 3.3.2, where the difference between the two solutions ranged 

from 25% to 45%. In order to explain the foregoing observation made for the 3D 

networks, we distinguish between six types of pores: 

 

i) Type I: more than one inlet but only one outlet 

ii) Type II: more than one outlet but only one inlet 

iii) Type III: one inlet and one outlet 

iv) Type IV: more than one inlet and more than one outlet with the xio values 

differing by less than 0.1 from the “stream-tube routing” method values 

v) Type V: more than one inlet and more than one outlet with the xio values 

differing by more than 0.1 from the “stream-tube routing” method values 

vi) Type VI: non-flowing pores i.e. flow rate in all connecting throats is equal to 

zero 

 
1| c c |
| c c |

maxc
SSM MCM

SSM MCM

max

difference
c


        (3.23) 
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Figure 3.10: (a), (b), (d), (e) Plane view of the steady state concentration fields obtained 

using SSM and MCM for the sphere pack and sandstone networks. Plots (c) 

and (f) show the difference field plots between the two methods obtained via 

eq. 3.23. 

 

Pores of type I act as mixers, in which several inlet streams converge into a single 

throat. The convergence reduces the diffusion distance which, in turn, causes a quadratic 

reduction in the diffusion time scale (via Einstein’s equation) greatly enhancing diffusive 

mixing. Type II pores act as distributors; in other words they divide and dispense a single 

inflowing stream among many other throats. Type III pores simply act as transmitters of a 

single stream from one throat to another. Type IV pores essentially act as mixers as well 

because, as shown in section 3.2.3.2, “stream-tube routing” is equivalent to assuming 

perfect mixing in pores; where the actual mixing occurs in the outflowing throats. The 0.1 

deviation of the xio values from the “stream-tube routing” method was chosen arbitrarily, 

nevertheless was considered sufficiently close for the qualitative arguments presented 
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next. Only pores of type V keep different inflowing streams sufficiently segregated, 

therefore allowing for possible differences between the two methods to emerge. Finally, 

Type VI pores are connected to throats with zero flow rates. Type VI pores are common 

in tree-type networks where large clusters of pores become off-shoots from a main 

flowing branch (e.g. the sandstone network is of this type as shown next). Transport in 

these pores is only through diffusion. Table 5 summarizes the percentage of the pores 

belonging to each of the aforementioned six categories for both the sphere pack and 

sandstone networks. 

Note from table 5 that 27% of the pores in the sphere pack are of type V and the 

remaining 73% are mixer, distributor or transmitter pores. Additionally, all type V pores 

are evenly distributed across the network because the porous medium is disordered and 

well-connected (percentage of type VI pores is zero). Therefore, any stream flowing into 

a pore has only a probability of 27% for remaining segregated; which reduces 

geometrically if a short succession of pores is considered. Additionally, not all the pores 

within this 27% make equally significant contributions. Some pores have one or more 

inlets/outlets that carry very low flow rates, thus creating insignificant differences in the 

final concentration field. In the sandstone network, however, 30% of the pores are of type 

VI (table 5), indicating that a large number of pores belong to off-shoot clusters from a 

main flowing branch. To make the percentages comparable to the sphere pack network, 

we exclude type VI pores (table 5 second column) in our analysis. Having excluded type 

VI pores, we compare the recalculated sandstone percentages with that of the sphere 

pack. From table 5 is it evident that the two have similar percentages (except for type III 

and IV, which have similar combined percentages). Moreover, the percentage of type V 

pores in the sandstone (i.e. 33%) is only slightly higher (by 6%) than that of the sphere 

pack (i.e. 27%), which is partially responsible for the slightly larger discrepancy between 
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SSM and MCM in the sandstone (i.e. figures 3.10c and 3.10f). Another reason for this 

discrepancy is the special placement of type V pores within the sandstone network. Since 

30% of the pores in the sandstone are non-flowing (i.e. type VI), all other pore types are 

located on the main flowing branch of the tree-type network; thus, influencing larger 

segments of the domain. Therefore, we conclude that the segregation of inflowing 

streams by type V pores is not effective in causing substantial differences between the 

SSM and MCM solutions in 3D granular media (compared to the micromodels studied in 

section 3.3.2). Nevertheless, these differences could still prove to be important in 

obtaining transverse dispersion coefficients for these media (via upscaling). We note that 

our conclusion corroborates very well with the findings of Park et al. (2001b), who 

conducted a similar study (using PT) on 2D random fractured networks (discussed in 

chapter 2). Despite the various differences between the two media, the conclusions 

appear to be the same. 

 
pore type sandstone 

(%pores) 

sandstone type VI 

omitted (% pores) 

sphere pack 

(% pores) 

sphere pack 

flattened (% pores) 

Type I 12 17 18 18 

Type II 12 17 18 18 

Type III 14 20 4 4 

Type IV 9 13 33 7 

Type V 23 33 27 53 

Type VI 30 - 0 0 

Table 3.5: Percentage of each pore type in the 3D granular pore networks studied. 
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From the foregoing observations one can categorize two dominant mixing 

mechanisms responsible for transverse dispersion: pore-level mixing (due to intra-pore 

mass transfer) and structural mixing (due to network tortuosity and structure). Inter-pore 

diffusion/dispersion is another mechanism but becomes only dominant at very low Peclet 

regimes. In the micromodels of section 3.3.2, pore-level mixing was the dominant 

mechanism, whereas in the 3D granular pore networks studied here structural mixing 

appears to be the dominant mechanism.  The dominance of one mechanism over the other 

is a strong function of the network structure. In this context, there are three important 

components to structure: connectivity, geometry and orientation. Connectivity (i.e. 

determining the neighbors of each pore) is a graph property and is the most important 

morphologic parameter influencing the competition between pore-level and structural 

mixing. Both connectivity and geometry are the only structural inputs required for solving 

the flow equation given by eq. 3.2. The result consists of only the magnitude of the 

in/outflowing rates within each throat. Orientation determines, in addition, how the 

streamlines split within the pores. In order to demonstrate the effect of orientation on 

transverse dispersion, consider the feasibility of squeezing and “flattening” the sphere-

pack network along its z-dimension into a two dimensional network (ignoring for now 

the topological/geometric possibility of doing this). Figure 3.11 compares the difference 

field plots obtained (via eq. 3.23) for the “flattened” and original sphere-pack networks. It 

is evident from figure 3.11, that pore-level mixing is more dominant in the “flattened” 

network in comparison to the original network. The average difference between SSM and 

MCM in the “flattened” network is ~10% versus ~5% in the original network. This is a 

direct consequence of altering the network structure by reducing randomness in its throat 

orientations. Furthermore, the very special throat orientations in a single pore of a 3D 
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granular medium (i.e. the tetrahedron configuration; similar to case V in figure 3.4) 

allows for the twisting of the barrier surface (ref. section 3.2.3.1) ultimately resulting in a 

reduction in the number and efficiency of type V pores. Therefore, it is the structure of a 

medium (i.e. connectivity, geometry, orientation) that determines the percentage and 

distribution of its type V pores, ultimately dictating the competition between pore-level 

and structural mixing for transverse dispersion. A quantitative description of this 

competition is currently outside the scope of this work, but a possible parameter 

candidate may be identified. Imagine a swarm of observer particles released from a single 

point at the inlet. The trajectories of these particles, in moving from the inlet towards the 

outlet, would be bound by a cone (particles move away from each other due to 

tortuosity). The rate of growth of such a cone may be an appropriate parameter for 

classifying porous media in terms of their dominant mixing mechanisms. The faster the 

aforementioned cone grows, the more structural mixing dominates over pore level mixing 

and vice versa. However, further study regarding this is needed. 

 

 

Figure 3.11: Plane view of difference field plots of the (a) “flattened” and (b) original 

sphere pack. 
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3.4 CONCLUSIONS 

In this chapter, a novel Eulerian approach for modeling species transport in pore 

networks, referred to as the streamline splitting method (SSM), was presented. The new 

method lifts the limitation of the relatively simple and computationally attractive mixed 

cell method (MCM) to diffusion-dominated regimes at a minimal increase in 

computational cost. The following is a summary of our findings: 

 

 The streamline splitting algorithm developed in section 3.2.3.1 was shown to be 

in excellent agreement with direct CFD simulations. The method was 

considerably more accurate than both the “stream-tube routing” method and the 

method proposed by Jha et al. (2011). 

 The commonly used “stream-tube routing” method in PT (for redistributing solute 

particles at the end of the advection step) was shown to be equivalent to pore-

level perfect mixing. On the other hand, the approach taken by Bruderer et al. 

(2001) and Jha et al. (2011) eliminates any mechanism responsible for pore-level 

mixing. Thus, both methods are only valid at the extremes of the Peclet spectrum. 

It was proposed that the streamline splitting algorithm (in section 3.2.3.1) be used 

instead of “stream-tube routing” in the methodology employed by Bijeljic et al. 

(2004). This would potentially preserve the determinism of the advection step (i.e. 

reversibility) while incorporating a mechanism for randomness (characteristic of 

diffusion). 

 The streamline splitting method (SSM) was validated against several micromodel 

experiments designed to focus on investigating the effects of (a) Darcy velocity, 

(b) grain diameter, (c) aspect ratio, and (d) heterogeneity on model predictions. In 

all cases, excellent agreement was obtained against experiments. On the contrary, 
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MCM predictions were shown to be poor and largely over-predicting transverse 

dispersion except at diffusion-dominated regimes. 

 The relative increase in the computational cost of SSM compared to MCM is 

minimal in regards to the level of accuracy gained. The difference involves a 

factor of ~2 increase in the number of transport unknowns and a streamline 

splitting step following the solution of the flow equation. The number of transport 

unknowns and computational cost of SSM can be further decreased a priori by 

evaluating the perfect mixing condition in each pore (i.e. r ≤  Y; this was not 

done in this work) (ref. section 3.2.3.4 and 3.2.3.3). Maximum wall-clock time of 

all simulations (until steady state) within this work was ~4 minutes for the 

sandstone (with 16486 unknowns for SSM and 9463 unknowns for MCM). 

 The difference between the SSM and MCM solutions was found to be 

insubstantial in 3D disordered granular media (i.e. sphere pack: ~5%, and 

sandstone: ~7% deviation relative to maximum concentration value) in 

comparison to the micromodels studied in section 3.3.2. This was attributed to the 

relatively small percentage of type V pores and their uniform distribution within 

these media. Nevertheless, these differences could still prove to be important in 

obtaining transverse dispersion coefficients for these media (via upscaling). 

 

Two important mechanisms responsible for transverse dispersion were isolated: 

pore-level mixing and structural mixing. The dominance of either mechanism was 

attributed to three facets of the pore-space structure: connectivity, geometry and 

orientation. It was shown that these structural parameters affect the percentage and 

distribution of type V pores, ultimately dictating the importance of one mechanism over 

the other in various porous materials. 
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Chapter 4: Pore-Scale Modeling of Longitudinal Dispersion 

In this chapter, we focus on pore-scale modeling of longitudinal dispersion. 

Specifically, we explore the feasibility of incorporating “shear dispersion” due to non-

uniform velocity profiles within throats, within the framework of an Eulerian network 

model. The superposing transport method (STM) developed herein, is efficient (although 

current limitations along with proposed solutions are discussed) and produces predictions 

in good agreement with experimental data from the literature. Predictive capacity of 

various pore network idealizations commonly used in the literature, as well as network 

modeling of solute transport as a whole for ordered media, is studied and discussed. 

 

4.1 MOTIVATION 

Longitudinal dispersion at the pore-scale originates from spatial variations of the 

velocity field at the scale of many pores as well as within individual pores. The latter is a 

result of the shearing of the fluid as it flows through the pore space, and we refer to it as 

“shear dispersion”. In the context of a pore network, shear dispersion is typically thought 

of as the additional spreading of solute due to the non-uniform velocity profile within 

throats. While Lagrangian network models (e.g. particle tracking) are quite elegant in 

describing shear dispersion (as well as other intricacies of the transport process), they can 

be quite expensive computationally depending on the application (e.g. continuous 

injection of solute, where an increasing number of particles are required). On the other 

hand, they currently seem to be the only option in the literature for capturing shear 

dispersion in pore networks. In this chapter, we seek for an efficient alternative from an 

Eulerian perspective, as this allows for a description in terms of concentrations instead of 

discrete particle counts.  



 77 

Proper incorporation of shear dispersion within an Eulerian framework is far from 

a trivial task. Despite few recent attempts that invoke Taylor-Aris dispersion coefficients 

for individual throats (Köhne et al., 2011; Li et al., 2014), it is very unlikely for local 

transport regimes to satisfy the ranges of applicability of the asymptotic theory. In other 

words, individual throats are typically far too short to accommodate asymptotic behavior 

(see appendix F). Such attempts are, therefore, unjustified and incorrect (as rightfully 

pointed out by Sorbie and Clifford, 1991). In a network model, throats must be assigned 

finite volumes if shear dispersion is to be properly considered, otherwise solute particles 

experience zero residence times in passing through them. Therefore, the most salient 

difficulty in formulating a transport equation becomes the determination of the solute 

flow rates within the throats, as the boundary conditions at their two ends are time-

dependent. For linear transport problems, the superposing transport method (STM) 

developed herein, dynamically performs space-time superpositions across the network to 

evolve pore concentrations in time. This is the essence of STM, and section 4.2.1 details 

its mathematical development. In addition, we investigate the predictive capacity of 

various geometric/physical idealizations commonly used in pore networks, by 

comparison to CFD simulations. Predictive capacity of pore network modeling of solute 

transport as a whole for ordered media is also discussed.  

 

4.2 MODEL DEVELOPMENT 

The main focus of STM is to capture transport physics within individual throats 

(specifically shear dispersion) and incorporate them within the construct of a pore 

network. This is in contrast to SSM, where the main focus was placed on transport 

physics within pores (see chapter 3). This section is concerned with detailing the 



 78 

mathematical development of STM. In section 4.2.2, we additionally explore the option 

of modifying the rather arbitrary rate expressions used in MCM.  

 

4.2.1 The superposing transport method (STM) 

4.2.1.1 Transport within throats 

In order to perform space-time superpositions in a pore network, STM requires 

solute flow rates at the two ends of every throat under 0-1 and 1-0 dirichelet boundary 

conditions. These are the so called “elementary” solutions used in the superposition 

process. Figure 4.1 provides an axisymmetric depiction of this scenario for the cylindrical 

throat geometry considered in this work (generalizations to other geometries are 

discussed later in the section). To avoid confusion, we define the throat inlet and outlet 

on the basis of the bulk flow direction (not solute transport). We refer to the case in 

which the inlet and outlet concentrations are fixed at 1 and 0, respectively, as forward 

transport (i.e. fig. 4.1a), and to the case in which they are fixed at 0 and 1, respectively, 

as backward transport (i.e. fig. 4.1b). F and B are used as superscripts to denote forward 

and backward transport, respectively. O and I are used as superscripts to denote solute 

outflow (i.e. boundary with concentration 0) and inflow (i.e. boundary with concentration 

1), respectively. F, B, I, and O are additionally used in combination to denote, for 

example, outflow of solute in forward transport by FO (i.e. outlet in fig. 4.1a), and inflow 

of solute in backward transport by BI (i.e. outlet in fig. 4.1a). 

A schematic of the typical FO, FI, BO, and BI solute flow rates versus time is 

shown in figure 4.1c (i.e. qc
FO, qc

FI, qc
BO, and qc

BI). We note that figure 4.1c is for 

illustration purposes only, since even though there are gross similarities in the overall 

shapes of qc
FO vs. qc

BO and qc
FI vs. qc

BI, important quantitative and qualitative differences 
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exist between them as one would naturally expect. The goal of this section is to obtain 

simple functional forms for qc
FO, qc

FI, qc
BO, and qc

BI. 

The passive transport of a dilute solute species under laminar flow conditions of a 

Newtonian fluid within a cylindrical duct is described by eq. 4.1a. Additional 

assumptions include: isothermal flow, concentration-independent molecular diffusion 

coefficient, and negligible entrance effects. Eq. 4.1b represents the initial condition and 

eq. 4.1c-d the relevant boundary conditions for forward/backward transport. 
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In eq. 4.1, c is the solute concentration, V0 is the maximum centerline fluid 

velocity (a positive number), Dm is the molecular diffusion coefficient, R is the duct 

radius, and L is the duct length. x, r, and t denote axial, radial, and time coordinates, 

respectively. To work with a minimum number of free parameters, eq. 4.1 is non-

dimensionalized with the following choice of non-dimensional variables (i.e. eq. 4.2): 
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To obtain eq. 4.3: 
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In eq. 4.3, PeL (Peclet number) and κ (duct aspect ratio) are the only two 

parameters controlling the solution. For later convenience, we also define PeR = V0R/Dm. 

Note that both dimensional and dimensionless concentrations are denoted by c. This is 

because normalizing dimensional concentration by the boundary condition (= 1) would 

yield itself. 

In appendix K, we derive the first (to our knowledge) semi-analytical solution to 

eq. 4.3, which is further applicable to scenarios with adsorption, decay, arbitrary velocity 

profiles and time- and radially-dependent inlet/outlet/wall boundary conditions. The 

unique solution method seemed to be a straightforward extension of the power-

series/Frobenius methods (for ODEs) to solve PDEs with variable coefficients. However, 

there are limitations at early times and high Peclet numbers, due to numerical instabilities 

resulting from finite precision computer arithmetic. The solution also involves a 

numerical Laplace inversion step and obtaining the roots of a characteristic polynomial. 

In a pore network, where rapid computation on thousands of throats over a wide range of 

Peclet regimes is necessary, the solution seems ill-suited (despite being theoretically and 

practically useful elsewhere; see appendix K). For this reason, the development of much 

simpler semi-empirical solute flow rate expressions was pursued. 

A total of 163 CFD simulations, using COMSOL©, were performed over a range 

of PeR ϵ [0.01-30000] and κ ϵ [1-20] on the axisymmetric computational domains 

depicted in figures 4.1a and 4.1b (the results extend even beyond these bounds for PeR as 

discussed later). In forward transport, qc
FI and qc

FO were, respectively, recorded at the AA’ 

and BB’ transects shown in figure 4.1a. Similarly in backward transport, qc
BI and qc

BO 
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were, respectively, recorded at AA’ and BB’ (fig. 4.1b). Notice that BB’ is a distance of 

(1-ε)L (ε = 0.95) away from the nearest boundary. Since COMSOL© uses a non-flux-

conservative implementation of the finite elements method, we found noticeable errors 

(in violation of global mass balance) when data were recorded at the actual boundary. 

These errors are of higher significance in forward transport (fig. 4.1a) (where a boundary 

layer is formed near the outlet at high Peclet numbers) than backward transport (which 

effectively vanishes at high Peclet numbers). Recording solute flow rates a small distance 

of (1-ε)L away from the boundary seemed to circumvent this issue. Corrections were then 

made to the recorded qc
FO and qc

BO values to adjust them for the actual boundaries. Here 

we only present the final forms of the semi-empirical rate expressions and discuss some 

of their main properties. We defer detailed discussion regarding their derivation, 

parameterization, and aforementioned boundary corrections to appendix G. 

 

 

Figure 4.1: Schematic of the axisymmetric computational domain (and boundary 

conditions) used in the CFD simulations of (a) forward and (b) backward 

transport. Solute flow rates were computed at AA’ and BB’ transects. (a), (b) 
also depict steady-state concentration fields for the special case of κ = 2 and 

PeL = 10. (c) Schematic of typical qc
FO/BO and qc

FI/BI profiles vs. time. The 

area sandwiched between the two curves is annotated and is relevant in eq. 

4.5 for enforcing mass conservative properties on solute rate expressions. 



 82 

Solute flow rates were non-dimensionalized according to eq. 4.4 (v = V0 (1-(r/R)2) 

and qc
flx is the solute flux). 
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One of the most important criteria the rate expressions must satisfy is mass 

conservation. This is expressed in non-dimensional form by eq. 4.5a (which applies for 

both forward and backward transport). 
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In eq. 4.5a, css denotes the volume-averaged steady-state concentration of the 

portion of the duct between the axial positions where qcd
I and qcd

O are measured (this can 

be either between the inlet and the outlet, or between AA’ and BB’). For eq. 4.5a to hold, 

the time variable must be non-dimensionalized with the distance between these two axial 

positions (see appendix G.4). Since the integral on the LHS of eq. 4.5a is finite, we can 

split it into WI and WO as shown in eq. 4.5b. In eq. 4.5b, C is the dimensionless steady-

state solute flow rate. A visual schematic of eq. 4.5b is provided in figure 4.1c, where WI 

and WO correspond to the shaded areas and C corresponds to the horizontal line 

separating them. For forward transport, figure 4.1c bears familiar similarities to 

Danckwerts’s (1953) analysis in his classic paper on residence time distributions. Note 

that if the duct boundaries are closed to diffusion (i.e. Dankwerts boundary conditions), 

then WIF = 0 and css
F = 1. This corresponds to the situation studied by Danckwerts. If the 

boundaries are open to diffusion, then WIF→0 and WOF→0.5 as PeR→∞  (since css
F→1). 
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For backwards transport WIB, WOB, and css
B all approach 0 as PeR→∞ . Eq. 4.5b is used to 

enforce mass conservative properties on the semi-empirical rate expressions by 

constraining their parameters. These expressions are given below by eq. 4.6: 
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Where, 
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In eq. 4.6a, H(x) is the Heaviside function. Parameters with numbered subscripts 

in eq. 4.7a-c are fitting constants and are summarized in table 4.1. The parameters AF, AB, 

bF, and bB are obtained indirectly by combining the correlations given in eq. 4.8: 
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 , , 2 1 2 2 3( ) log( ) ( ) 200F F

ss f ss p L Rc c erf Pe Pe           (4.8d) 
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5 5
, , ,1 1 200F F B

ss f ss p ss p R

R R

c c c Pe
Pe Pe 

 
      (4.8f) 

, ,1B F

ss f ss f Rc c Pe     (4.8g) 

 

With the mass balance constraint of eq. 4.5b, to obtain eq. 4.9: 
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   (4.10) 

 

Lower case Greek letters with numbered subscripts in eq. 4.8 are fitting constants, 

whereas Πi ∀i ϵ [1-6] are theoretical constants; both summarized in table 4.1. In eq. 4.9, 

ϛ = log (e) (i.e. the logarithm of the Euler number). For PeR ≤ 200, css,f
F and css,p

B can be 

calculated using eq. 4.8c-e in combination. The interested reader is referred to appendix 

G for a detailed discussion on the formulation of the above equations.  

The expression for qcd
FO (i.e. eq. 4.6a) consists of a diffusion-dominated part and 

an advection-dominated part, which are weighted by an exponential factor. The first is 
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merely a proposed correlation, whereas the latter is the exact traveling-wave solution for 

the pure-advection transport problem in a cylindrical duct i.e. (1-1/τ2). 

 

WOF
p WOB

p 

μ1 μ2 μ3 η1 η2 η3 

2.04e-1 1.33 -1.21 8.49e-2 -1.59 5.04e-1 

cF
ss,p cF

ss,f – εcF
ss,p cB

ss,f – εcB
ss,p 

α1 α2 β1 β2 γ1 γ2 

1.32 -1.01 1.02 -1.90 1.42 -0.54 

Π1 Π2 Π3 Π4 Π5 

2.375e-1 2.44e-2 1.25e-3 -6.25e-4 1.98 

aF / aB 

a1 a2 a3 a4 a5 

15.51 1.18 2.29e-1 1.06e-1 2.75 

CF 

C1 C2 C3 C4 

3.58e-1 1.40 2.63e-9 9.83 

d D 

d1 d2 d3 D1 D2 D3 

-3.44e-1 -12.39 5.16e-4 -2.44 0.70 2.56 

Table 4.1: Summary of fitting parameters and theoretical constants in eq. 4.7-8. 

 

At low Peclet numbers, qcd
FO and qcd

BO correlate extremely well with the error function on 

a semi-logarithmic (surprisingly not linear) time axis. At high Peclet numbers, qcd
FO 
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transitions towards the traveling-wave solution, while qcd
BO vanishes towards zero. The 

expressions for qcd
FI and qcd

BI are based on the early- and late-time asymptotic analysis of 

appendix G.1. At high Peclet numbers, qcd
FI and qcd

BI converge to ¼ and 0, respectively. 

All rate expressions in eq. 4.6 additionally satisfy the mass balance constraint of eq. 4.5b. 

The transitioning of qcd
FO from moderate to high Peclet regimes is shown in figure 

4.2a (which also compares eq. 4.6a, the global fit, to CFD). The slope of the S-shaped 

profile changes from low at PeR <10 (not shown because out of scope), to high at 

PeR = 10, and low again at PeR = 250 until it smoothly converges to the pure-advection 

solution at PeR = 5000. First, note that at PeR = 250, eq. 4.6a does not produce a sharp 

breakthrough as seen in the CFD data. Instead, it starts increasing rather smoothly, which 

is due to the exponential weighting in eq. 4.6a. Since this region is small (notice the 

logarithmic time axis) and, more importantly, finite in time, we expect negligible errors. 

Second, notice the triple inflection in the PeR = 250 profile. This corresponds to the well 

understood double peek (i.e. triple extrema) behavior of a traveling slug within a 

cylindrical duct, and is a direct result of the tight interaction between convection and 

radial/axial diffusion (ref. Gill and Ananthakrishnan, 1967; Yu 1979; Korenaga et al., 

1989). Third, figure 4.2b shows that a mismatch, between eq. 4.6c and CFD for qcd
FI, 

becomes apparent at PeR ≥ 10. Since the early-time behavior of the CFD data does not 

corroborate with the exact asymptotic analysis of appendix G.1, we ascribe this to 

numerical errors in the CFD simulations (finer mesh sizes, than the highest setting of the 

software, may have been necessary near the inlet at high PeR). Finally, eq. 4.6 provides 

only absolute values of the solute flow rates (and not their sign). 
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Figure 4.2: Typical (a) qc
FO (κ = 15), and (b) qc

FI (κ = 1) profiles obtained from CFD 

simulations and eq. 4.6 (the global fit) for various PeR. 

 

We conclude this section with a few important remarks: a) even though the rate 

expressions in eq. 4.6 assume parabolic velocity profiles within throats, similar equations 

for plug-flow can be developed. In appendix H, we provide such expressions that treat 

throats as semi-infinite acting ducts. This means that, for forward transport, the zero-

concentration outlet boundary is effectively moved to infinity (while qcd
FO still 

corresponds to a distance L from the inlet). Therefore, backward transport vanishes and 

only forward transport needs to be considered. However, using these rate expressions in 

STM ignores backward diffusion from one inlet throat to the next within the same pore, 

which is valid only for PeL >10 (see appendix H). To properly account for backward 

transport in plug-flow, one may derive semi-empirical expressions similar to eq. 4.6 

(analytical solutions exist but involve series expansions that may prove to be 

computationally ill-suited for pore networks). b) Even though eq. 4.6-10 are based on 

CFD simulations for PeR ϵ [0.01-30000], they can be applied for the entire range of PeR. 

This is because the parameters in eq. 4.7-8 satisfy appropriate asymptotes (see appendix 

G). The only exception is D, in eq. 4.7c, whose inaccuracies are, to some extent, 
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mitigated by eq. 4.9a for AF and AB (from the mass balance constraint of eq. 4.5b). More 

accurate CFD simulations could extend and improve this and other parameters in the 

future. While applicable in the entire range for PeR, the usage of eq. 4.6 should be strictly 

limited to κ ϵ [1-20]. Specifically, eq. 4.6 shall not be used for κ <1 (due to eq. 4.7 for a 

and d). c) If throats are not cylindrical, a first-level approximation would be to replace 

them with a cylindrical throat of the same length, cross-sectional area, and bulk flow rate 

(the cylinder is not hydraulically equivalent, but this is unimportant for transport). CFD 

simulations on square prisms for different Peclet numbers showed surprisingly negligible 

differences. Keeping cross-sectional area and flow rate the same ensures that steady-state 

solute flow rates converge to correct values at high and low Peclet limits. Such an 

approximation should work well for throats that are not too different from cylindrical 

(regular n-polygons with n≥  4 are thought suitable). A second-level approximation 

would be to replace the (1-1/τ2) term in eq. 4.6a with the particular travelling wave 

solution of the non-cylindrical throat (and replacing the normalizing factor 2πR2V0 by 4q 

in eq. 4.4; where q is the bulk flow rate through the throat). A similar approximation can 

be made for non-Newtonian fluids as well, as long as the corresponding traveling wave 

solution is known. The chemical engineering literature is replete with such “F-diagrams” 

(as referred to by Danckwerts, 1953) and a few practical choices can be found in Nigam 

and Saxena (1986), Wörner (2010), Pegoraro et al. (2012). If the fluid is too different 

from being Newtonian, or the duct is too different from being cylindrical, one may fit eq. 

4.6 directly to CFD simulations, having replaced the (1-1/τ2) term in eq. 4.6a with the 

appropriate traveling-wave solution, resulting in different values for the parameters listed 

in table 4.1. 
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4.2.1.2 Formulation of the STM transport equation 

The central idea in STM is: given any, possibly time-dependent, dirichelet 

boundary conditions at the two ends of a throat, one may express the solute flow rate 

through that throat in terms of the elementary rate expressions developed in section 

4.2.1.1 (i.e. a linear combination thereof), if the transport problem is linear. This is 

important because in a pore network, pore concentrations at the two ends of every throat 

change with time and can be regarded as dirichelet type boundary conditions on the throat 

(this seems to be the simplest and most realistic boundary condition compared to others, 

which typically inhibit diffusion). Once solute flow rates within throats are determined, 

species balance can be written for every pore. These balance equations then comprise a 

linear system of equations, which allow computation of pore concentrations at the next 

time step. 

We make clear, at once, that pore-level perfect mixing is assumed in the current 

formulation of STM, even though methods for circumventing this assumption were 

developed in chapter 3. In this context, the assumption is made for two reasons: 1) pore-

level mixing assumptions have little impact in disordered granular media (studied here) 

as demonstrated in chapter 3, and 2) it makes the problem mathematically, 

algorithmically, and physically more tractable and allows for the study of the 

macroscopic effects of shear dispersion in isolation. We note that there are no theoretical 

limitations against combining STM (developed here) and SSM (from chapter 3) into a 

single model, as the physics addressed by either do not interfere with the other and are, 

therefore, additive. 

Assuming the flow equation is solved as discussed in section 3.2.1, the species 

balance equation for pore pi, with volume Vpi can be written as eq. 4.11a. Npi
t is the 

number of throats connected to pi, tij denotes the throat connecting pores pi and pj, and qc,tij 



 90 

is the species flow rate within tij. Integrating eq. 4.11a from tl to tl+1 yields eq. 4.11b (l is 

the time step index), where cpi
l and cpi

l+1 denote concentrations of pore pi at the current 

and next time steps, respectively. 
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In MCM, qc,tij is expressed based on analogy with the finite difference method at 

the continuum (see eq. 3.3). It assumes zero residence time within throats, thereby 

excluding shear dispersion as a result of non-uniform velocity profiles at the pore scale. 

In STM, throats do assume finite volumes (while pores are free to assume either zero or 

finite volumes), which complicates a closed-form expression for qc,tij. This is because 

pore concentrations at the two ends of each throat change with time, and there exists a 

time-lag for this change to travel from one pore to the next. For linear problems, STM 

takes advantage of the superposition principle to account for the time-dependent throat 

boundary conditions. The main idea consists of:  1) recording pore concentrations vs. 

time at predefined intervals, 2) approximating these profiles with piecewise-constant 

staircase functions, 3) performing superposition in time (i.e. of recorded history) and 

space (i.e. forward and backward transport) to approximate net solute throughput for each 

throat from tl to tl+1 (i.e. integral terms on the RHS of eq. 4.11b), and 4) updating pore 

concentrations at the next time step via eq. 4.11b. 
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Figure 4.3: (a) Schematic of an evolving pore concentration. Annotations denote 

variables used in STM. Horizontal lines represent predefined values at 

which pore concentrations are recorded (i.e. solid dots are the recorded 

values). In this work, they are spaced apart according to a normal 

distribution. The insert depicts components used in STM for advancing pore 

concentrations to the next time step (via eq. 4.11b). (b) Schematic of typical 

qc
FO, qc

BO, qc
FI, and qc

BI profiles, used to compute δQc in eq. 4.12. ta and tb 

represent lower and upper integration limits in eq. 4.13d-e, respectively. 

 

Figure 4.3a shows a schematic of a typical pore concentration profile, cp, vs. time. 

Horizontal lines represent predefined values at which pore concentrations are recorded. 

The recorded points (i.e. time-concentration pairs) are depicted by black dots in figure 

4.3a, which are used to update concentrations at the next time step. We denote the kth 

recorded pore concentration by cp,k
r and the time at which it is recorded by tp,k

r. The total 

solute throughput for each throat from tl to tl+1 can be approximated by eq. 4.12: 
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In eq. 4.12, H(x) is the Heaviside function, and Npi
r is the total number of recorded 

points for pore pi (i.e. black dots in fig. 4.3a). In eq. 4.13d-e, X is a placeholder for either 

F (i.e. forward transport) or B (i.e. backward transport). The δQc quantities (i.e. eq. 4.13d-

e) correspond to the shaded areas depicted in figure 4.3b, and are computed by 

integrating the rate expressions presented in section 4.2.1.1 (i.e. eq. 4.6). Closed-form 

equations for these time-integrated solute flow rates are provided in appendix G.3 (by eq. 

G.9). 
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The four terms on the RHS of eq. 4.12 are denoted by RU, RD, FU, and FD, 

which abbreviate recorded-upstream, recorded-downstream, forecasted-upstream, and 

forecasted-downstream, respectively. RU and RD are contributions from the recorded 

points to the net solute throughput of throat tij (i.e. black dots in fig. 4.3a). Each of the 

two summations in RU and RD denote superposition in time (of previously recorded 

points), and together they denote superposition in space (of forward and backward 

transport). Since the formulation of STM is fully-implicit, contributions from forecasted 

points, into the next time step, are also required (i.e. black dots in the insert of fig. 4.3a); 

these are the FU and FD terms in eq. 4.12. The summations in FU and FD bear similar 

interpretations as in RU and RD. We use superscripts r and f along with indices k and m 

to denote recorded and forecasted points, respectively. 

The insert in figure 4.3a illustrates the procedure used for updating pore 

concentrations at the next time step (i.e. the forecast step). The interval between tpi
Nr and 

tl+1 is subdivided into M forecast points (including the end points), and the concentration 

is assumed to vary linearly from cpi
Nr to cpi

l+1. Denoting the concentration and time of each 

forecast point by cp,m
f and tp,m

f, respectively, eq. 4.14a follows. From eq. 4.14a and 4.14b, 

eq. 4.13c is then readily verified.  
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In the forecast step, pore concentrations were assumed to vary linearly between 

cpi
Nr and cl+1, instead of between cl and cl+1 (see insert in fig. 4.3a). Despite the fact that cl 

provides a more recent point to launch the forecast step from (compared to cpi
Nr), it was 
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found that cl had to be accounted for as a (permanently) recorded point to avoid 

numerical artifacts from appearing (this essentially entails the recording of every single 

time step, which is impractical). If time step size and recording frequency (i.e. spacing 

between horizontal lines in fig. 4.3a) are sufficiently refined, however, the two converge 

to the same solution regardless. Throughout this work, the values given in eq. 4.15a-b 

were used for time step size (i.e. Δt), number of forecast points (i.e. M), and recording 

frequency (i.e. Nmax
r; defined as the number of horizontal lines in figure 4.3a between 

concentration extrema i.e. 0 and 1) unless stated otherwise. In eq. 4.15a, Vtij, qtij, and Ltij 

denote volume, flow rate, and length of throat tij, respectively. Eq. 4.15a is essentially one 

quarter of the harmonic sum of the advection and diffusion characteristic times. 
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In this work, plug-flow within throats is modeled using the rate expressions 

provided in appendix H (i.e. eq. H.1). As mentioned in section 4.2.1.1, using them in 

STM ignores backward diffusion from one inlet to the next within the same pore. Since 

this is only valid when PeL >10 within the throats, all plug-flow simulations herein are 

presented for sufficiently high Peclet numbers (with the exception of the 1D geometries 

in section 4.3.2; discussed further therein). When eq. H.1 is used, all terms in eq. 4.12 

regarding backward transport (i.e. BI and BO) shall be set to zero (everything else 

remains unaltered). In addition, the δQc quantities (in eq. 4.13d-e) are computed via 

numerically integrating eq. H.1 using composite Simpson’s rule (analytical integration 

seems not possible). 
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Lastly, applications of STM extend far beyond passive tracer transport at the pore 

scale. Examples include passive/reactive/adsorptive and/or Fickian/non-Fickian transport 

at the pore/core/field scale, and transmission of voltage/heat/etc. signals through 

interconnected electrical/conductor/etc. networks. In essence, regardless of the 

underlying physics, if “response functions” to elemental inputs (e.g. unit step or Dirac 

delta) are known for a set of bonds (e.g. eq. 4.6), the response of any network assembled 

thereof to any input can be computed via STM. This is what makes the method so useful 

and worthy of further pursuit. 

 

4.2.1.3 Current limitations and proposed solutions 

In its current formulation, STM dynamically records pore concentrations at fixed 

and predetermined intervals with sufficient frequency Nmax
r. The intervals correspond to 

the horizontal lines in figure 4.3a, and the recording frequency corresponds to the spacing 

between them. In this work, the spacing follows a normal distribution (mean = 0.5, 

standard deviation = 2.8) as shown in figure 4.3a. Since the recorded concentration 

profiles are approximated by piecewise-constant staircase functions for time-

superposition, recordings have to be more frequent near concentration extrema (i.e. 0 and 

1) where profiles evolve more slowly. If not, the time-lag between two consecutively 

recorded points would become too large and cause noticeable numerical inaccuracies. 

These inaccuracies compound with the number of pores traveled by a concentration front. 

A similar situation arises at highly diffusion-dominated regimes, in which pore 

concentrations evolve very slowly altogether (i.e. not just at the extrema). We propose 

that a better approach might be to approximate said profiles by continuous-piecewise-

linear (instead of piecewise-constant) functions. This would potentially require far fewer 
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recording points (i.e. less computer memory), no time-lag between consecutive 

recordings (i.e. higher accuracy), no need for sub-discretization of the forecast step (i.e. 

no need for M), and, thus, improve overall performance. This seems possible, as one can 

derive elementary rate expressions (such as eq. 4.6) for forward and backward transport 

under linearly varying dirichelet boundary conditions, by simply convolving eq. 4.6 with 

the derivative of said boundary conditions (closed-form expressions seem possible). 

Because no time-lag between consecutive recordings exists under such a scheme, one 

could additionally attempt to dynamically adapt the recording frequency to the specific 

shape of the evolving concentration profile (which varies with local Peclet number). For 

example, a new point may be recorded only if it is sufficiently divergent from the 

trajectory of the last linear piece of the approximated profile (otherwise the linear piece 

can simply be extended). Current memory requirements of STM have hindered our 

ability, in section 4.3.3, to simulate on very large pore networks. The above reformulation 

could dramatically relax this requirement, and shall be the object of future investigation. 

In the displacement simulations of section 4.3.3, concentrations behind the front 

increase and gradually approach steady state. In the current implementation of STM, if a 

sufficiently long time after the last recorded point has elapsed, throats are considered to 

be at steady state and recorded histories are discarded. This practice essentially 

concentrates the recording process right at the displacement front, and has the potential of 

lifting the remaining burden on computer memory. While we have observed that this 

works well at diffusion-dominated regimes, at high Peclet numbers, qcd
FO

 (i.e. eq. 4.6a) 

possesses strong tailing (see fig. 4.2a; due to the parabolic velocity profile) which 

substantially delay the time necessary to reach steady state. In fact, naively discarding 

recorded histories based on a seemingly reasonable tolerance results in large errors. This 

is because the tails carry substantial weight, and discarding them is tantamount to 
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discarding solute mass. This posed another memory limitation in the simulations of 

section 4.3.3. A practical solution would be to approximate infinite tails with truncated 

(most preferably after a characteristic diffusion time scale) ones a priori (in the 

advection-dominated portion of eq. 4.6a). This is permissible as long as all the mass is 

taken into account i.e. WO (the shaded area in figure 4.1c) is kept constant. 

Finally, the constant time step size used herein (i.e. eq. 4.15a) is quite stringent, 

which adversely affects computational performance. This conservative value was 

determined through a series of sensitivity studies on long 1D strings of concatenated 

pores and throats (e.g. fig. 4.5). In transport simulations, typically smaller time steps are 

required initially, when temporal concentration gradients are steep, but can be increased 

over time as the solute disperses over the domain. Hence, an adaptive time stepping 

scheme is very desirable. Current computational performance for each of the simulations 

in section 4.3.3 is in the order of ~7hrs. An adaptive scheme could reduce the number of 

time steps by more than an order of magnitude, reducing computation costs to a few 

minutes. Tests on MCM, which is implemented under both schemes, confirm this. 

The current work provides the first blueprint for STM, where much effort was 

spent on demonstrating its algorithmic feasibility and accuracy. The above propositions 

pave potential pathways towards futures improvements of the method. In doing so, it may 

also be worthwhile to audit the literature in other fields such as signal processing and 

transmission, in electrical engineering, to seek commonalities and borrow useful ideas. It 

is important to note that, even in its current form, STM is computationally more efficient 

than particle-tracking methods (i.e. commonly used in the literature for network modeling 

of solute transport) for certain boundary conditions and moderate domain sizes (few 

thousand pores). Typical in particle tracking simulations is the dispersal of a finite 

collection of random walkers. The continuous injection of a well-mixed solution which 
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reacts, adsorbs, or mixes with another, is a scenario that would require an increasingly 

large number of random walkers and would be computationally expensive. However, 

such problems are easily handled by STM, producing solutions equivalent to those of 

particle tracking methods at the limit of infinite number of particles. On the other hand, 

particle tracking provides considerable flexibility for modeling truly infinite (i.e. 

periodic) domains, whereas STM requires domains to be finite (and moderate in size 

under the current implementation). In this regard, the two methods appear to complement 

each other quite well in tackling a large array of problems, where either would be limited 

by itself. We should note, however, that there are scenarios for which the most elegant 

(i.e. simple while accurate) solution appears to be provided by particle tracking alone, i.e. 

ordered media as discussed in section 4.3.4. 

 

4.2.2 The rate-modified mixed cell method (rmMCM) 

Here the rather arbitrary rate expressions of MCM are modified and the resulting 

model is referred to as rmMCM. In rmMCM, throats are assumed to have zero volumes 

and pore concentrations are assumed to be perfectly mixed (as in MCM). Since throat 

residence times are zero, concentrations within them reach steady state immediately. 

Therefore, the steady-state rate expressions in eq. 4.7b seem to be an appropriate choice 

for qc,tij (i.e. solute flow rate in throat tij) in eq. 4.11a. The species balance equation for 

pore pi, thus, follows (i.e. eq. 4.16): 
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1 1
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Where, 
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2 2

, 0 , 0(2 ) (2 )F F B B

c ss c ssq R V C q R V C       (4.17) 

 

In eq. 4.16-17, qc,ss
F and qc,ss

B denote the dimensional steady state solute flow rates 

for forward and backward transport, respectively. The RHS of eq. 4.16 is essentially the 

superposition of forward and backward transport in space. It is, therefore, a special case 

of STM, with no superposition in time. rmMCM can also be regarded as a generalization 

to the transport model proposed by Milligen and Bons (2014), which assumes steady-

state plug flow within throats. Nevertheless, shear dispersive effects of the parabolic 

velocity profile are practically non-existent under steady-state conditions, save for the 

existence of a non-uniform boundary layer; see fig. 4.1a-b. For this reason, the model by 

Milligen and Bons (2014) and rmMCM are considered, for all practical purposes, 

equivalent. 

 

4.3 RESULTS AND DISCUSSION 

4.3.1 Verification of STM against convolution 

Consider a sequence of identical cylindrical throats joined together in series. We 

verify STM against two cases: the juncture between two consecutive throats 1) is 

volumeless, and 2) is occupied by identical pores with non-zero volumes (and pore-to-

throat mean residence time ratios of 0.76). The junctures are referred to as “pores” if they 

have volume and “joints” otherwise. We assume joint/pore concentrations to be perfectly 

homogenized at all times. Additionally diffusion is assumed absent, which means that 

transport within throats can be described by a simple traveling-wave solution. With these 

simple ingredients, the flux-averaged outlet concentration profiles of a string of n throats 
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in case 1, and n throat-pore pairs in case 2, in response to a unit step injection profile (i.e. 

U) can be expressed by eq. 4.18a and 4.18b, respectively: 

 

( )n n

t pR t U E          (4.18a) 

( ) ( )n n

tp t pR t U E E           (4.18b) 

Where, 
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In eq. 4.18, Rt
n and Rtp

n are the outlet profiles (or response functions) for cases 1 

and 2, respectively. Et is the impulse response function (commonly referred to as the “E-

function”) for purely-advective transport in a cylindrical duct with mean residence time t0 

(used for throats in cases 1 and 2). Ep is the E-function for a continuously-stirred tank 

reactor (CSTR) with mean residence time t0 (used for pores in case 2). Et and Ep are 

standard in process and reactor design in chemical engineering (more information can be 

found in Nauman, 2008). Thus, Rt
n and Rtp

n consist of an n-fold convolution of the 

injected unit step profile, U, with the impulse response functions of the throats (in case 1) 

and the throat-pore pairs (in case 2), respectively. Since closed-form expressions for eq. 

4.18a and 4.18b are not available, they are evaluated by numerically calculating the 

convolution integrals. These are then compared to outlet concentration profiles obtained 

from STM for different values of n.  

Figure 4.4a shows that the agreement between STM and eq. 4.18a for n = 1, 5, 

and 15 is excellent. Similarly close agreements are seen in figure 4.4b between STM and 

eq. 4.18b for n = 1, 3, and 10. Since numerical evaluation of the convolutions is rather 
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computationally expensive, n had to be limited to 15 for case 1, and 10 for case 2. This 

verifies that STM is doing what is expected from it: computing response functions for an 

entire network by convolving response functions of the elements that comprise it (i.e. 

pores and throats). Figure 4.4a additionally contains the true response function for a 

string of cylindrical throats with zero joint volumes (i.e. the (1-1/τ2) term in eq. 4.6a). 

Note that this is the traveling wave solution, which does not assume any homogenization 

of concentrations at the joints. For this reason, only the STM response function for n = 1 

matches the true solution, while deviations become manifest for n >1. These deviations 

are precisely due to the cross-sectional smearing of concentrations, and are discussed in 

detail in section 4.3.4. 

 

 

Figure 4.4: Comparison of STM against convolutions given by eq. 4.18, for a string of 

throats in series with (a) zero and (b) finite pore volumes. Plots represent 

outlet concentration profiles vs. normalized time (t0
n is the mean residence 

time of the string) for n = 1, 5, and 15 (a) and n = 1, 3 and 10 (b). Pore-to-

throat mean residence time ratios in (b) are 0.76. True outlet concentration 

profile for a string of throats with zero joint volume is included in (a). 
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4.3.2 Comparison against CFD 

Consider the short string of identical spherical pores and cylindrical throats shown 

in figures 4.5a and 4.5b. Figures 4.5a and 4.5b depict, respectively, strings with pore-to-

throat aspect ratios (defined as the ratio of pore to throat diameters) of 2 and 7.5, and 

pore-to-throat mean residence time ratios of 0.76 and 42. For convenience we refer to the 

strings in figures 4.5a and 4.5b as SA and SB, respectively. Geometric dimensions of SA 

and SB (normalized by the string length) are annotated in figures 4.5a and 4.5b. Stokes 

flow and species transport was simulated in these geometries via COMSOL© under the 

boundary conditions shown in figure 4.5a. Initially at zero concentration, solute was 

injected at a constant concentration of 1 through the inlet. Zero concentration gradient 

was maintained at the outlet. The flux-averaged outlet concentrations (or response 

functions) were then recorded. The goal of this section is to compare these response 

functions to those obtained from simplified conceptualizations of the transport physics 

and geometries of SA and SB. We consider three conceptualizations: 

 

 MCM: all the string volume is concentrated at the pores, with throats having 

zero volumes. Solute is perfectly mixed within pores. A schematic is depicted in 

figure 4.5c. The conceptualization is solved via MCM and throat lengths and 

radii needed in the transport equation (i.e. eq. 3.3) are the same as those 

annotated in figures 4.5a and 4.5b. 

 STM1: throats and pores have the same dimensions as in the original domains 

(i.e. figures 4.5a and 4.5b). Solute is perfectly mixed within pores. A schematic is 

depicted in figure 4.5d. The conceptualization is solved via STM with either 

plug-flow or parabolic velocity profiles within throats. 
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 STM2: all the string volume is concentrated at the throats, with pores (or joints) 

having zero volume. Solute is homogenized across the cross-section at every 

joint. A schematic is depicted in figure 4.5e. The conceptualization is solved via 

STM with either plug-flow or parabolic velocity profiles within throats. 

Inlet/outlet throats have the same radii and lengths as in the original domains (i.e. 

figures 4.5a and 4.5b), which also ensures the same available area for diffusion in 

both. 

 

 

Figure 4.5: (a) Low aspect ratio (SA), and (b) high aspect ratio (SB) strings used for 

comparison against CFD. Boundary conditions and dimensions (normalized 

by the total domain length) are annotated. Figures (a) and (b) also depict 

concentration fields obtained from CFD for PeR = 4000 and 3700 (defined 

with respect to throat properties), respectively. (c) MCM, (d) STM1, and (e) 

STM2 conceptualizations. 
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Figures 4.6-9 compare outlet concentration profiles obtained from CFD against 

the MCM, STM1, and STM2 conceptualizations for SA and SB. Comparisons are made 

for a wide range of Peclet numbers, PeR (defined with respect to throat properties). We 

additionally use the subscripts par and plug with STM1 and STM2 to denote whether 

parabolic or plug-flow velocity profiles were assumed within the throats. We remark that 

for cases with plug-flow profiles, backward transport is implicitly taken into account 

because of the 1D geometries of SA and SB (see appendix H). However, since the outlet 

boundary conditions in SA and SB preclude diffusion (see fig. 4.5a), deviations at low 

Peclet numbers are to be expected for STM1plug and STM2plug. 

Consider the SA geometry in figure 4.5a: Figure 4.6 shows that the agreement 

between STM1par and CFD is quite good, whereas MCM incurs gross deviations 

especially at moderate to high Peclet numbers. STM1plug also deviates at large Peclet 

numbers towards underestimating longitudinal spreading, but agrees well at low and 

moderate Peclet regimes. Slight deviations of STM1par at high Peclet numbers may be 

attributed to the perfect-mixing assumption at the pores. Figure 4.7 confirms this, as the 

predictions of STM2par (with zero pore volumes) are further improved compared to 

STM1par. In contrast, STM2plug does very poorly across the Peclet spectrum (the deviation 

at PeR = 0.04 is expected as previously noted). At high Peclet numbers STM2plug clearly 

converges to piston-like displacement with zero longitudinal spreading. 
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Figure 4.6:  Comparison of outlet concentration profiles of STM1par, STM1plug and MCM, 

against CFD for SA.  

 

Figure 4.7:  Comparison of outlet concentration profiles of STM2par, STM2plug, and 

MCM, against CFD for SA. 
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Figure 4.8:  Comparison of outlet concentration profiles of STM1par, STM1plug, and 

MCM, against CFD for SB. 

 

Figure 4.9:  Comparison of outlet concentration profiles of STM2par, STM2plug, and 

MCM, against CFD for SB. 
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Consider the SB geometry in figure 4.5b: Figure 4.8 shows that practically no 

difference exists among the MCM, STM1par, and STM1plug predictions for all Peclet 

numbers. Overall, all predictions are satisfactory except for very high PeR (= 3700 and 

37000). It should also be noted that in going from low to high PeR, predictions 

temporarily deteriorate at PeR = 47. It is quite curious as to why they recover above this 

value at PeR = 370. The reason may be that the “coning” of the solute in the pores (as 

seen in fig. 4.5b) causes early breakthroughs from the pores similar to a CSTR (or 

continuously mixed pore). A perfect match was obtained when volume-averaged pore 

concentrations were compared to those of, for example, MCM (not shown here). This 

means that two completely different physical mechanisms can lead to the same overall 

transport outcome. Further increase in PeR (=3700 and 37000) results in the emergence of 

unswept regions within the pores (fig. 4.5b; which are the cause for the deviations). 

While one may attempt to include unswept regions into the conceptualizations, correct 

identification and characterization of such regions in realistic pore networks remains a 

challenge. Figure 4.9 shows that for the SB geometry, STM2par and STM2plug are not good 

conceptualizations altogether. Extremely high Peclet numbers might seem to be the 

exception in STM2par, but it is very likely that non-inertial effects become more important 

in these regimes. 

In general, a one-to-one mapping of the actual pore-space geometry (without 

concentrating volumes at either the pores or the throats alone), approximating pores (or 

“pockets”) by CSTRs, and including shear dispersion within throats, seems to be a 

satisfactory and minimalistic idealization of the actual transport process. It is very 

important to note that if a pore is met by more than one inlet, it is necessary to 

conceptualize each “pocket” (not the entire pore) by a CSTR (ref. chapter 3 for definition 

of pocket). For reasons already given in section 4.2.1.2, the latter was pursued in this 
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chapter for simplicity. Simplifying further, in porous media where pores have much 

longer mean residence times compared to throats, MCM is the method of choice (i.e. 

simpler). This is because transport physics within throats would have no impact on the 

macroscopic transport behavior (see fig. 4.8). Longer residence time within pores 

additionally justifies the appropriateness of their idealization by CSTRs (i.e. more time 

available for diffusion to homogenize concentrations). On the other hand, in porous 

media where throats have longer or equal mean residence times compared to pores, 

STM2 is the method/conceptualization of choice. If pore-level mixing is to be accounted 

for accurately, one shall use SSM (instead of MCM) or a combination of STM and SSM 

(instead of STM alone) depending the method of choice selected based on the 

aforementioned. 

We conclude this section by noting, that even though SA and SB are 

homogeneous and short (longer domains were computationally difficult with CFD), they 

have provided a direct means of evaluating the predictive capacity of the different 

conceptualizations considered. While the homogeneity of the domains have provided a 

sufficiently strict case for comparison (see discussion in section 4.3.4), care must be 

exercised in extending the conclusions drawn herein to longer domains, i.e. throats 

connected by more pores in the longitudinal direction. For instance, despite the excellent 

predictions made by STM2par for SA, at high Peclet numbers large inaccuracies may arise 

as domain lengths increase (see section 4.3.4). 
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4.3.3 Longitudinal dispersion in disordered granular media 

4.3.3.1 Comparison against experiments 

In this section, we compare longitudinal dispersion coefficients from STM (with 

parabolic and plug-flow velocity profiles within throats; denoted by STMpar and STMplug 

hereafter), MCM, and rmMCM against available experimental data in the literature for 

unconsolidated bead/sand packs. In STMpar and STMplug, it was assumed that pores are 

volumeless and throats are cylindrical, to maximize shear-dispersive effects and to follow 

common practice in the literature for comparison. In appendix I, we describe the 

procedure whereby pore volumes obtained from Delaunay tessellation (Al-Raoush et al., 

2003) were assigned to the throats, followed by computing throat lengths and radii. We 

note that the same throat lengths and radii were used in MCM and rmMCM. Here we 

consider the 1×1×1mm3 monodisperse sphere pack described in section 3.3.3, whose 

corresponding physically-representative pore network consists of 4094 pores and 10184 

throats with permeability and porosity of 24D and 0.38, respectively. We define the 

characteristic Peclet number as Ped = vintdp/Dm, where vint and dp denote interstitial fluid 

velocity and grain diameter, respectively.  

For Ped <1, the original sphere pack is used to compute dispersion coefficients, 

while for Ped >1, the network is lengthened in the x-direction by physically attaching 

another replica of it to itself (this is possible because the sphere pack is periodic). 

Therefore, in the latter case, the domain has dimensions 2×1×1mm3 and is 20 grains and 

32 pores across in the x-direction. This is a relatively small domain when compared to 

typical sizes used in the literature for dispersion calculations. Acharya et al. (2007b) 

determined that a 33×23×23 cubic lattice network is necessary for MCM to produce 

asymptotic longitudinal dispersion coefficients. Although comparable in the x-dimension 

to our domain, one must be careful in drawing a parallel as their network was generated 
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statistically. Jha et al. (2011) used a physically representative network of a sphere pack 

(i.e. their results provide a more appropriate comparison case herein) that was 34 grains 

long and 17 grains wide. The reason for the selected domain sizes herein was strictly out 

of computer memory requirements for STM. Ample discussion and proposed solutions 

for alleviating these requirements were provided in section 4.2.1.3. While MCM and 

rmMCM do not incur this limitation, the above domain sizes are used regardless, to 

ensure comparisons on equal ground. 

Longitudinal dispersion coefficients were computed by fitting the flux-averaged 

concentration (i.e. eq. 4.23), corresponding to the following macroscopic convection-

dispersion equation (CDE) (i.e. eq. 4.21), to the breakthrough profiles obtained from the 

network simulations.  

 

 
2

2

v v v
int L

C C C
v D

t x x

  
 

  
       (4.21a) 

( 0) 0vC t            (4.21b) 

0

0v v
int v L int in

x x

C C
v C D v C

x x 

 
  

 
    (4.21c) 

 

The volume-averaged solution to eq. 4.21 can be found in Van Genuchten and 

Alves (1982), and is given by eq. 4.22: 

 
1/2

2 2

2

( )1
( , ) exp

2 42

1
(1 )exp

2 2

int

int

int int
v in

L LL

int int int

L L L L

v tx v t x v t
C x t C erfc

D D tD t

v tv x v x x v t
erfc

D D D D t



       
        

      

    
    

    

  (4.22) 

 



 111 

1 1
( , ) exp

2 22 2

int int int
f in

LL L

x v t v x x v t
C x t C erfc erf

DD t D t

       
         

      

  (4.23) 

 

In eq. 4.21-23, DL denotes the longitudinal dispersion coefficient, and Cv and Cf 

denote macroscopic volume-averaged and flux-averaged concentrations, respectively. 

Parker and Van Genuchten (1984) showed (by transformation of eq. 4.21) that eq. 4.23 is 

the corresponding flux-averaged concentration of eq. 4.22. Furthermore, they correctly 

argued that eq. 4.23 is preferred for fitting experimental breakthrough profiles, as 

opposed to finite-domain solutions with dispersion-free outlet conditions (e.g. Brenner, 

1962). This is because postulating a dispersion-free outlet is tantamount to assuming no 

outflow of solute due to pore-scale variations of fluid velocity. Similarly, dispersion-free 

outlet conditions are inappropriate for fitting breakthrough profiles from pore-scale 

simulations. The only exception is when dispersion is diffusion-dominated and a 

corresponding diffusion-free outlet condition is imposed on the pore scale model (e.g. 

Jourak et al., 2014). 

For the network simulations herein, flux-averaged effluent concentrations are 

computed according to eq. 4.24 (tib denotes the throat connecting pore pi to the boundary). 

In eq. 4.24, x = LN is where effluent concentrations are computed, which is 1mm for 

Ped <1 and 2mm for Ped >1 in this work. This, of course, is equivalent to the definition by 

Parker and Van Genuchten (1984) at the macro scale. Note that if eq. 4.23 is to be fitted 

to flux-averaged effluent concentrations from pore-scale simulations (e.g. eq. 4.24), then 

the pore-scale inlet condition must translate to Cf(x=0) = Cin (i.e. after transforming 

4.21c). This means that the commonly used (e.g. Acharya et al., 2007b; Zaretskiy et al., 

2010; Jourak et al., 2014) pore-scale dirichelet inlet condition c(x=0) = 1 is, strictly 

speaking, incorrect. The situation is similar when macroscopic solutions for finite 
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domains are used. In other words, since macroscopic concentrations of the fitting 

equation are to be interpreted as flux-averaged, the inlet condition Cf(x=0) = Cin 

corresponds to a constant solute injection rate at the inlet, not a dirichelet boundary 

condition, where rates may vary with time. Surprisingly, such a distinction is rarely 

drawn in the literature. At sufficiently high Peclet numbers, however, the difference 

between the two inlet conditions becomes negligible (e.g. Acharya et al., 2007b where 

Ped >10). In this light, we use eq. 4.25 as the inlet condition for the pore networks (AN is 

the network cross-sectional area available to flow), which is diffusion-free and assumes 

zero-residence time within inlet throats (appropriate modifications to STM balance 

equation, i.e. eq. 4.11-12, for the boundary pores are straightforward). 
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The proper pore-scale outlet condition, in connection with the semi-infinite 

condition of eq. 4.21c at the macro scale, is given by eq. 4.25. In order to satisfy it, one of 

two approaches is taken. For MCM and rmMCM, we sufficiently augment the domain 

size in the x-direction by physically attaching replicas of the periodic network to itself 

(effluent concentrations are still recorded at x = LN via eq. 4.24). This reduces the effects 

of the actual diffusion-free, Neumann boundary imposed at the outlet of the augmented 

network. This approach suits MCM and rmMCM quite well, as they are highly efficient 

computationally. For STMpar and STMplug, the outlet throats are assumed to be semi-
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infinite acting ducts with plug-flow velocity profiles. The actual velocity profile is 

immaterial, as the solute spends a negligible fraction of its total network residence time 

within these throats. However, the plug-flow assumption allows us to use the semi-

infinite acting rate expressions in appendix H (i.e. eq. H.1). The STM outlet condition is, 

therefore, given by eq. 4.26 (where Δpib = pb-pi and pb is the outlet pressure, and 

qc
r,FO/BO

tib,k(t-tr
pi,k) denotes time-shifted forward/backward solute flow rates). 
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By fitting eq. 4.23 to effluent profiles obtained via eq. 4.24 (or eq. 4.26) under 

boundary conditions discussed above, with flow in x-direction and lateral boundaries 

sealed, longitudinal dispersion coefficients for STMpar, STMplug, MCM, and rmMCM 

were computed. Figure 4.10a compares network model predictions to available 

experimental data in the literature. This is a standard way of presenting dispersion data, 

where the vertical axis represents normalized dispersion coefficient, DL, (against 

molecular diffusion, Dm) and the horizontal axis represents characteristic Peclet number, 

Ped. All experimental data correspond to unconsolidated bead/sand packs, and were 

extracted from Jha et al. (2011) (and references therein). These include: breakthrough 

results of Pfannkuch (1963); NMR imaging measurements of Seymour and Callaghan 

(1997), Kandhai et al. (2002), Khrapitchev and Callaghan (2003); planar laser-induced 

florescence imaging results of Stöhr (2003), and sand pack data of Perkins and Johnston 

(1963) (and references therein), Jha (2005).  
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Figure 4.10: (a) Normalized longitudinal dispersion vs. Peclet number (=vintdp/Dm) for 

STM (with parabolic/plug-flow velocity profiles) and MCM against 

experimental data in the literature (extracted from Jha et al., 2011 and 

references therein). Predictions for STM with plug-flow span Ped >10, as the 

rate expression used (eq. H.1) are valid only in this range (i.e. backward 

transport in negligible). (b) DL/(vintdp) vs. Peclet number (=vintdp/Dm) for 

STM (with parabolic and plug-flow velocity profiles), MCM, and rmMCM 

for the sphere pack network. Note that only STM with the parabolic velocity 

profile produces the signature power-law regime characteristic of 

intermediate Peclet numbers. 

 

Figure 4.10a shows very good agreement between STMpar and the experimental 

data over the entire Peclet spectrum. In comparison, MCM under-predicts dispersion at 

Ped >100 up to a factor of ~2.5, whereas predictions at Ped <1 are very good. Since MCM 

and rmMCM were almost indistinguishable in figure 4.10a, the corresponding plot for 

rmMCM is not shown. Note that STMplug simulations were conducted only for Ped >10 

(see figure 4.10a). This is because the corresponding rate expressions used (i.e. eq. H.1) 

do not account for backward diffusion from one inlet to the next within the same pore 
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(see discussion in section 4.2.1.1). Although not very obvious from figure 4.10a, STMplug 

is smaller by a factor of ~1.5 compared to STMpar (differences at high Ped are more 

apparent in figure 4.10b as discussed later). 

The dependence of longitudinal dispersion on Peclet number is typically divided 

into discrete regimes in which the scaling of DL with Ped is influenced by different 

mechanisms (Fried and Combarnous, 1971; Sahimi, 2012). These roughly follow: i) 

dispersion dominated by restricted diffusion (Ped <0.3), ii) transition regime where 

advection and diffusion are comparable in magnitude (0.3< Ped <5), iii) power-law 

regime where coupled interaction between diffusion and advection gives rise to the supra-

linear dependence DL~Ped
δ
 where 1<δ<2 (5< Ped <200-4000), and iv) pure mechanical 

dispersion which is characterized by the linear dependence DL~Ped (Ped >200-4000). 

Non-inertial effects typically become apparent beyond this limit. The regime boundaries 

(especially between power-law and mechanical) are known to vary throughout the 

literature and are typically ascribed to pore-scale heterogeneities from one sample to the 

next (Wood 2007). The theoretical studies of Saffman (1959) and Koch and Brady (1985) 

identified the underlying physical mechanisms of dispersion; from which the expression 

given by eq. 4.27 is typically written (and used to fit experimental data): 
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In eq. 4.27, Dr is the restricted diffusion coefficient and c1, c2, c3 are constants 

dependent on the porous medium. The RHS terms in eq. 4.27, from left to right, 

correspond to: restricted diffusion, mechanical dispersion, boundary-layer dispersion 

(also expressed as PedlogPed and due to diffusion in and out of boundary layers near the 

solid surface), and hold-up dispersion (due to diffusion in and out of stagnant zones in the 

pore space). In the highly connected sphere-pack studied herein, hold-up dispersion is 
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practically non-existent. In order to highlight the emergence of the foregoing dispersive 

regimes from our network simulations, we plot DL/(vintdp) vs. Ped (which is yet another 

common way of depicting dispersion data) in figure 4.10b. 

Figure 4.10b clearly shows that STMpar successfully reproduces all the regimes 

described above. From this figure the regime boundaries are: i) restricted diffusion at 

Ped <0.3, ii) transition regime at 0.3< Ped <6, iii) power-law regime at 6<Ped<1000, and 

iv) mechanical regime at Ped >1000. The first non-linearities become apparent at 

Ped >0.3. A minimum is reach around Ped  6, which marks the beginning of the power-

law regime. A power-law exponent δ = 1.19 is obtained in this regime (6<Ped<1000), 

which is in good agreement with values obtained from both experiments and modeling in 

the literature. These include for modeling: δ = 1.2 Mostaghimi et al. (2012) (micro-CT 

image of Berea sandstone), δ = 1.19 Bijeljic et al. (2004) (2D diamond lattice network of 

mapped Berea statistics), δ = 1.23 Jha et al. (2011) (sphere-pack pore network), δ = 1.19 

Saffman (1959) (fitted) (theoretical value for a network of disordered capillaries). 

Experimental values lie within the range δ ϵ [1.05-1.33] (see Bijeljic et al., 2004 for a 

thorough compilation), with average values of all data approximately δ = 1.2 (Sahimi, 

2012). The scatter in the experimental values is due to inclusion of various types of 

sandstones, mostly consolidated. For unconsolidated sand/bead packs δ = 1.18 Stöhr 

(2003) and δ = 1.19 Pfannkuch (1963) agree well with this work (see Bijeljic et al., 

2004). For Ped >1000 dispersion is purely mechanical. 

In figure 4.10b, STMplug shows that δ = 1 for plug flow in a sphere pack (no 

power-law regime), which is in agreement with Jha et al. (2011). The same conclusion 

was drawn by Sahimi et al. (1986), who used a 2D square lattice network with perfect 

mixing at the pores and plug flow at the throats (note that diffusion was neglected). Plug-

flow results of Acharya et al. (2007a) demonstrate δ > 1 (their figure 6.b). This apparent 
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discrepancy is resolved in light of arguments provided in section 4.3.3.2, and is attributed 

to contributions from hold-up dispersion in the cubic lattice network used. 

MCM and rmMCM show very close agreement in figure 4.10b, except at the 

transition regime. The small deviations appear because advection and molecular diffusion 

are assumed additive processes in the formulation of solute flow rates in MCM. Both 

models agree with the theoretical result of Aris and Amundson (1957) for a 1D string of 

CSTRs: DL/(vintdp)  0.5 at high Ped. Furthermore, the MCM plot in figure 4.10b is 

exactly described by the simple addition of mechanical dispersion and restricted diffusion 

given by eq. 4.28 (see Delgado, 2006) (although not plotted in figure 4.10b to avoid 

cluttering). This should come as no surprise, since advection and diffusion are assumed to 

be additive processes at the pore scale in MCM. 
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MCM and rmMCMC predict Dr = 0.65, which is within [0.6-0.7] as noted by 

Perkins and Johnston (1963). A slightly lower value of Dr = 0.53 was obtained by STMpar. 

For reasons discussed in section 4.2.1.3, at Ped << 1, STM simulations are quite sensitive 

to the recording frequency and the time step size (i.e. eq. 4.15). Larger time steps were, 

therefore, taken to avoid a very high recording frequency (we recognize this as the source 

of the error). The reformulation proposed in section 4.2.1.3 is expected to grossly 

alleviate this problem. Nevertheless, MCM is clearly the method of choice for Ped <<1, 

whose computational performance lies within a few seconds. 
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Figure 4.11: MCM dispersion coefficients normalized by their asymptotic value (for very 

long domains) vs. domain size for different Ped. Larger domains are 

required for higher Ped to asymptote. 

 

Finally, figure 4.11 shows the dependence of the MCM dispersion coefficient on 

domain size (increased in the x-direction by physically attaching replicas of the periodic 

network to itself). Dispersion coefficients were normalized by their asymptotic (or near 

asymptotic) values at the largest simulated domain size. As expected, higher Ped regimes 

necessitate larger domain sizes. Moroni and Cushman (2001) conducted 3D particle 

tracking velocimetry experiments of dispersion in a sphere pack. They used air bubbles as 

particles (which do not sample velocities near boundary layers; similar to MCM) and 

very large grains (= 1.9cm in diameter; hence very high Ped). They found that dispersion 

varied linearly (as expected in the absence of boundary-layer dispersion in a sphere pack; 

see section 4.3.3.2) and asymptoted after 5 to 6 pore diameters. This is certainly not the 

case in figure 4.11, where much larger travel distances seem to be required. 



 119 

In an interesting paper, Maier et al. (2003) showed that velocity variations due to 

imposed lateral no-flow boundary conditions (even if sphere packs are periodic) enhance 

longitudinal dispersion and prolong the time required for it to asymptote. Furthermore, 

the larger the lateral dimension, the longer it takes to reach asymptotic behavior. The 

increase in dispersion coefficient with domain size in figure 4.11 is, therefore, attributed 

to the no-flow lateral boundaries imposed. In this regard, the relatively small domain 

length chosen seems to be appropriate for its lateral dimensions. In other words, 

increasing the domain length while keeping the lateral dimensions constant, allows more 

time for the solute to sample velocity variations near the no-flow boundaries (which 

pollutes the actual variations we intend to sample). For a few cases, where increasing 

domain size was computationally possible, STMpar and STMplug demonstrated the same 

behavior as in figure 4.11. It is noteworthy that if the largest domain size was chosen (i.e. 

120,000 pores) for MCM, then we would obtain DL/(vintdp)  0.7 at high Ped, which is in 

disagreement with the theoretical value by Aris and Amundson, 1957 i.e. 0.5). 

 

4.3.3.2 On the origin of supra-linear dispersion 

In section 4.3.3.1, a power-law exponent of δ = 1.19 was obtained for a 

monodisperse disordered sphere pack using STMpar. This value was shown to be in good 

agreement with experiments and modeling results in the literature with an average 

δ  1.2. Slightly larger values have also been reported in the simulations of: δ = 1.19-1.25 

Sorbie and Clifford (1991) (2D square lattice network), δ = 1.29 Acharya et al. (2007a) 

(3D cubic lattice), δ = 1.27 (2D square lattice) and δ = 1.24 (3D cubic lattice) Sahimi et 

al. (1986). We contend that hold-up dispersion (DL ~Ped
2) is the additional contributor to 
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the observed supra-linearity in these simulations, due to the lattice network structures 

used. 

Recent studies by Milligen and Bons (2012), Bons et al. (2013), and Milligen and 

Bons (2014), have called into question the necessity of a Taylor type dispersion 

mechanism (or boundary-layer dispersion) to explain the emergence of a supra-linear 

power-law regime. An analytical model based on heuristic statistical arguments was 

developed by Milligen and Bons (2012), that conceptualized dispersion as successive 

diffusive motions of particles governed by mechanical dispersion (DL~Ped) and 

microscopic diffusion. Milligen and Bons (2014) then conducted network simulations, 

with a model equivalent to rmMCM herein, and demonstrated the emergence of a supra-

linear power-law regime in their 2D networks. We contend that the observed supra-

linearity in their work is due to contributions from hold-up dispersion as well.  

In Milligen and Bons (2014), the networks for which a power-law regime was 

observed were those with “Elle”, hexagonal and square grid structures. Supra-linearity 

was strongest in the square and hexagonal networks (where lateral throats have 

substantially smaller flow rates than those in the flow direction), and very weak in the 

foam-like “Elle” network. It was altogether absent in the “tile” grid network, where 

lateral throats contained appreciable flow rates. It seems, therefore, that even in the 

absence of boundary-layer dispersion, networks with a sufficient fraction of near-stagnant 

throats manifest a power-law regime. In addition, the square and hexagonal networks 

seem to fit perfectly into the assumptions of the analytical model of Millegen and Bons 

(2012) (which coincidentally produces an intermediate DL~Ped
2 dependence similar to 

hold-up dispersion), i.e. some fraction of the particles experience mechanical dispersion 

while the rest molecular diffusion at any given Ped. Such a decoupling of particle motions 

by diffusion and mechanical dispersion is generally not realistic. Figure 4.10b confirms 
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this for the sphere-pack network studied, which is devoid of near-stagnant zones, as 

rmMCM does not produce a supra-linear regime. 

The following factual statement is readily verifiable: a supra-linear regime exists 

if and only if a plot of DL/(vintdp) vs. Ped exhibits a minimum. Such a minimum is seen in 

figure 4.10b for STMpar, while it is absent for MCM, rmMCM, and STMplug. The 

theoretical works of Saffman (1959) and Koch and Brady (1985) (among others) 

identified boundary-layer dispersion and hold-up dispersion as mechanisms capable of 

producing supra-linearity (and thus a minimum in figure 4.10b). In both mechanisms, 

pore-scale diffusion acts as a regulator in transporting solutes in and out of stagnant zones 

within the pore space. Therefore, a minimum in the plot of DL/(vintdp) vs. Ped is reached if 

pore-scale diffusion can temporarily hinder the linear growth of longitudinal dispersion 

(in response to an increasing Ped) by stretching the solute laterally, thus shortening its 

length, over a certain range of the Peclet spectrum (i.e. by diffusing in/out of boundary-

layers/stagnant zones). This, of course, is well known to occur for Taylor-Aris dispersion 

in a tube. To see this for the sphere pack network modeled via STMpar, we point to the 

intuitive pictures figures 4.2a and G.2a provide. 

As discussed in section 4.2.1.1, the slope of the S-shaped qcd
FO profile (for each 

throat) in figure 4.2a experiences a maximum at moderate Peclet numbers. Alternatively, 

figure G.2a shows that aF (i.e. the parameter controlling the slope) exhibits a maximum 

and follows approximately a Gaussian, with an amplitude and variance dependent on κ, in 

a semi-logarithmic plot. Therefore, the “slump” (or minimum) seen in figure 4.10b for 

STMpar, seems to be precisely a result of the “humps” (or maxima) in figure G.2a. In 

other words, the minimum in figure 4.10b is a direct result of diffusion in and out of 

boundary-layers. However, if such a pore-scale mechanism is excluded from a computer 

model, a plot of DL/(vintdp) vs. Ped does not experience a minimum, unless the pore-space 
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topology provides other opportunities for lateral diffusion to temporarily curb the linear 

growth of longitudinal dispersion in response to an increasing Ped. Dead-end zones 

provide such opportunities, giving rise to hold-up dispersion in the lattice type networks 

discussed from the literature (e.g. Milligen and Bons, 2014). If the computer model 

additionally includes boundary-layer dispersion, i.e. parabolic profiles within throats, 

supra-linearity is expected to amplify (e.g. δ = 1.29 Acharya et al., 2007a). 

One may be further tempted to define a parameter such as Δδ = (δ-1.2) to quantify 

specific contributions from hold-up dispersion, which is known to be difficult in 

experiments, to the overall dispersion process in disordered granular media (i.e. 

sandstones). Further research is required to demonstrate the feasibility of such a metric. 

An alternative, however, is to simulate a given sample using STMplug, for which any 

supra-linearity would be purely topological (e.g. plug-flow results of Acharya et al., 

2007a). The difference between STMpar and STMplug further isolates the contribution from 

boundary-layers. Knowledge of these contributions allows better rock classification and 

helps in correlating experimental data. 

We conclude this section with the following remark: Saffman’s (1959) theory 

predicts that the supra-linearity of dispersion does not disappear at very high Peclet 

numbers, as long as diffusion is non-zero. Yet mechanical dispersion (i.e. DL~Ped) is the 

classification very often invoked at high Ped. Although this classification is supported by 

an overwhelming body of experimental data (see Delgado, 2006) and modeling results, 

there appears to be little mention of this discrepancy in the literature. One possibility is 

that all modeling and experimental data are, in some form or shape, limited by the large 

domain sizes requisite for supra-linear behavior at very high Ped. To show this, however, 

one is faced with the task of reconciling any discrepancies, of which there are many, 
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observed in the literature. This we shall not attempt herein, instead we simply pose the 

issue as a matter in need of addressing. 

 

4.3.4 Predictive capacity of network models of solute transport for ordered media 

Consider the very long cylindrical tube shown in figure 4.12a, in which solute is 

continuously injected from left to right in the absence of diffusion (PeR→∞ ). The cross-

sectional average (cA) and flux-averaged (cF) concentrations at an axial position x obey 

eq. 4.29 (easily verifiable from the parabolic velocity profile). 

 

2

0 0

0 0

1 1 ( )

0 0

A F

x x
x V t x V t

V t V tc c

else else

 
      

  
 
 

  (4.29) 

We then divide the tube into smaller segments, along the dashed lines shown in 

figure 4.12a. We refer to the dashed lines as “joints” and enumerate them by the variable 

NJ (from left to right). The cross-sectional average and flux-averaged concentration 

profiles at these joints (computed via eq. 4.29), are plotted in figure 4.12b for different 

times. The horizontal axis λ is obtained by normalizing x by the length of 50 segments. 

Now, if we treat each segment as a throat, and each joint as a volumeless pore, STM 

yields the joint concentration profiles depicted by the thick solid lines in figure 4.12b. It 

is seen that STM profiles represents neither the cross-sectional average nor the flux-

averaged concentrations. It is only at very early times, that STM approaches flux-

averaged concentrations. 

In section 4.3.1, we showed that STM essentially computes successive 

convolutions of the impulse response function of each segment with the input signal to 

the system. Since successive convolutions represent aggregating random variables drawn 
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from the same distribution (of segment residence times with a uniform inlet 

concentration), STM is effectively smearing the solute uniformly across the tube cross-

section at every joint. Therefore, it is not surprising that it systematically deviates from 

the flux-averaged concentrations at later times. For comparison, the MCM 

conceptualization (see section 4.3.2) was additionally applied to the tube shown in figure 

4.12a, and its concentration profiles are depicted in figure 4.12b (thin solid lines). Note 

that STM and MCM are similarly inadequate in describing the transport process for this 

case. 

Figure 4.12: (a) Schematic of a circular tube under pure advection (constant inlet 

concentration), divided into segments with joint locations annotated (dashed 

lines). (b) Joint concentration profiles at different times along the duct, 

including: cross-sectional average (dashed-dotted line), flux-averaged 

(dashed-plus line), STM (thick solid line), and MCM (thin solid line). 

Arrow of time is annotated. λ is obtained by normalizing x against the length 

of 50 segments. (c) STM, cross-sectional average, and flux-averaged 

concentration profiles. x normalized against distance travelled by centerline 

velocity (= V0t). Number of joints travelled by the centerline velocity (= NJ) 

are annotated (note the gradual convergence towards normality). 
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It is even more interesting to investigate the STM profile as t→∞ . Equivalently, 

we would like to know Et
*n as n→∞  (where Et is the impulse response function of a pipe 

segment given by eq. 4.20). Upon examining eq. 4.20, we notice that Et is a Pareto 

distribution of the form given by eq. 4.30, with xm = t0/2 and a tail index of α = 2 (t0 is the 

mean residence time of the pipe segment). 
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       (4.30) 

Since this distribution has an infinite variance, the classical Central Limit 

Theorem (CLT) does not apply and we have to invoke the generalized CLT. The reader is 

referred to Furrer (2012) for a full treatment on the infinite aggregates of Pareto 

distributions, where it is shown that Et lies in the domain of attraction of the normal 

distribution. This means that the concentration profile of STM, for pure advection, 

converges to a Gaussian (although very slowly; see Furrer, 2012) as the solute passes 

through an increasing number of joints where it is homogenized across the tube cross-

section. The implication is that even though Fickian dispersion may never be reached 

within a pore network in the absence of diffusion, sufficient smearing of the 

concentrations at the pores would eventually lead to a Gaussian profile. Figure 4.12c 

clearly shows this limiting behavior for various numbers of segments (NJ) traveled by the 

centerline velocity (V0) (the x-axis is normalized by V0t). Notice the gradual divergence 

from the flux-averaged concentration profile as NJ increases. If diffusion is present, the 

smearing will affect the time required to reach asymptotic behavior (and possibly the 

magnitude of the dispersion coefficient), unless throats are long enough for their outlet 
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concentrations to be fairly uniform. As an aside, it is very interesting that for α ≥ 2, eq. 

4.30 lies in the domain of attraction of the normal distribution, whereas for α <2 it lies in 

the domain of attraction of a non-normal stable distribution, and a Newtonian fluid 

flowing in a cylindrical tube corresponds to the case verging right at the boundary 

between the two (i.e. α = 2). 

We note that all Eulerian pore network models of solute transport developed in 

the literature inherently suffer from some sort of smearing performed at the pores/joints. 

Lagrangian network models that use particle tracking and draw throat transit times from 

the same distribution (i.e. independent of their spatial position) in order to perform 

random hops from one pore to the next, are similarly limited (e.g. Sorbie and Clifford, 

1991; whose model is conceptually equivalent to STM). The smearing effectively 

discards the memory a random walker has accumulated upon encountering a pore. The 

problem is circumvented, if inflowing solute is mapped onto appropriate radial positions 

of the outlet throats. Eulerian network models are inherently incapable of performing 

such a delicate task, unless pores are sub-discretized into much smaller control volumes, 

which defeats the intent for a network representation in the first place. It is noteworthy, 

while SSM (developed in chapter 3) does discriminate between the different outlets of a 

pore through a coarse sub-discretization of the pore volume, concentrations within each 

outlet are still assumed to be perfectly mixed (thus it would yield similar predictions as 

MCM for the case in figure 4.12a). Lagrangian network models (e.g. Jha et al., 2011), on 

the other hand, can elegantly preserve solute memory in passing from one radial position 

of a throat to the next, through appropriate mappings at the pores/joints (and, thus, seem 

to be the next simplest method of choice). 

It is possible that the smearing problem is not particularly pronounced for the 

disordered media often considered in the literature (and section 4.3.3.1); in which case 
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STM can be used. This may also justify the use of ensemble average pore-to-pore 

transition probabilities for performing random hops form one pore to the next, e.g. 

Bijeljic and Blunt (2006). In ordered media, however, discarding particle memories will 

almost certainly lead to gross errors (e.g. figure 4.12b), unless Peclet numbers are 

sufficiently low. Memory preserving pore-to-pore transition probabilities are, thus, 

required for efficient and accurate simulations of transport in ordered media and will be 

the subject of a future investigation. 

 

4.3.5 Applications to field-scale modeling 

We provide a brief account on how STM can additionally be applied at the field 

scale without further modifications. Consider the two-dimensional macroscopic domain 

in figure 4.13 for simplicity (3D case follows identically). The domain is discretized into 

Cartesian grids, which are delineated by bold solid lines. Now, one can always define a 

dual grid such as the one depicted by the dashed lines. We refer to this dual grid as the 

macroscopic “network”. This network consists of smaller (than the original Cartesian 

mesh) control volumes (or “pores”) denoted by ΩP, connected to each other by the space 

in between them (or “throats”) denoted by ΩT. In figure 4.13, the two macroscopic pores 

ΩP
i and ΩP

j are connected to each other by the macroscopic throat ΩT
ij. Note that both the 

pores and the throats have volumes. Through the foregoing analogy with network 

modeling, the applicability of STM becomes immediately apparent. The only difference 

is that the required elementary forward/backward transport rate expressions (such as 

those given by eq. 4.6) for the throats (i.e. ΩT), must be obtained from pore-scale 

simulations, or even experiments, on representative samples. The procedure is identical to 

that described in section 4.2.1.1 for microscopic cylindrical throats. Namely, 1 and 0 
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dirichelet boundary conditions are imposed interchangeably at the inlet and outlet of the 

pore-scale domain and solute inflow/outflow rates are computed (see figure 4.1). 

Admittedly, the foregoing proposed approach is not without ambiguity. For instance, it is 

not clear precisely what dimensions shall be chosen for ΩP
i. Nevertheless, the approach 

can be used to perform efficient field-scale simulations of non-Fickian and anomalous 

transport (as long as the problem is linear), for which the macroscopic advection-

dispersion equation (CDE) breaks down. 

 

 

 

Figure 4.13: Schematic of a two-dimensional field-scale domain, discretized into 

Cartesian grids delineated by the bold solid lines. The dual “network” grid is 

shown with dashed lines, where Ωp and ΩT represent macroscopic “pores” 

and “throats”, respectively. STM is applicable on this dual grid. 

 

4.4 CONCLUSIONS 

The following summarizes our main conclusions: 
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 Semi-empirical expressions for solute flow rates at the inlet/outlet of a cylindrical 

duct under forward/backward transport were developed. These expressions are 

mass conservative and are valid for all Peclet numbers and κ ϵ [1-20] (they shall 

not be used for κ <1). They can be easily extended to non-circular cross-sections 

(as described in section 4.2.1.1), and are thought to be useful in their own right 

(e.g. as transit time distributions in particle tracking, outflow/inflow solute flow 

rates of arbitrary input signals when appropriate convolutions are preformed, 

useful tools in analyzing experimental data for short tubes, etc.). 

 A novel Eulerian model (i.e. STM) for simulating linear solute transport on pore 

networks was developed. Its unique feature is the proper incorporation of shear 

dispersion within throats, and is the first Eulerian network model, to our 

knowledge, with this capability. STM can simulate on networks with either zero 

or finite pore volumes. The model was verified against numerically integrated 

convolution expressions for one-dimensional strings of pores and throats (see 

section 4.3.1). 

 We replaced the rather arbitrary rate expressions of MCM with steady state solute 

flow rates obtained from CFD simulations (referring to the resultant model as 

rmMCM). rmMCM appears to be a generalization of the plug-flow model of 

Milligen and Bons (2014), and is shown (in section 4.3.3.1) to differ only 

marginally from MCM (and only in the transition regime i.e. 0.3< Ped <6) for a 

sphere pack. 

 Three different conceptualizations of (two) one-dimensional three-pore 

geometries (solved with MCM and STM) were compared to CFD simulations (see 

figure 4.5). In general, a one-to-one mapping of the pore/throat geometries, or 

dimensions, approximating pores (or pockets in SSM) with CSTRs, and including 
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parabolic velocity profiles within throats, seems to be the minimum requirements 

for satisfactory predictions. More specifically, if the pore-to-throat residence time 

ratio is ≤ 1, STM2par is the most accurate conceptualization. If >>1, details of the 

transport physics within throats is immaterial and MCM is the simplest method to 

use. 

 Longitudinal dispersion coefficients for a sphere pack were computed via STMpar 

(= parabolic velocity profiles within throats), and shown to agree quite well with 

experimental data from the literature. STMpar produced all known dispersion 

regimes in agreement with previous theoretical and experimental works. MCM 

and rmMCM predictions were very good for Ped <1, but with under-predictions of 

up to a factor of ~2.5 compared to STMpar for Ped >100.  Similarly, STMplug values 

were lower by a factor of ~1.5 compared to STMpar. None of MCM, rmMCM, and 

STMplug could reproduce the power-law regime for a disordered sphere pack. 

MCM dispersion coefficients were accurately described by the algebraic addition 

of molecular and mechanical dispersion coefficients, and agreed very well with 

the theoretical results of Aris and Amundson (1957) at high Ped. 

 A discussion on the origin of supra-linear dispersion was provided, in conjunction 

with an analysis of past numerical results from the literature. It was argued that 

the supra-linearity observed in models neglecting shear dispersion (e.g. Milligen 

and Bons, 2014) is purely topological and due to contributions from hold-up 

dispersion. The higher than typical power-law exponents (i.e. δ) obtained in the 

literature (e.g. Acharya et al., 2007a) are similarly thought to be the result of 

additive effects of hold-up dispersion and boundary-layer dispersion. An intuitive 

explanation for the origin of the power-law regime in figure 4.10b (for a sphere 
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pack) was provided by linking it to figure G.2a (for a single throat) (see section 

4.3.3.2). 

 It was shown that all Eulerian network models are inherently limited for 

describing longitudinal dispersion in ordered porous media (including SSM from 

chapter 3). Specifically, sufficient smearing of the solute at the pores eventually 

results in a Gaussian distribution even in the absence of diffusion, which is 

unrealistic. Particle tracking models that consist of a series of Markovian hops 

from one pore to the next, are similarly limited. What is necessary is an accurate 

mapping of solute concentrations from the radial positions of one throat to the 

next, which is elegantly handled under a Lagrangian framework. 

 STM is currently limited by computer memory requirements, which prevents 

simulation on very large domains. This is because STM dynamically records pore 

concentration histories with a set frequency given in eq. 4.15, which is quite 

conservative. In section 4.2.1.3, we proposed practical solutions that could 

dramatically reduce said requirements as well as improve overall computational 

performance and accuracy. We note that, even in its current form, STM is 

computationally more efficient than particle-tracking methods for certain 

boundary conditions and domain sizes (few thousand pores). The continuous 

injection of solute is one such scenario. On the other hand, particle tracking 

provides considerable flexibility for modeling truly infinite (i.e. periodic) 

domains, whereas STM is limited to only finite domains. In this regard, the two 

can be considered complementary to each other. 

 Applicability of STM extends far beyond passive tracer transport at the pore 

scale. In essence, regardless of the underlying physics, if “response functions” to 

elemental inputs (e.g. unit step/Dirac delta) are known for a set of bonds (e.g. eq. 
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4.6), the response of any network assembled thereof to any input can be computed 

via STM (e.g. transmission of voltage signals through interconnected electrical 

networks, non-Fickian transport at the field scale, etc.). This is what makes the 

method so useful and worthy of further pursuit. 
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Chapter 5: Reactive Transport with Applications to CO2 Sequestration2 

In this chapter, we focus on a slightly larger scale compared to the previous two 

chapters, namely one that consists of a conglomeration of multiple (millimeter-scale) 

pore-scale domains. Such scales allow one to directly observe macroscopic 

manifestations of various pore-scale physics (without passing through an upscaling 

filter), and therefore offer access to the responsible fundamental mechanisms. Here, we 

test whether unexpected emergent behavior can arise from the coupled interaction 

between various components of a simplified flow and reactive transport model on a 

domain with large-scale heterogeneities. We develop tools and methods to test this 

hypothesis. The developed model as well as the emergent behavior of interest (observed 

at the field scale) fit into the context of CO2 sequestration and storage. 

 

5.1 MOTIVATION 

Safe and economic storage of CO2 emitted from fossil fuel combustion in 

depleted hydrocarbon reservoirs and saline aquifers requires an accurate assessment of 

leakage risk from the reservoir into freshwater aquifers and to the surface. Natural seeps 

of CO2 illustrate that CO2 is prone to migrate to the surface either as a dissolved phase in 

moving groundwater or as a buoyant-free gas phase given suitable flow pathways such as 

connected fault and fracture systems (Pearce et al., 2004; Shipton et al., 2004; Dockrill 

and Shipton, 2010). Under common thermobaric gradients, upward moving groundwater 

                                                 
2 The material in this chapter was published under the following reference, which was completed under the 

supervision of Matthew Balhoff, and co-supervisions of Steven Bryant and Peter Eichhubl. Assistance with 

some preliminary modeling was received from Tie Sun during the early stages of the project. 

 

Mehmani, Yashar, Tie Sun, M. T. Balhoff, P. Eichhubl, and S. Bryant. "Multiblock pore-scale modeling 

and upscaling of reactive transport: application to carbon sequestration." Transport in porous media 95, no. 

2 (2012): 305-326. 
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containing dissolved CO2 will approach saturation relative to CO2, favoring CO2 

exsolution and the precipitation of carbonate as pore- and fracture-filling cements and as 

travertine at the earth’s surface (Eichhubl and Boles, 2000; Moore et al., 2005). 

Carbonate cement may occlude pore space reducing further CO2 leakage and potentially 

leading to self-sealing of CO2 leakage pathways. Carbonate precipitation reactions, their 

effect on permeability reduction in porous sediment, and their spatial distribution relative 

to flow conduits are thus of interest in the context of geologic carbon sequestration. 

 

 

 

Figure 5.1: (a) Sandstone of the Salt Wash Member of the Morrison Formation sampled 

~100 m away from the Little Grand Wash fault, Utah; blue indicates 

porosity filled with epoxy. (b) Same sandstone with porosity occluded by 

calcite cement ~1 m from of a natural CO2 flow conduit along the Little 

Grand Wash fault. 

 

Carbonate pore cement completely occludes sandstone porosity in the vicinity of 

fossil and active natural CO2 seeps along the Little Grand Wash fault near Green River, 

Utah (fig. 5.1). Uranium series dating of travertine deposits capping these fossil seeps 

suggest that, over timescales of 105 years, the seepage sites at the surface have shifted 
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along fault strike (Burnside et al., 2009). These shifts in seepage may imply that 

preferential pathways can be diverted as a result of reactive transport with CO2. The 

formation of these preferential pathways would likely initiate at the pore scale and, 

therefore, pore-scale modeling is one approach for gaining insight into the controlling 

fundamental processes. Here, we use pore-network modeling due to its simplicity and 

flexibility. 

The need for large pore networks in studying reactive transport processes is often 

cited in the literature (e.g. Fredd and Fogler, 1998; Kim et al., 2011). However, this poses 

several technical and computational problems. First, large pore networks are 

computationally difficult to solve because of their correspondingly large systems of 

equations. Second, if there are heterogeneities in the form of abrupt changes in pore 

structure, it may be difficult to characterize them within a single network. Third, it is 

difficult to obtain high-resolution images of relatively large samples (from which pore 

networks are extracted). For example, if X-ray microtomography (XMT) is used, large 

domains mean less resolution at the pore scale. One solution to these problems is domain 

decomposition. It may be more feasible to image a larger sample if broken up into 

smaller subdomains and then imaged one at a time. Computational benefits also arise 

from the decomposition, because computational cost often scales non-linearly with 

problem size. In addition, parallel computing follows naturally. Finally, if abrupt changes 

in pore structure do exist (which is the case in this chapter), network generation and 

solution is more manageable as subdomains. In this chapter, we draw on mortar domain 

decomposition methods developed by previous authors in the literature (see chapter 2). 

In this study, we model single-phase advection-dominated flow and reactive 

transport at the pore scale, with application to precipitation during carbon sequestration. 

New mortar basis functions are introduced that are specifically designed for pore-scale 
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subdomains, along with a new approach for coupling species transport at the pore scale. 

Although the assumptions regarding the geochemistry and reactions are relatively simple, 

our goal is to investigate the effects of calcite precipitation on large-scale preferential 

flow paths as well as the possibility for the emergence of new ones. Specifically, our aim 

is to determine if the macroscopic observations of redirected flow paths at field sites, 

such as Little Grand Wash fault, can be qualitatively predicted from the coupled effects 

of simplified pore-scale physics. 

 

5.2 MODEL DEVELOPMENT 

5.2.1 Physical and mathematical description of the problem 

Our goal is to model the generation and precipitation of calcite during carbon 

sequestration which results in reduced permeability and possibly the redirection of 

preferential flow paths. We assume that HCO3
- is formed first by a dissociation reaction. 

The HCO3
- then reacts with calcium to form CaCO3 which then precipitates onto pore 

walls. For the application to upward migration of brine saturated with CO2 at deep 

storage conditions, we assume that bicarbonate anion concentration is in equilibrium with 

dissolved CO2 at depth, and that the brine is also equilibrated with respect to calcite 

dissolution. As the brine rises, fluid pressure decreases and at some point dissolved CO2 

comes out of solution to form a gas phase. The exsolution perturbs the equilibrium 

composition in the aqueous phase and causes calcite mineral to precipitate. Our modeling 

focuses on the rock at this CO2 exsolution depth. Although a CO2 gas begins to come out 

of solution at this depth, we assume that the gas phase is small and does not have a 

significant effect on the flow field and is not involved in the reactive transport; therefore, 

flow is modeled as single phase. The effective reactions studied here are summarized as: 
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Equation 1 is a simple description of precipitation reactions that occur during 

carbon sequestration.  In reality, there are several complex chemical reactions present but 

since the focus of this work is on emergent behavior across length scales, we have chosen 

to investigate a simpler approximation of precipitation. 

The perturbation of the bicarbonate concentration is represented as a first-order 

rate process (with rate constant k1
’). In the vicinity of the exsolution depth, this rate is 

approximately constant.  The rate of mineral precipitation is assumed to be first order in 

the distance-from-equilibrium of the bicarbonate concentration (with rate constant k2). 

Calcium ion (Ca2+) is assumed to be present initially in abundance which implies that the 

reaction rate is independent of Ca2+ and that its (relatively constant) concentration can be 

lumped in with the rate constant. It also means the reaction is always a forward reaction 

because Ca2+ is also available at large concentrations, or at least until the porous medium 

cements up completely. Using these assumptions, the rate laws for the two components 

(HCO3
- and CaCO3) are written as follows: 
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The equilibrium partial pressures and concentrations are taken as constants in eq. 

5.2. Concentration of bicarbonate (i.e. cHCO3) is initialized to its equilibrium value (i.e. 

cHCO3
eq) in the system. The medium is then flooded while maintaining a constant boundary 

condition at the inlet (due to gas exsolution), which is higher than the equilibrium 

concentration, thereby insuring that the calcite precipitation reaction proceeds only in the 

forward direction. 

In this study, changes in pore concentrations occur as a result of both advection 

and reaction. The Damköhler number (Da = k2L/vint; where L is the length of the pore-

scale domain and vint is the mean interstitial velocity) is the dimensionless group that 

describes the relative rate of reaction to advection. The numerical formulation presented 

here is limited to relatively low Damköhler numbers (  
3 3

3 ,
2 / eq

caco in HCO HCO
Da c c    ) 

because of the quasi steady-state assumption of the flow equation. The assumption of low 

Da is consistent with the physical problem since calcite precipitation is a very slow 

process compared to advection. Diffusion is assumed negligible, meaning that the Peclet 

number (Ped defined in chapter 4) is large (> 10). This assumption is reasonable for 

typical ion diffusion coefficients and velocities observed in carbon sequestration. Near 

faults and abandoned wells (where one might be most concerned with transport in carbon 

sequestration), advection would be more dominant (i.e. higher Ped). There are, however, 

many situations (including carbon sequestration) in which diffusion is significant and 

may dominate over advection (low Ped). Since our goal is to determine if preferential 

pathways are redirected, we focus on advection-dominated transport. 
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5.2.2 Numerical solution in a single network 

Modeling is performed using pore-scale network models. The networks are 

mapped directly from computer-generated, periodic grain packings. Several grain 

packings are created with porosity 12–41% in a domain that is 1×1×1mm3. The number 

of grains varies from 100 to 10,000 (number of pores vary from ∼400 to ∼40,000), which 

results in large permeability variations. All networks are mapped from the grain packs 

using a modified Delaunay tessellation (Al-Raoush et al. 2003). During creation of the 

network model, we extract pore-level information including pore positions, volumes, 

interconnectivity, throat conductivities, and lengths. 

In order to solve the transport and precipitation process, we employ an implicit 

pressure, explicit concentration (IMPEC) approach in which we first solve for pore 

pressures and flow rates and then solve for species concentration in each pore at a given 

time step. The specific steps in the time-dependent scheme are summarized as follows: 

 

1. Compute the pressure field and the flow field in the network 

2. Compute the concentration field (under advection and reaction) in the network 

3. Update pore volumes and throat conductivities due to mineral precipitation 

4. Calculate reduced porosity and permeability in the network 

5. Advance to next time step and repeat 

 

The first step requires the solution of the flow equation given by eq. 3.2 (section 

3.2.1), which yields the pore pressures and throat flow rates throughout the network. 

Approximating throats with cylinders, the flow equation can be written as eq. (5.3); 

which assumes single phase and creeping flow (Re << 1). 
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In eq. 5.3, Rij and Lij represent throat radius and length, respectively. All other 

variables have the same definition as in section 3.2.1. For a single network model, a 

pressure gradient is imposed in one direction and either no-flow or periodic boundary 

conditions are implemented on the remaining two. More rigorous boundary conditions 

are imposed on the network in the context of multi-block modeling as discussed in 

section 5.2.3. For the second step in the IMPEC approach, an advection-reaction transport 

equation needs to be solved. Here, we use the MCM formulation from section 3.2.2 due 

to its simplicity. With regard to all the other assumptions made herein, using the 

relatively more complicated formulations of SSM or STM (developed in chapters 3 and 

4) seems unjustified. The species balance equation for pore i, thus, follows: 

 

  

 

, 0 , 0

3

3 3 3 3

3

3 3

,

, , 1 2, , , ,
1 1

, , 2

, , ,2

th q th q
i iN N

HCO i eq

p i ij ij p iHCO i HCO j HCO i HCO i
j j

CaCO i p i eq

p i HCO i HCO i

dc
V q c q c V k k c c

dt

dc V k
V c c

dt

 



   

 

 

    

 

 
 (5.4) 

 

In eq. 5.4, cCaCO3,i and cHCO3,i represent the concentration of calcite and bicarbonate 

in pore i, respectively. All other variable definitions are the same as in section 3.2.2. We 

implement an operator-splitting approach in which we decouple advection and reaction in 

eq. 5.4. The reactive part of the equations is amendable to an analytical solution, which is 

summarized in appendix J. Since we have assumed that calcite precipitates on the pore 

walls, it is not transported to the next pore. Furthermore, since calcite concentration is a 

function of pore volume, we can effectively solve the transport equation for bicarbonate 

only, and update the pore volume (see appendix J). The advective part of the transport 
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equation is solved explicitly using eq. 5.5a. The intermediate concentrations obtained 

from eq. 5.5a are then used as initial conditions in the reaction step (i.e. eq. 5.5b). In eq. 

5.5.b, ΔcHCO3|reaction denotes the change in concentration due to reaction and is computed 

using the analytical expressions in appendix J. 
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In the third step, pore volumes are updated using the analytical expressions in 

appendix J. In network modeling, we typically envision the pores containing all the void 

volume and throats providing resistance to flow. Therefore, the reduction in pore volume 

should correspond to a reduced conductivity in the connecting throats. Allocation of 

reduced volume to adjacent throats is accomplished by distributing the precipitated 

cement amongst out-flowing throats and proportional to the magnitude of their flow rate. 

The following equations account for the change in throat volumes (i.e. Vtij) and radii 

(from which their hydraulic conductivities are recalculated): 
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    (5.6) 

Once pore volumes and throat conductivities are updated, porosity and 

permeability (step 4) can be computed. Porosity is calculated as the sum of pore volumes 

divided by the bulk volume of the network. By imposing a pressure gradient in one 

dimension, computing bulk flow rates within throats (eq. 5.3), and obtaining the Darcy 

velocity, permeability can be back-calculated using Darcy’s law. Finally, the above 

procedure is repeated for subsequent time steps leading to an evolution of pressure, 
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concentration, and pore space geometry/topology in time. Time steps are restrained and 

adaptively calculated using the Courant–Friedrichs–Lewy (CFL) condition to ensure 

stability, and are taken as the minimum of all pore residence times. 

 

5.2.3 Numerical solution in coupled, multi-block networks 

In order to examine potential emerging patterns, we simulate flow and transport at 

scales larger than a single pore network. This is accomplished by coupling several 

heterogeneous network models in a multi-block framework to form a much larger 

domain. For this approach to produce accurate results, we must impose boundary 

conditions at subdomain interfaces in such a way that ensures continuity (mass 

conservation) from one block to the next. In the current approach, each subdomain (i.e. 

pore network) is solved independently at a given time step with guessed interface 

conditions and the approach described in section 5.2.2. Correct interface conditions are 

found iteratively by coupling flow and then species transport. Coupling flow involves 

finding the pressure field at all network interfaces using finite-element mortars to ensure 

that fluxes match (in weak finite-element sense). The mathematics and successful 

implementation of the mortar technique on pore-scale models can be found in several 

works (Balhoff et al., 2008; Sun et al., 2012a), but are summarized here: 

 

1. Guess Lagrange multipliers (= β) of FEM basis functions. Basis functions along 

with their Lagrange multipliers describe the pressure field at network interfaces. 

The bases can be chosen from a number options typically bilinear or biquadratic 

polynomials (in this study, we develop new piecewise constant mortars on 

specially designed grids). 
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2. Project these boundary conditions on each network model and solve the 

individual networks for pore pressures and throat flow rates 

3. Calculate the jump in fluxes (F) across network boundaries and calculate the 

Jacobian (J) of partial derivatives of the interface problem 

4. Update Lagrange multipliers by solving J dβ = −F 

 

The procedure is repeated until continuity of flux at all interfaces is reached. For 

problems linear in flow (such as this one), the solution converges in only one iteration. 

After the pressure field is determined, ensuring continuity of the convecting bulk phase 

(in this case water), we attempt to ensure continuity for each component. In this study, we 

implement a technique we refer to as transport coupling (iterative mortar coupling for 

transport is not required since diffusion is not included). 

Transport coupling involves: (1) grouping the interface throats (or points) into 

bundles that are allowed to communicate, which is labeled here as interface pore 

partitioning (IPP), and (2) projecting averaged concentration values to the downstream 

throats of each bundle. We have developed a raw-grid-based IPP (RGBIPP) method that 

has the capability to control bundle size. The method groups throat-clusters from one side 

of the interface with clusters from the other side, based on the proximity of their 

centroids. A raw Cartesian mesh is initially created at the interface; grids containing 

throats from both sides are then identified and grouped. Bundles containing only throats 

from one side are merged with previously grouped bundles (based on proximity of 

clusters measured by the distance between their centroids). Empty grids are ignored. The 

result is bundles with at least one throat from either side (fig. 5.2). Peterson et al. (2012) 

used a much simpler approach for matching regularly spaced boundary throats on a 1D 
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interface, in capillary-dominated flow. The method offered here is more rigorous and 

general. 

The IPP serves two purposes: (1) defining a new mortar space for flow, uniquely 

designed for pore-scale models; (2) providing a mesh for transport coupling. The mortar 

space is defined by considering piecewise discontinuous basis functions over each 

bundle. This will provide localized flux continuity over each bundle which is essential for 

transport coupling. The bundles are also used to calculate an averaged concentration to be 

projected onto the downstream side of the interface. Several approaches could be used to 

project concentrations to ensure continuity of species fluxes; the following is used in this 

study because of its simplicity: 

 

 

Figure 5.2: Schematic of RGBIPP mesh. Each bundle is represented by a uniform color, 

and the blue and red dots are boundary throats of sub-domains on either 

side. Note the more densely populated regions in the top-right and bottom-

left corners and the appropriately refined mesh sizes in these regions. 
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In eq. 5.7, us and ds refer to upstream and downstream, respectively. cds is the 

bundle concentration, ci,us is the concentration of pore i connected to the bundle from the 

upstream side. qij,us and qij,ds represent throat flow rates directed in and out of the bundle 

from the upstream and downstream sides, respectively. Note that the localized flux 

continuity ensured by the IPP mortars automatically ensures continuity in concentration 

from the upstream to the downstream side of each bundle via eq. 5.7 (which would not 

have been achievable through typical Lagrangian mortars e.g. bilinear or biquadratic). 

Another advantage that IPP mortars offer is that, finer meshing is used in more densely 

populated sections of the interface, thereby reducing the number of degrees of freedom 

required to solve the interface problem. 

The mortar/transport method, as described above, has the benefit of solving the 

problem in parallel since each subdomain becomes independent of the other. However, 

there are some limitations as to when this method would actually be computationally 

efficient. Eq. 5.8 serves as a rough criterion to determine when this is true for a problem 

that follows a p-order scaling of computational cost with problem size. In eq. 5.8, ρdof is 

the number of mortar degrees of freedom per subdomain, Ncpu is the number of available 

processors, and Nblk is the total number of subdomains. This computational limit is 

imposed from the mortar coupling step. Transport coupling through IPP, however, is very 

efficient and no parallelism is required. Nevertheless, marching the advection-diffusion-

reaction equation through time subsequent to transport coupling is block-independent and 

is performed in parallel. 
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In chapter 6, we shall provide a detailed exposition on the computational analysis 

as well as extensions of the coupling methods discussed herein to cases where diffusion 

and pore-to-continuum interfaces are present. 

 

5.3 RESULTS AND DISCUSSION 

5.3.1 Regimes 

A single network model was created using the approach outlined in the section 

5.2.2. The periodic network has 8184 pores, 18770 throats, and a domain size of 

2×1×1mm3. Boundary conditions were implemented by imposing a constant flow rate in 

the x-direction and no-flow boundary conditions on the four other faces. The inlet 

condition of component HCO3
- is equal to the initial condition, i.e. c*HCO3 = 20 (

3 3 3

* eq

HCO HCO HCO
c c c   ), as in all simulations presented in this chapter. We solve the 

network as a single domain to obtain pore pressures, concentrations, and cement 

distributions. Macroscopic properties (such as permeability, connected porosity, percent 

cement, and outflow concentration as a function of time) are back-calculated from the 

model. In doing so, we attempt to qualitatively identify the dependency of the 

precipitation process with respect to the two controlling dimensionless numbers in this 

problem: Da and α (i.e. eq. 5.9). 
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In eq. 5.9, α describes the relative rate of the third (CaCO3 precipitation) reaction 

in eq. 5.1 to the second (CO2 dissociation). Figure 5.3 shows spatial maps of cement for 

different transport regimes, taken at the same throughput (0.6 pore volumes), 

corresponding to different values of Da and α. For high values of α, the rate of 

precipitation is faster compared to the rate at which CO2 dissociates; thus, causing rapid 

cementation at locations with higher concentrations of bicarbonate. Here, these locations 

are naturally at the inlet region where a constant concentration front is injected into the 

medium. This effect can be seen in figure 5.3a. Keeping Da constant and decreasing α 

caused dissociation to occur at a much faster rate throughout the domain thus providing 

large amounts of bicarbonate to be converted to cement everywhere, yielding a rapid but 

uniform cementation pattern (fig. 5.3c). The transition between these two figures can be 

seen in figure 5.3b. The rapid precipitation is due to the dependence of the rate on the 

“distance” of bicarbonate concentration from equilibrium. 

When Da was lowered for high and medium values of α i.e. ϵ [1-100], rate of 

convection dominated over the rate of precipitation and, thus, created a semi-uniform 

concentration field prior to significant cementation. This yielded a more uniform 

cementation pattern as shown in figure 5.3d-e. However, when α was also low, CO2 

dissociated at a faster rate, which combined with fast convection created a shock front 

near the outlet, thus shifting the cementation pattern towards the outlet (or in larger 

domains further away from the inlet). Figure 5.3f clearly demonstrates this situation. 

Figures of macroscopic properties (normalized permeability, connected porosity, 

percent cement, and dimensionless outlet concentration) as a function of (initial) pore 

volumes of fluid injected for the six cases are shown in figure 5.4. Permeability was 

normalized against its initial value. Decreasing α or increasing Da causes permeability 

and connected porosity to decrease, and cementation percentage to increase at a much 
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faster rate with pore volumes injected. On the other hand, increasing α or deceasing Da 

has the opposite effect. Figure 5.4d depicts that concentration front sharpens as Da is 

decreased (especially for α ϵ [1-100]), and that outflow concentration increases as α is 

decreased. It should be noted that when α is small, concentration shocks may form away 

from the inlet that cause peaks in outflow concentration profiles (prior to breakthrough) 

that are also responsible for more cementation towards the outlet (fig. 5.3f). 

 

Figure 5.3: Spatial maps of cementation patterns for different values of Da and α. 

 

5.3.2 Verification of coupling method 

We verify the accuracy of the mortar and transport coupling approach by slicing 

the network from the previous section (i.e. fig. 5.3) at the centerline (x = 1.0 mm) and 

comparing the coupled networks to the unsliced single-network solution. We couple 
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pressures and overall flux with the specially designed mortars, using the RGBIPP method 

(with a raw grid of 10×10). Concentrations of HCO3
- are then matched at the interface 

using transport coupling. The solutions obtained via coupling are compared to the 

“whole” (i.e. unsliced) network solution at early and late times in figures 5.5-7 (0.4 and 

1.0 pore-volume throughputs, PVTP, respectively). In these figures, α = 100 and 

Da = 0.73 which corresponds to the top-left regime shown in figure 5.3. This regime was 

chosen because it had the most variation in the spatial distribution of cement thus 

providing the most sensitive case (compared to the others shown) to couple. 

 

Figure 5.4: (a) Normalized permeability (b) connected porosity (c) percent cement (d) 

outlet concentration for the six regimes studied.  

 



 150 

 

Figure 5.5 shows the flow rate and concentration fields at the centerline (x = 1.0) 

for both the whole solutions (top row) and the mortar solution (bottom row) at early (left 

column) and late (right column) times. Figure 5.6 shows similar information about the 

pressure and concentration fields of the entire domain. The color bars represent 

dimensionless concentration values, normalized flow rates (against injection flow rate), 

and normalized pressure (against inlet pressure at each time). The whole, single-network 

solution and the mortar, multi-block solution match very well and are nearly 

indistinguishable (at least qualitatively). 

Figure 5.7 demonstrates that the mortar/transport coupling method yields very 

close approximations to the macroscopic properties of the whole solution. The plots are 

semi-logarithmic in the x-axis (and in terms of pore-volume throughput). The plots depict 

how normalized permeability (against initial permeability), connected porosity, 

cementation percentage, and dimensionless outflow concentration match between the 

single-domain solution and the mortar/transport multi-block solution. The permeability 

plot has about ∼10% error at initial times, but decreases at later times. This error can be 

reduced by using a finer mesh for the mortar space (Sun et al. 2012a). Here, this can be 

achieved by refining the RGBIPP. These results verify the mortar/transport coupling 

algorithm as an accurate upscaling tool for advection-dominated reactive transport 

problems. 
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Figure 5.5: Comparison of flux and concentration fields at the centerline plane 

(x = 1.0mm) of the whole solution and mortar solution at early (left column) 

and late (right column) times. Color bars represent dimensionless 

concentration and normalized flow rates (against injection flow rate). 

 

Figure 5.6: Comparison of pressure and concentration fields of the whole solution and the 

mortar solution at early (left column) and late (right column) times. Color 

bars represent dimensionless concentration and normalized pressure values 

(against inlet pressure at each time). 
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Figure 5.7: (a) Normalized permeability, (b) connected porosity, (c) percent cement, and 

(d) concentration at the exit, as a function of (initial) pore-volume 

throughput (PVTP) of fluid injected, for the full and the mortar solutions. 

 

5.3.3 Model application 

Our goal is to use the mortar/transport coupling approach to model behavior at 

scales not feasible with a single network, and to capture emergent patterns and 

heterogeneity that would otherwise be difficult. Here, 64 network models are coupled 

together on an 8×8×1 grid. The network models are 3D, so the entire domain is 3D but 

only one network-length in thickness. Each network model is 1×1×1mm3 in size and most 

have a unique pore structure and macroscopic permeability. Figure 5.8 summarizes the 

initial permeability and porosity of all 64 coupled network models. 



 153 

 

Figure 5.8: Schematic of 64 coupled pore networks denoted by their x-permeability (in 

mD) and porosity (in %) in parentheses. Yellow path is twice as permeable 

as orange path. 

 

The network models are arranged in such a way that two high-conductivity 

pathways in the x-direction connect the inlet to the outlet of the domain. They are 

demarcated in figure 5.8 as yellow and orange. The bottom pathway is, on average, half 

as permeable as the top pathway. The entire domain has 299,129 pores and an average 

(total) porosity of 23.4%. The simulation was conducted by imposing a constant flow rate 

across the x-direction of the domain. This was achieved by iterating on a uniform 

pressure value imposed on the inlet boundary, rather than injecting one-eighth of the flux 

to each boundary block separately. This boundary condition is deemed to be more 

natural, allowing more flux to go through the high-perm paths. Subdomains were coupled 

in parallel on a 64-bit quad-core local machine with Intel(R) Xeon(R) 3.6GHz CPU and 
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12GB RAM. Figures 5.9-12 show pressure, concentration, cementation, and flux fields 

for Da = 0.73 and α = 100 at early, intermediate, and late times (0.1, 0.5, and 1.5 PVTP, 

respectively). 

Figures 5.9-12 demonstrate the role of macroscopic heterogeneities in the 

evolution of the state variables (pressure, concentration) and the pore space through time. 

Expectedly, the mortar/transport mesh has seamlessly coupled the subdomains together. 

As before, the plots represent dimensionless concentrations, normalized pressure (against 

inlet pressure at each time) and normalized flow rate (against injection flow rate). In 

figure 5.11, spatial maps of cement are shown at various times (darker points correspond 

to more cement in a pore). The high-permeability paths appear with a lighter contrast at 

early times because there are fewer pores per unit volume. Figure 5.12 suggests that high-

permeability paths persist to be the dominant conduit throughout the reactive process. 

This is also observed for the other five regimes. 

 

Figure 5.9: Spatial map of normalized pressure field (against inlet pressure at each time) 

in the domain at various times. All simulations are in 3D but the results are 

collapsed into 2D for clarity. Here α = 100, Da = 0.73. 
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Figure 5.10: Spatial map of (dimensionless) concentration field at various times. All 

simulations are in 3D but the results are collapsed into 2D for clarity. Here 

α = 100, Da = 0.73. 

Figure 5.11: Spatial map of cementation field at various times. Darker points correspond 

to more cement in pores. High-permeability paths appear light at early times 

because fewer pores per unit volume are present. All simulations are in 3D 

but the results are collapsed into 2D for clarity. Here Da = 0.73, α = 100. 

Figure 5.12: Spatial map of normalized flow rate field (against inlet flow rate) at various 

times. All simulations are in 3D but the results are collapsed into 2D for 

clarity. Here α = 100, Da = 0.73. 
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Figure 5.13: Spatial distribution of total flow rates at the interface between any two 

subdomains (depicted by gray squares) at (a) early and (b) late times for 

Da = 0.73 and α = 100. Flow rates are represented as percentages of the 

injection value (zero suggests flow rate is below 1%). 

 

Figure 5.13 shows the distribution of total fluxes at the interface between any two 

subdomains for Da = 0.73 and α = 100. The values of the fluxes are represented as 

percentages of the total injection rate. At early times (fig. 5.13a), the red color clearly 

highlights the location of the high-flow paths. At late times (fig. 5.13b), the high-

permeability paths have persisted, however, some diversion of flux at the inlet and the 

outlet are observable. This diversion has occurred into medium permeability networks at 

the inlet and the outlet.  
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Figure 5.14: Cementation patterns for different values of Da and α. High-permeability 

paths appear light at early times because fewer pores per unit volume are 

present. 

 

Figure 5.14 demonstrates the same qualitative behavior we observed in the case of 

the smaller domain (in section 5.3.1). However, here, the characteristic quality of the 

cement distribution is more pronounced inside the high-permeability channels. This is 

because bicarbonate is transported faster along the high-permeability paths. As before, 

high α and low Da shifts the cement more towards the inlet, whereas low α and high Da 

shifts the cement more towards the outlet. Any regime in between these two limits is an 

average of the two. All plots in figure 5.14 are taken at 0.5 pore volumes injected. 
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Figure 5.15: (a) Normalized permeability (against initial value), (b) connected porosity, 

(c) percent cement, and (d) (dimensionless) outflow concentration, as a 

function of (initial-) pore-volume throughput (PVTP) of fluid injected. 

 

Figure 5.15 also depicts similar behavior to the single-network simulations with 

respect to variations in the values of α and Da. Decreasing α or increasing Da results in a 

faster reduction of permeability and connected porosity and a faster increase in 

cementation percentage with pore volumes injected. Lower Da sharpens the 

concentration front and lower α increases outflow concentration due to more rapid CO2 

dissociation into bicarbonate. The qualitative shapes of these plots are also strikingly 

similar to the single network case. However, one might notice that the plots for the large, 
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multi-block domain are over a smaller range of PVTP, as opposed to the small domain. 

The reason for this is that the 64-block domain has a considerably larger pore volume. 

Since a large percentage of the injected flux goes through the high-perm path, a few pore 

volumes of throughput in a high-permeability block in the big domain amounts to 

roughly the same amount of throughput in the small domain. 

 

5.3.3.1 Upscaling of pore networks for use in continuum-scale models 

The goal of pore networks is often to extract macroscopic properties (e.g., 

porosity, permeability) for use in a continuum-scale simulator. For example, Kechagia et 

al. (2002) used volume averaging to upscale reactive transport processes in various flow 

regimes. In some cases (e.g., fast kinetics), they found volume averaging was not 

applicable. Here, we argue that these macroscopic properties may be emergent and 

depend on scales larger than a single network. Coupling models, such as those proposed 

herein, would allow for modeling wormholes and fingered fronts (Yortsos and Sharma, 

1986; Fredd and Fogler, 1998; Lu and Yortsos, 2005) that extend beyond a single 

domain. Using a single pore network for the upscaling of these and other heterogeneous 

phenomena may not be sufficient, but modeling an entire reservoir at the pore scale is 

also out of the question. 

A “hybrid” approach (Scheibe et al., 2007; Balhoff et al., 2008; Sun et al., 2012b) 

might involve coupling pore-scale models to continuum-scale grids, perhaps using 

mortars. A real-time macroscopic reservoir simulator could be developed that allowed for 

substitution of pore-scale models in specific regions of strong nonlinearities and 

dynamics (e.g., near wells and faults). In these regions, hundreds or thousands of pore-

scale models could be coupled together and to the continuum simulator. If necessary, 
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global upscaling could be done a posteriori; this would incorporate emergent, coupled 

behavior that occurs at multiple spatial scales. This approach was used in Sun et al. 

(2012b) for steady-state flow but could be extended to reactive transport. 

 

5.3.3.2 Application to CO2 flow conduits 

Field observations along the Little Grand Wash fault suggest that pore-filling 

calcite cement within flow conduits nearly or completely occludes the pore space of the 

initially porous sandstone (fig. 5.1) potentially resulting in the observed shift of CO2 

leakage along fault strike over time. According to the results obtained from the simplified 

physics in this study, preexisting preferential pathways tend to persist, however. 

Therefore, in order to account for flow-path shifts, one either has to incorporate more 

detailed physics (full set of reaction, inclusion of dissolution as well as precipitation, 

multiphase flow effects, diffusion, etc.) or include more accurate initial conditions for the 

preexistence of calcite. 

In this study, it was assumed that all pores in the domain were seeded and calcite 

had the potential to precipitate in every pore. However, in reality, only certain portions of 

the rock may be seeded, thereby allowing localized cementation and growth to occur. The 

macroscopic implications of such growths could result in structures such as poikilotopes. 

This has the potential of locally obstructing flow and diverting the streamlines around 

them. The implementation of non-uniform seeding and their growth in network models, 

along with more detailed physics will be the subject of future work. The hope is that with 

minimum complexity in the models, qualitative shifts in pathways could be captured and 

explained. Nevertheless, the multiscale tools developed in this study are of paramount 

importance and may be a necessity in studying “emergent” phenomena such as that of 
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calcite precipitation. The verified multiscale method introduced in this study can be 

implemented on networks with more detailed physics (although extensions to multi-phase 

flow are non-trivial) and topology following the same methodology. 

 

5.4 CONCLUSIONS 

In this study, a simplified, single-phase reactive transport model was developed 

and studied that allows for precipitation and permeability reduction. Furthermore, a new 

domain decomposition method was introduced for advection-dominated reactive 

transport problems across pore-scale models. The following summarize our key findings: 

 

 A reactive transport model for calcite precipitation was created and various 

precipitation regimes studied by changing Da and α. Low Da and α resulted in 

more precipitate at the inlet and high Da and α meant more precipitate towards 

the outlet (or away from the inlet). 

 A novel coupling approach for pore-scale models, i.e. the mortar/transport 

method, that uses uniquely designed mortar grids, was developed. The method 

was verified for coupling reactive transport across pore-scale models. Pressure, 

concentration, and flux fields at the coupling interface matched with the single-

domain “true” solution. Similarly close agreements were obtained for 

macroscopic properties evolving through time. 

 A large domain containing high-permeability streaks was constructed and 

decomposed into 64 subdomains and solved with the mortar/transport method. 

This allowed for solving the problem in parallel (on a quad-core machine) and 

captured heterogeneity features not feasible on a single-domain pore network. 
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 The model predicts cementation and eventual occlusion of preferential flow paths 

as observed for natural CO2 seeps along the Little Grand Wash fault. However, 

the model does not predict the reported shifts in these pathways. In the model, 

high-permeability paths persisted for all regimes. Possible reasons for the 

discrepancy were proposed and discussed. 
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Chapter 6: (Hybrid) Mortar Domain Decomposition3 

In this chapter, we develop a framework that allows for modeling flow and solute 

transport on multiple spatial scales as well as on large heterogeneous pore-scale domains. 

This study builds on the domain decomposition tools developed in chapter 5 and extends 

them to scenarios in which diffusive transport is present (ignored in chapter 5) and the 

computational domain consists of both pore-scale and continuum-scale subdomains. The 

latter is relevant in the context of “hybrid modeling”, which has been receiving increasing 

attention in the literature over the past few years.  

 

6.1 MOTIVATION 

Flow and transport phenomena occur over a wide range of spatial scales 

(nanometer to kilometer) rendering the developments of predictive models capable of 

bridging all these scales a formidable task. One common approach has been to extract 

macroscopic parameters (e.g. permeability) or closure relations (e.g. capillary pressure) 

from smaller scales followed by their direct substitution into larger field-scale simulators. 

These macroscopic data can be obtained either through experiments or modeling on 

microscale (or pore-scale) samples representative of the real medium. As discussed in 

chapter 2, such an approach is not always applicable (when scales are not separable), in 

which case a “hybrid” modeling strategy is required (see section 2.3).  

On the other hand, with regard to the multitude of pore-scale methods developed 

in the literature (see chapter 2), each possessing specific advantages over the others 

                                                 
3 The material in this chapter was published under the following reference, which was completed under the 

supervision of Matthew Balhoff. 

 

Mehmani, Yashar, and Matthew T. Balhoff. "Bridging from pore to continuum: A hybrid mortar domain 

decomposition framework for subsurface flow and transport." Multiscale Modeling & Simulation 12, no. 2 

(2014): 667-693. 
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(predictive or computational), it would be advantageous if a common framework were 

developed under which all such methods could be integrated within the same 

computational domain. In other words, it would be of great value if different parts of the 

domain could be modeled through different methods appropriate to the local flow and 

transport conditions in place and the local level of accuracy sought. Furthermore, the 

need for modeling on larger domains seems to be pervasive in the literature, whether the 

study includes ascertaining REV sizes for a given process or simply simulating on bigger 

and more representative samples (e.g. Fredd and Fogler, 1998; Kim et al., 2011). 

One solution to the above issues (i.e. hybrid modeling, multi-model domain 

simulation, and modeling on larger domain sizes) is domain decomposition. In this 

chapter, we present mortar domain decomposition methods for single-phase flow and 

solute transport. The methods are capable of bridging the pore scale and the continuum 

scale (i.e. hybrid modeling), incorporating multiple modeling strategies within the same 

computational domain, and easily lend themselves to parallel computing allowing the 

investigation of larger samples. Other advantages include: a) it is typically not feasible to 

obtain high resolution images of large samples, since sample size and resolution are 

inversely correlated (Beckingham et al., 2013). However, it is feasible to obtain high 

resolution images of a large sample if broken up into smaller pieces. Domain 

decomposition would then view the pieces as subdomains and glue them together, 

whereby modeling would resume. b) If there are large heterogeneities in the form of 

abrupt changes in pore structure, they may be easily characterized when considered as 

subdomain interfaces (Sun et al., 2012a). Among the various pore-scale methods 

developed in the literature (see chapter 2), we use (but are in no way limited to) pore-

network modeling throughout this chapter. 
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As discussed in chapter 2 and outlined in chapter 5, the basic idea of mortars is to: 

decompose the domain into subdomains; guess the Lagrange multipliers that determine 

the interface conditions (e.g. pressures); solve subdomains independently and compute 

fluxes at their shared interfaces; iterate until fluxes match on both sides of the interface. 

The described algorithm (known as the forward difference, FD, scheme) has been used 

by various authors (see chapter 2) in the past (including in chapter 5, section 5.2.3). 

Recently, Ganis et al. (2012) showed that this algorithm can become quite inefficient 

especially in the case of nonlinear problems, and they developed alternative schemes that 

resulted in significant computational speed-up. We similarly develop alternative and 

more efficient schemes that bear similarities with those of Ganis et al. (2012). The 

similarities as well as differences are highlighted in section 6.3. 

The goals of this chapter include: a) adapt and develop efficient mortar methods 

for solving single-phase flow and transport on pore-scale and hybrid domains in a parallel 

environment; b) include diffusive transport in the mortar methods that was ignored in 

chapter 5; c) verify the methods and demonstrate their accuracy; d) describe in detail the 

IPP mortars introduced in chapter 5, extend them to pore-to-continuum interfaces, and 

compare them to Lagrangian mortars; e) demonstrate computational efficiency and 

parallel scalability on a single dual CPU (hexa-core per CPU) machine; f) demonstrate 

applicability, scalability and convergence for nonlinear flow problems. 

The chapter is outlined as follows: In section 6.2, the mathematical models of the 

pore scale and the continuum are presented. In section 6.3, the domain decomposition 

methods for solving flow and solute transport are described. In section 6.4, we present 

results obtained from these methods accompanied by an ad-hoc discussion of their 

implications. These consist of verification of the domain decomposition methods, 

verification and application to hybrid domains, parallel scalability and computational 
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efficiency, and computational study of the nonlinear flow of a power-law fluid. Section 

6.5 provides a summary of important conclusions. 

 

6.2 MATHEMATICAL MODELS 

6.2.1 Pore-network model 

In this work, pore networks were extracted from a digitally-generated sphere pack 

using a modified Delaunay tessellation algorithm (Al-Raoush et al., 2003). As discussed 

in chapter 3, the flow equation is formulated by assuming a single pressure value per pore 

and writing mass balance at the pores (eq. 6.1). The constitutive relation used to describe 

flow of a Newtonian fluid in a throat is q g p  ; where g is the throat conductivity. The 

resultant system arising from the balance equations is linear. At the pore-scale, the flow 

equation is usually formulated in elliptic form for typical liquids present in the 

subsurface, since pressure pulses generally have negligible effects at small domain sizes. 

Therefore, we assume that the fluid of interest is incompressible. 

 

1

0

th
iN

ij ij p
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g p on


          (6.1) 

Eq. 6.1 is the flow equation for a pore-scale subdomain Ωp where: pi is pressure at 

pore i, gij is the conductivity of the throat connecting pore i to j, and Ni
th is the number of 

throats connected to pore i. In this chapter, we aim to study some computational aspects 

of the mortar methods for nonlinear problems arising from flow of non-Newtonian fluids. 
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We have chosen the power-law fluid which has a flow equation of the form given 

by eq. 6.2. In eq. 6.2, n is the power-law index and g is a function of fluid and throat 
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properties (Balhoff et al., 2012). In this chapter, the MCM formulation (introduced in 

chapter 3) is adopted in writing the transport equation (given by eq. 6.3), which implicitly 

assumes “perfect mixing” at the pores (i.e. a single concentration value assigned per 

pore). We acknowledge that this assumption may not hold at advection-dominated and/or 

reaction-dominated regimes. While hybrid modeling is necessary when large 

concentration gradients exist at the pore scale, the focus of this work does not seek to 

apply our hybrid methods to such scenarios (although nothing prevents them from it). 

The validity of our methods stands independently of whether such conditions are met. 

The choice of the pore-level “perfect mixing” assumption simply allows us to verify our 

hybrid methods later in section 6.4.2. 
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Eq. 6.3 is the transport equation for subdomain Ωp where: Vp is the pore volume, ci 

the concentration of pore i, Dm the molecular diffusion coefficient, R(ci) the reaction term 

and  qij , lij and aij are the flow rate, length and cross-sectional area of the throat 

connecting pore i to j, respectively. The throat cross-sectional areas are calculated by 

assuming cylindrical tubes with equivalent conductivities. The reaction term is ignored 

throughout this work since it is a local phenomenon, as opposed to a transport mechanism 

such as diffusion or advection. Therefore, it poses no restrictions on the coupling 

methods discussed later, and is not considered for simplicity. Solving the flow and 

transport systems for a single stand-alone network involves two steps: a) solving the flow 

system and calculating throat flow rates, qij, and b) using the flow rates to solve the 
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transport system for a given time interval. In eq. 6.3, we have postponed discretizing the 

time derivative for the benefit of using an adaptive time-stepping ODE solver. 

The linear flow equation (eq. 6.1) is solved using the mldivide routine in 

MATLAB which performs Cholesky factorization for the resultant symmetric positive 

definite system. The nonlinear flow equation (eq. 6.2) is solved using a standard Newton-

Raphson method in which the linearized system is solved similar to eq. 6.1. The transport 

equation (eq. 6.3) is solved using either the adaptive time stepping ode23tb solver in 

MATLAB which is an implementation of TR-BDF2, an Implicit Runge-Kutta formula, or 

a simple backward Euler method with constant time stepping. The usage depends on the 

context and is explicitly stated wherever necessary. 

 

6.2.2 Continuum model 

The single-phase continuum flow equation is similarly derived from mass balance 

and is known as the “diffusivity equation” (defined on the continuum domain Ωc). 

 

( ) 0 c

k
p on


           (6.4) 

In eq. 6.4, k is permeability (a scalar in this work) and µ is viscosity. The balance 

equation (eq. 6.4) is elliptic because we assume fluid incompressibility, consistent with 

section 6.2.1. Compressible (or slightly-compressible) fluids can also be used without 

loss of generality of the hybrid methods developed. Continuum subdomains are 

discretized into Cartesian grids, and eq. 6.4 is solved using the finite difference method 

(FDM). The continuum formulation of the transport equation is similar to that of the pore 

scale and assumes the following form: 
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In eq. 6.5, v is the interstitial velocity determined from the flow equation, D the 

dispersion coefficient and R(c) the reaction term. For similar reasons discussed in section 

6.2.1, the reaction term is neglected. To solve eq. 6.4 and eq. 6.5, we use second order 

central difference for the space derivatives, first order upwind for the advection term, and 

backward difference for the time derivative in the FDM discretization (note that any other 

method such as the finite elements method (FEM) or the finite volume method (FVM) 

could have been used for the continuum equations without loss of generality). 

 

6.2.3 Dimensionless groups 

All results in this work are presented in dimensionless form. The transport system 

consists of the advection, diffusion/dispersion and the reaction components. Ignoring 

reaction, the dimensionless transport equation at the pore-scale can be written as (eq. 

6.6): 
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Where, 
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In eq. 6.7, l0, c0 and v0 are the characteristic parameters for length, concentration 

and velocity, respectively. l0 is taken to be the arithmetic average of throat radii in the 

network, c0 the inlet concentration value, and v0 the arithmetic average of throat fluxes in 

the network. The dimensionless form allows us to present the results in a more general 
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setting, which would be valuable for future comparative work. The continuum transport 

equation can be non-dimensionalized in a similar fashion. However, this is not necessary 

in the analyses performed in section 6.4.2, because the results are reported in terms of the 

pore-scale dimensionless parameters (using the equivalence between the upscaled 

continuum subdomains and their pore-scale counterparts). 

 

6.3 MORTAR DOMAIN DECOMPOSITION METHODS 

We develop a mortar method called the Global Jacobian Schur (GJS) scheme for 

solving the flow problem, a name that we have adopted due to its similarity to the method 

presented by Ganis et al. (2012). For the transport problem, two novel schemes are 

developed: a) The Implicit Coupling (IMPC) method which is based on the GJS scheme, 

and b) The Explicit Coupling (EXPC) method which is an extension of the non-iterative 

scheme presented in chapter 5. Ganis et al. (2012) presented the Global Jacobian (GJ) 

and the Global Jacobain Schur (GJS) methods in an attempt to simplify the previously 

used Forward Difference (FD) scheme for nonlinear problems. The resultant algorithms 

were used and tested for the case of slightly compressible flow at the continuum, and 

provided significant computational speed-up against the FD scheme due to reductions in 

their nested structure. Ganis et al. (2012) implemented the methods in a mixed mortar 

finite element framework (MMFEM) and denoted the method associated with the 1st 

Schur complement system (after elimination of velocities) the GJ scheme and the one 

associated with the 2nd Schur complement system (after further elimination of subdomain 

pressures) the GJS scheme. 

Despite structural similarities of the GJS method in this work and that presented 

by Ganis et al. (2012), there are some important differences: a) In our pore- and 
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continuum-scale formulations, the subdomain unknowns consist of only pressures as 

opposed to pressures and velocities (velocity is a dependent variable). What we refer to 

as the GJS method, is associated with the 1st Schur complement system similar to the GJ 

method (not GJS) of Ganis et al. (2012). b) Our methods are for modeling on pore-scale 

and hybrid domains whereas their work focused on domains entirely at the continuum. c) 

We investigate flow and transport whereas they studied slightly compressible (including 

incompressible) flow. d) We perform factorization of the linearized subdomain systems 

in addition, resulting in significant speed-up of the scheme. e) We test the performance of 

the method for nonlinear systems arising from flow of non-Newtonian fluids. 

 

6.3.1 Global mortar formulation 

We present a formal definition of mortars as follows: 
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Consider Γij as the interface shared between subdomains i and j. In eq. 6.8, the 

interface pressures and concentrations are written as linear combinations of mortar basis 

functions (i.e. φ
α
 for pressure and φ

β
 for concentration). The span of these bases at 

interface Γij constitutes the mortar subspace MHij at that interface (eq. 6.9). The number of 

mortar unknowns (or degrees of freedom) on Γij are denoted by dof|Гij (eq. 6.9). The 

global mortar space MH (defined on Γ = ∪ Γij) is given by the direct sum of the mortar 
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subspaces over all the interfaces (eq. 6.9). L2(Г) represents the space of square-integrable 

functions on Г. αH and βH are the Lagrange multipliers for flow and transport, 

respectively. The superscript α corresponds to flow and β to transport. In this work, 

subdomains are either at the pore or at the continuum scale. Given the flow and transport 

equations presented in sections 6.2.1 and 6.2.2, along with the requirement that 

bulk/species fluxes at the shared interface between any two subdomains should be 

“continuous”, the global system for the problem can be formulated. 
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Where, 
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Using abstract symbolism, eq. 6.10 through 6.12 represent the global system for 

single-phase flow (eq. 6.10) and solute transport (eq. 6.11). ph and ch are the discretized 

subdomain pressures and concentrations and Ωi denotes the ith subdomain (Ω = ∪ Ωi). nΩ 

and nM are the total number of subdomains and interface unknowns. Superscripts fl and tr 

represent flow and transport. Fi
fl is the discretized elliptic flow operator and Fi

tr the 

discretized parabolic transport operator for Ωi, which are functions of the discretized 

subdomain pressures/concentrations (ph and ch) and the Lagrange multipliers for 
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pressure/concentration (αH and βH). Depending on whether the subdomain is pore-scale or 

continuum-scale, one of eq. 6.1, 6.2, 6.4 (for flow) or 6.3, 6.5 (for transport) is used. Gfl 

and Gtr are the interface conditions for the bulk fluid flux and species fluxes, respectively 

(eq. 6.12). These additional equations guarantee that the flux field is “weakly continuous” 

from one subdomain to the next so that mass conservation is preserved. More rigorously, 

the orthogonal projection of the jump-in-flux onto the mortar space must be zero. 

Sections 6.3.3, 6.3.4 and 6.3.5, concern with efficient numerical schemes for solving this 

global system in parallel. 

 

6.3.2 Interface point partitioning (IPP) 

IPP (briefly introduced in chapter 5) is a method used to decompose and group the 

boundary pores (or grids) of two subdomains, sharing an interface, into bundles. IPP 

mortars consist of piecewise constant basis functions defined over each bundle. The 

advantages of this method include: a) Flux will be locally conservative over each bundle; 

b) there is a simple closed-form equation for the interface condition; c) possible 

singularity of the interface problem is avoided (since each bundle, by construction, 

contains at least one point from either side); the singularity issue was first highlighted by 

Balhoff et al. (2008) as a drawback of using fine Lagrangian mortars; and d) allows for 

non-iterative and easily parallelizable coupling of the transport system (i.e. the EXPC 

method). IPP bundles create natural mortar bases which are specific to pore-to-pore and 

pore-to-continuum interfaces. 
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Figure 6.1: Interface Pore Partitioning (IPP) of the interface between (a) a pore- and a 

continuum-scale, and (b) two pore-scale subdomains. Red dots denote 

position of the boundary pores/grids on one side of the interface, and blue 

dots those on the opposite side. Each bundle is colored differently to 

distinguish it from its neighboring bundles. 

 

The IPP method partitions the interface into bundles of points, which are the 

positions of the boundary pores (or grids). First, a Cartesian mesh of specified refinement 

is assumed on the interface (this is what is referred to as an M×N IPP mesh). Elements 

that contain points from both sides are grouped and set aside as bundles. Elements that 

contain points from only one side are merged with the previously formed bundles. The 

closest bundle is chosen for merger and is determined by using centroids of the points 

within these elements and the bundles. Centroids of bundles are kept invariant during 

merger. 

With pore-to-continuum interfaces the procedure is slightly different. First, a 

Cartesian mesh is assumed at the interface. Second, points (boundary grids) only from the 

continuum side that fall within each mesh element are set aside as a group. Third, the 

interface area associated with each group is taken to be the union of the interface areas of 

the continuum grids comprising it. Fourth, groups that contain points from the pore-scale 
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side are set aside as bundles. The remaining groups are merged with the previously 

formed bundles using a similar procedure as before. Figure 6.1 shows an example IPP 

mesh at the interface between two pore-scale subdomains, and a pore-scale and a 

continuum-scale subdomain. 

 

6.3.3 Coupling of flow 

The flow equation in this work is a self-adjoint elliptic operator and, therefore, the 

resulting system will be symmetric and positive-definite. This motivates the type of linear 

interface solver and factorization method chosen to solve the problem. Consider a domain 

Ω decomposed into Ωk, k ϵ [1, nΩ] subdomains. If the linear (or linearized, if nonlinear) 

global system is written and the unknowns separated into subdomain and interface parts, 

we obtain the following system: 
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   (6.14) 

In eq. 6.13, Jg is the global Jacobian of the (linear/linearized) problem. The 

subscript g stands for global. This matrix consists of four parts: JF
fl

/p and JF
fl

/α are the 

partial derivatives of the flow operator with respect to subdomain pressures and Lagrange 

multipliers, and JG
fl

/p and JG
fl

/α are the partial derivatives of the flow interface condition 

with respect to subdomain pressures and Lagrange multipliers respectively. 𝑝⃗ is the 

vector of subdomain pressures and 𝛼⃗ is the vector of (flow) Lagrange multipliers. The 
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Schur complement system of eq. 6.13 can be formed by performing a block Gaussian-

Elimination in order to eliminate the subdomains unknowns (i.e. 𝑝⃗). This is under the 

assumption that JF
fl

/p is invertible which is true since it is a block-diagonal matrix 

consisting of invertible blocks (or subdomain Jacobians). The resulting Schur 

complement system has the following form: 

 

1

/ / / /

1

/ /
( )

fl fl fl fl

fl fl

G G p F p F

fl fl

G p F p

S R

S J J J J

R G J J F

 








 

  

      

 (6.15) 

 

It is easy to see that if the global Jacobian (Jg) is symmetric and positive definite 

then S (eq. 6.15) is also symmetric and positive definite (Saad, 2003). S is referred to as 

the Schur complement of the global system; solving it yields the interface unknowns 

which in turn yields the subdomain unknowns. It is important to note that S is not actually 

formed and the above system is solved using a matrix-free method. Here the Conjugate-

Gradient (CG) method is used to solve the Schur complement system in parallel. In 

addition, the global Jacobian and the residual function are both assembled in parallel 

offering further computational efficiency. The pseudo code for the GJS algorithm used to 

solve the flow system is given in figure 6.2. Note that the GJS is a Newton-CG scheme 

when solving for the flow equation. 
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Figure 6.2: Pseudo-code of the algorithm for the GJS method. 

 

In step 4, 5 and 8 of the GJS algorithm, it is very important to be able to solve the 

/F pJ w b system efficiently (the superscript fl in Ffl is dropped because of commonalities 

with the IMPC method for transport in the next section). As mentioned earlier, JF/p is 

block-diagonal, so the system is already decoupled with respect to each subdomain. 

Therefore, each subdomain segment can be solved separately and in parallel. This can be 

further exploited by noticing the fact that the only item changing between calls is b . The 

subdomain components of the JF/p can be decomposed in the first call using Cholesky-

Factorization and storing the resultant lower triangular matrices in the workspace of the 

corresponding processors. Subsequent calls will only require the solution of a lower- and 
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an upper- triangular system which is much more efficient than the original subdomain 

solves. 

 

6.3.4 Implicit coupling of transport (IMPC) 

Once the global flow system (eq. 6.10) is solved using GJS described in section 

6.3.3, the global transport system (eq. 6.11) can be solved. IMPC couples the subdomains 

for transport using an implicit method. The subdomain transport equations 6.3 and 6.5, 

give rise to an asymmetric global system of equations. There are two contributors to this 

asymmetry: a) the advection term is discretized using a first-order upwind scheme, and b) 

in pore networks, pore volumes vary from one to the other. However, a similar algorithm 

as that presented for flow can be adopted. At every time step the Schur complement of 

the linearized global transport system is formed as before and the algorithm of figure 6.2 

is used to solve it. Since the system is no longer symmetric, the Schur complement 

cannot be assumed to be symmetric either. Therefore, a Newton-GMRES scheme is 

utilized instead to solve the global system and the subdomain systems are decomposed 

using regular LU-Factorization. If the transport system is linear, both the Jacobian and 

the factorized components can be computed once and reused across time steps saving 

tremendous overall computation time. The time derivative in eq. 6.11 is discretized using 

a backward Euler formula and a constant time-stepping scheme is used (more elaborate 

schemes may similarly be adopted). The global transport system is given by eq. 6.16 and 

6.17, and all symbols have analogous meanings as in section 6.3.3. 
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    (6.17) 

 

6.3.5 Explicit coupling of transport (EXPC) 

In contrast to IMPC, the EXPC scheme non-iteratively advances subdomain 

transports in time without solving an interface problem. Instead a synchronization step is 

performed with a set frequency between the subdomains. It is here where the idea of IPP 

bundles becomes most attractive. In chapter 5, we used IPP bundles to explicitly couple 

advection-dominated transport across an 8×8×1 array of pore-scale models. The 

requirement for coupling was that the interface flux be locally conservative which was 

satisfied by using IPP mortars. An average concentration value was computed and 

projected from the upstream to the downstream side of each bundle. We extend this 

methodology to incorporate diffusive transport. Despite the extension, we hypothesized 

this method to be more suitable for moderate to high Peclet regimes which is indeed the 

case as shown in section 6.4.1. Most regimes in subsurface practical scenarios fall into 

this range and the extension serves as an important upgrade. 

In EXPC, a closed-form balance equation is written over each bundle (eq. 6.18a), 

and the bundle concentration is back-calculated from rearranging this equation (eq. 6.19). 

A schematic of a bundle is shown in figure 6.3. Eq. 6.19 is used for each bundle in the 

synchronization step of EXPC. It reduces to upstream-to-downstream projection of 

averaged bundle concentrations in the advection-dominated limit (see eq. 5.7). In the 

diffusion-dominated limit, it reduces to a weighted average of pores/grid concentrations 

adjacent to the bundle. In principle, the explicitly-calculated bundle concentrations are 
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the values of the Lagrange multipliers for the piecewise constant basis functions defined 

over the bundles. 

 

 

Figure 6.3: Schematic of an IPP bundle connected from both sides to pore-scale 

subdomains via pore-throats. Concentrations of pores connected through 

these throats and the concentration of the bundle are annotated. 
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In eq. 6.18 and 6.19, ci are the interface pore/grid concentrations and ai, qi and li 

are the throat/grid cross-sectional areas, flow rates and lengths respectively. Nth is the 

total number of throats/grids associated with the IPP bundle and Nth,q <0 and Nth,q >0 are the 

number of outflowing and inflowing throats/grids with respect to the pores/grids 

respectively. Di is the diffusion/dispersion coefficient (depending on whether the 

subdomain is pore or continuum scale). The pseudo code in figure 6.4 summarizes the 

steps in EXPC. 

 

Figure 6.4: pseudo-code of the algorithm for the EXPC method. 

 

In the algorithm of figure 6.4, step 2 is an “embarrassingly parallel” task (i.e. no 

processor communication). The synchronization step (step 3) requires data transfer 

between parallel workers. Therefore, EXPC is most efficient when synchronization 

frequency is not too high. When such conditions hold, the advantages of EXPC include: 

a) parallelism scales almost linearly, b) very fine IPP mesh can be used without affecting 

computation time (synchronization is cheap), c) subdomains can use independent time 

stepping schemes, and d) very different models (CTRW vs. PNM) can be coupled 

 



 182 

together (because Lagrangian models such as CTRW do not deal with residual 

vectors/Jacobians). Subdomains can march up to a few fractions of a pore volume 

injected before being synchronized but the actual frequency depends on the transport 

regime (Peclet number) as discussed later. 

 

6.4 RESULTS AND DISCUSSION 

6.4.1 Verification and comparison 

To verify the coupling approaches a pore-network model of a sphere pack with 

dimensions 0.2×0.1×0.1mm3 is chosen. The resulting network model, extracted using a 

modified Delaunay tessellation method (Al-Raoush et al., 2003), consists of 8188 pores 

and 20368 throats. Constant pressure boundary conditions are imposed in the x-direction 

and all other boundaries are sealed. Inlet and outlet concentrations are kept at a constant 

value of one and zero, respectively. The problem is solved as a whole (referred to the 

“whole” solution hereafter) and snapshots of concentration fields at the x = 0.1mm plane 

are taken at intermediate times. Pore-volume averaged concentration values of pores 

nearest to the outlet are computed and recorded through time. The domain is then split 

into two separate subdomains along the x = 0.1mm plane. Flow is solved using GJS 

followed by solving the transport system using both IMPC and EXPC. This procedure is 

performed on two domains: a homogeneous (kx = 2.31×10-9, ky = 1.59×10-9, kz = 1.88×10-

9 cm2) and a highly heterogeneous (channeled) pore-network (kx = 8.78×10-9, 

ky = 4.71×10-9, kz = 5.95×10-9 cm2) at three different Peclet numbers: 0.001, 1 and 1000. 

Transport regime was changed by keeping the pressure gradient in the x-direction 

constant and altering the diffusion coefficient. 
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Similar to Bruderer et al. (2001) heterogeneity is quantified as the normalized 

standard deviation of the pore-throat radii (σrth/<rth>) and is referred to as the 

“heterogeneity index”. The heterogeneous domain was created from the homogeneous 

network by artificially introducing percolating channels and constrictions (by altering 

throat conductivities) in the domain. The number of channels and their 

dilation/contraction factors is specified, and the algorithm seeks for random percolating 

paths from the inlet to the outlet. The conductivities of the throats comprising the path are 

multiplied by the dilation/contraction factor. The paths are chosen such that they do not 

intersect themselves on any pore (but different paths may intersect one another). Such 

heterogeneity causes channeled flow to occur which results in high concentration 

gradients. The homogeneous network was subjected to ~10 channels with 

dilation/contraction factors ranging between 0.001-100 to create the heterogeneous 

network. The heterogeneity indices of the homogeneous and heterogeneous networks are 

0.23 and 2.4, respectively. Probability distribution functions of the pore-throat radii of the 

two networks are presented in figure 6.5. 

 

 

Figure 6.5: Probability distribution functions of the logarithm of the throat radii for the 

(a) homogeneous and the (b) heterogeneous networks. The x-axis is in log 

scale and has units of cm. 
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The whole transport system and the subdomain transport systems in the EXPC 

method were both solved with the ode23tb solver in MATLAB which is an 

implementation of an Implicit Runge-Kutta formula. The relative and absolute tolerances 

used for these solvers were 10-4 and 10-5, respectively. The average dimensionless time 

steps used in the IMPC method are summarized in tables 6.1 and 6.2. The tolerances for 

the Newton and the linear solvers in IMPC and GJS were both set to 10-10. Both EXPC 

and IMPC were solved in series to obtain the verification results. 

Figures 6.6 and 6.7 summarize the concentration-field snapshots at the x = 0.1mm 

plane and the near-outlet concentration plots respectively, at the three transport regimes 

for the homogeneous and heterogeneous networks. In the interface plots (fig. 6.6) a 

10×10 IPP mesh was used whereas in the outlet concentration plots (fig. 6.7) a 2×2 IPP 

mesh was utilized (further refinement of the interface mesh had small corrective effects 

on the near-outlet concentration plots). Moreover, tables 6.1 and 6.2 summarize details of 

the parameters used (EXPC coupling frequency, time of snapshot of interface 

concentration, IPP mesh size, IMPC time step) to produce figures 6.6 and 6.7 

respectively. In addition, figures 6.8a and 6.8b show the interface pressure fields for the 

heterogeneous network (better results were obtained for homogeneous network but not 

shown here for brevity). Finally, figures 6.8c to 6.8f show the interface concentration 

fields for various refinements of the IPP mesh alongside the whole solution for the case 

of Pe = 1000 and homogeneous network (similar results were obtained for other regimes 

and the heterogeneous network). 

Figure 6.7 shows good agreement between the (explicitly and implicitly) coupled 

and the whole near-outlet concentration plots. Figure 6.6 demonstrates that, at 

intermediate times, the concentration fields along the x = 0.1mm plane from the coupled 
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solutions converge to the whole solution at higher IPP mesh refinements. The 

convergence can be better observed from figures 6.8c to 6.8f, in which the IPP 

refinement is increased from 3×3 to 10×10. It is noteworthy that a 5×5 mesh accurately 

captures essential features of the concentration field (at least in the case of Pe = 1000, 

homogeneous network). The EXPC and IMPC schemes yield similar results since both 

methods use the same IPP mesh to perform the coupling. Finally, figure 6.8a and 6.8b 

demonstrate good agreement between interface pressure fields between the coupled and 

whole solutions. Therefore, figures 6.6, 6.7, 6.8a-f serve as verification of the GJS, IMPC 

and EXPC methods and demonstrate that these methods are capable of producing results 

with acceptable accuracy compared to solving the domain as a whole. 

As tables 6.1 and 6.2 suggest, at low Peclet numbers the coupling frequency has 

to increase rapidly in order for EXPC to produce accurate results. Since EXPC would 

normally solve the transport system in parallel, high frequencies imply high 

communication time between processors (in addition to ultimately smaller subdomain 

time steps). Therefore, it is computationally unattractive to use EXPC for Pe <<1. For 

moderate to high Peclet numbers (i.e. Pe ≥ 1) an average frequency of ~7.7 (Δtdimensionless
-1) 

yields accurate results for both the homogeneous and heterogeneous domains as figures 

6.6 and 6.7 suggest. No such restriction applies to IMPC at low Peclet regimes and it can 

be used as an alternative where EXPC becomes inefficient. Note that these frequencies 

are all for the case of a plume moving perpendicular to the interface. Lower frequencies 

may be sufficient for other orientations. 
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Summary of Parameters Used in Interface Concentration Plots  

 

Transport 

Regime 

 

Network 

Snapshot Time 

(dimensionless) 

EXPC 

Frequency 

(Δtdimensionless
-1) 

 

IPP 

mesh 

Average 

IMPC Δt 

Pe = 0.001 Homogeneous 5.4 193.1 10×10 3.3e-2 

Heterogeneous 0.4 1086.7 10×10 2.2e-3 

Pe = 1 Homogeneous 47.4 6.4 10×10 3.6e-1 

Heterogeneous 5.6 9.1 10×10 3.4e-2 

Pe = 1000 Homogeneous 34.6 6.4 10×10 2.8e-1 

Heterogeneous 6.1 9.1 10×10 3.4e-2 

Table 6.1: Summary of parameters used to produce the interface concentration plots. 

 

Summary of Parameters Used in Near-Outlet Concentration Plots  

 

Transport 

Regime 

 

Network 

EXPC Frequency 

(Δtdimensionless
-1) 

 

IPP mesh 

Average 

IMPC Δt 

Pe = 0.001 Homogeneous 64.4 2×2 3.3e-2 

Heterogeneous 362.2 2×2 2.2e-3 

Pe = 1 Homogeneous 6.4 2×2 3.6e-1 

Heterogeneous 9.1 2×2 3.4e-2 

Pe = 1000 Homogeneous 6.4 2×2 2.8e-1 

Heterogeneous 9.1 2×2 3.4e-2 

Table 6.2: Summary of parameters used to produce the near-outlet concentration plots. 
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Figure 6.6: Dimensionless concentration fields along the x = 0.1mm plane for the whole, 

explicit and implicit solutions of the homogeneous and heterogeneous 

networks. A 10×10 IPP mortar was used for all coupled solutions. 
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Figure 6.7: Dimensionless near-outlet concentrations of the domain plotted versus 

dimensionless time for homogeneous and heterogeneous networks at Peclet 

numbers 0.001, 1 and 1000. The solid line, blue circles and red stars refer to 

whole, implicit and explicit solutions, respectively. 

 

 

Figure 6.8: (a) and (b) are normalized interface pressure plots of the heterogeneous 

network obtained from the 10×10 IPP mesh and the whole solution, 

respectively. (c), (d) and (e) are interface concentration plots for different 

IPP mesh sizes (3×3, 5×5, 10×10) for the homogeneous network at 

Pe = 1000 obtained with the IMPC method and (f) is the whole solution. 
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If the EXPC solutions, with the 10×10 IPP mesh and the frequencies denoted in 

table 6.1, are taken as the baseline, we can decrease the coupling frequency and observe 

how the error (relative to the whole solution) increases. Figure 6.9 demonstrates how this 

error increases for each case (transport regime and network type) as we decrease the 

coupling frequency by an integer multiple of the values listed in table 6.1. The errors 

were calculated using eq. 6.20, where cp indicates the pore concentration and cinlet the inlet 

concentration values. Figure 6.9 shows that errors for all baseline cases (with 10×10 IPP 

mesh), lie within 1-4% of the whole solutions. The graphs associated with the low Peclet 

regime have considerably larger slopes compared to moderate and high Peclet regimes. 

This indicates that for Pe <<1, coupling frequency not only is high but also is more 

sensitive (i.e. increases rapidly) to decreasing frequency. 

 

% 100

whole

p p

inlet

c c
err

c


         (6.20) 

 

 

Figure 6.9: Errors (computed via eq. 6.20) versus x-fold decrease in EXPC coupling 

frequency of the baseline cases (listed in table 6.1). 
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To compare IPP to Lagrangian mortars, pores closest to the x = 0.1mm plane in 

the heterogeneous network were artificially rearranged so as to create two concentrated 

lines separated by an impermeable region (see fig. 6.10f). Snapshots of interface 

concentrations were taken at a dimensionless time of ~2.8 and Pe = 1. Figure 6.10e 

shows the whole solution, whereas figures 6.10a to 6.10d show the coupled solutions 

(using IMPC) via IPP and Lagrangian mortars. Comparing figure 6.10a to 6.10c, we 

notice that for the same number of degrees of freedom (DOF = 36), the IPP mortar 

produces a slightly better approximation than bilinears when compared to the whole 

solution (fig. 6.10e). However, comparing figure 6.10b to 6.10d reveals that the 

Lagrangian approximation is noticeably poorer than that of IPP for nearly the same 

number of DOFs (DOF = 74-81) (slightly fewer for IPP). We found that Lagrangian 

mortars, at times, produced unacceptable results for such heterogeneous pore-scale 

interfaces; even at high refinements and sometimes with concentration values above one 

(e.g. fig. 6.10b). However, IPP mortars consistently produced acceptable approximations 

to the whole solution. The performance of Lagrangian mortars was much better for 

homogeneous pore-scale interfaces. The interface Jacobian became singular for 

Lagrangian mortars finer than 4×4 (a problem pointed out by Balhoff et al., 2008) and 

had to be manually adjusted to avoid the singularity (in fig. 6.10a and 6.10b). For IPP 

mortars this adjustment was automatic by construction (see fig. 6.10f). We conclude that 

IPP mortars have noticeable advantages over Lagrangian mortars for pore-to-pore and 

pore-to-continuum interfaces. Although the clusters and impermeable regions in figure 

6.10f were created artificially, such features are typical of real media and are captured 

with these mortars. 
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Figure 6.10: Interface concentration fields for network with rearranged pore locations: (a) 

5×5 bilinear mortar (DOF = 36), (b) 8×8 bilinear mortar (DOF = 81), (c) 

9×9 IPP mortar (DOF = 36), (d) 17×17 IPP mortar (DOF = 74), and (e) 

whole solution; (f) 17×17 IPP mesh schematic. 

 

The bundle-point-density (defined as the average number of pores within a 

bundle) for the 3×3, 5×5 and 10×10 IPP meshes in figures 6.6, 6.7 and 6.8c-e are 29, 10 

and 3, respectively. The values for the 9×9 and 17×17 IPP meshes in figures 6.10c and 

6.10d were 7 and 4, respectively. The error, computed via eq. 6.20, for using a bundle-

point-density of 29, in all these figures, was less than 5% (for all regimes, network types 

and interface-pore distributions). The optimal interface mesh is a delicate balance 

between computational efficiency and accuracy, and in section 6.4.3.3 a rough criterion 

for the computational limit is provided (eq. 6.22). This optimal mesh size also depends on 

the scale and heterogeneity of the plume approaching the interface (coarser mesh might 

be sufficient for thick versus narrower plumes). Lastly, in all cases studied, the movement 
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of the plume was perpendicular to the interface. Coarser interface mesh might be 

sufficient for other orientations. The mortar mesh would ideally be adaptively refined 

using error indicators based on the jump-in-flux at the interface (Peszynska, 2005). 

Projections onto a fine mortar mesh can provide such an indicator but this is not pursued 

in this work. 

 

6.4.2 Hybrid modeling 

The mortar methods discussed can be easily extended to couple pore and 

continuum scale subdomains. The interest for doing such mixed-domain modeling comes 

from: a) the advantage of increasing local modeling accuracy in certain applications (e.g. 

along fractures or wellbore cement that may act as escape passages for CO2 in carbon 

sequestration), b) The need for hybrid modeling when continuum assumptions locally 

break down in critical parts of the domain (Battiato and Tartakovsky, 2011), and c) The 

need for incorporating effects of the surrounding media on the subdomain for accurate 

predictions of flow and transport (Sun et al., 2012b). In this section, we present two cases 

through which we attempt to verify and demonstrate the flexibilities of the hybrid mortar 

domain decomposition methods. 

For the first case, consider a domain consisting of a heterogeneous pore-scale 

subdomain in between two homogeneous pore-scale subdomains (network properties 

discussed in section 6.4.1). First, the domain is solved entirely at the pore scale using the 

coupling methods previously discussed. Transport is coupled using IMPC (same results 

were obtained using EXPC). Subsequently, both of the homogeneous pore-scale 

subdomains are replaced with representative continuum subdomains and the problem is 

resolved (direct upscaling is valid due to perfect mixing at the pore scale and 
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homogeneity of subdomains). Permeability and porosity of the continuum subdomains 

are obtained directly from their pore-scale counterparts (Darcy’s law used for 

permeability). Dispersion coefficients were obtained by fitting continuum break-through 

curves to that of the pore-scale (under flow conditions similar to that experienced by their 

pore-scale counterparts in the coupled domain). Initial and boundary conditions are 

similar to those used in section 6.4.1. 5×5 IPP meshes were used at subdomain interfaces 

in both simulations. 

Figure 6.11 shows concentration fields after the injection of ~0.64 pore volumes, 

before and after substitution of continuum surrogates for the homogeneous pore-scale 

subdomains. We use pore-volumes-injected as a more appropriate measure of 

dimensionless time (in the presence of continuum subdomains). In figure 6.11a, the 

homogeneous subdomains both experience a Peclet number of ~2.5, and the 

heterogeneous subdomain experiences a value of ~1.25 (since it is more permeable and 

thus incurs a lower pressure drop). The Peclet number over the entire pore-scale domain 

is ~2.5. The channeling behavior observed in the concentration field of the heterogeneous 

subdomain in figure 6.11a is captured by the hybrid simulation as shown in figure 6.11b. 

Figure 6.12 suggests excellent agreement between the pore-volume-averaged 

concentration profiles of the two domain types at the location demarcated in figure 6.11a 

with a dashed line. This serves as verification of the mortar methods as hybrid modeling 

tools. Although in the scenario studied hybrid modeling might not have been a necessity 

(due to perfect mixing at the pore scale and the absence of reaction), the methods can be 

applied to such scenarios without modification. The homogeneity of the lateral 

subdomains with the assumption of pore-level mixing in the absence of reaction justifies 

the upscaling and verification of the hybrid method. 
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Figure 6.11: Concentration fields after ~0.64 pore-volumes injected in a domain 

consisting of a heterogeneous pore-scale subdomain in between a) two 

homogeneous pore-scale subdomains, and b) continuum representations of 

the two homogeneous pore-scale subdomains. Injection is from left to right. 

Axes are in cm. The dashed line is where pore-volume-averaged 

concentration profiles of figure 6.12 were recorded. 

 

 

Figure 6.12: Pore-volume-averaged concentration profile versus pore-volumes injected 

for the pore-scale and hybrid domains depicted in figure 6.11, recorded at 

the location marked by the dashed line. 

 

For the second case, consider a 2×2 arrangement of pore-scale and continuum 

subdomains similar to Balhoff et al. (2008) (see figure 6.13). Three of the subdomains 

(i.e. (1,1), (1,2), (2,2)) are modeled at the continuum and one is modeled at the pore scale 
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(2,1). The (1,1) and (2,2) subdomains both have 8×8×8 discretizations where the (1,2) 

subdomain has a 5×5×5 discretization. These discretizations are non-matching where 

they share an interface.  The (2,1) pore-scale model is highly heterogeneous (properties 

discussed in section 6.4.1). There are four interfaces in the domain: a) two of them are 

between continuum subdomains (we called them c2c interfaces), and b) the other two are 

between pore-scale and continuum subdomains (we call them p2c interfaces). The 

mortars used for c2c interfaces are 3×3 bilinear Lagrangians, and the ones used for p2c 

interfaces are 5×5 IPPs. Solute is injected into the (1,2) subdomain in the negative x-

direction and extracted from the (2,1) subdomain also in the negative x-direction. Finer 

continuum discretizations are used adjacent to the pore-scale subdomain to transfer 

information more accurately between scales. All grids within the continuum subdomains 

have the same macroscopic properties (permeability, porosity and dispersion coefficient). 

For convenience, and as a proof of concept, the transverse and longitudinal dispersion 

coefficients are assumed to be equal, although we realize this in general is not the case. 

The methods can be used for the case of full tensor dispersion coefficients without 

modification. 

The continuum subdomains are upscaled representations of the homogeneous 

network described in section 6.4.1. If the domain is modeled entirely at the pore-scale 

(similar to the previous case) the Peclet numbers calculated for each block  are: ~1.1 for 

(1,1), ~1.6 for (2,1), ~2.4 for (1,2) and ~1.5 for (2,2) with a value of ~1.8 for the domain 

as a whole. Figure 6.13 shows the pressure and concentration fields for this hybrid 

domain after ~0.64 pore-volumes injected. It demonstrates how the method allows for 

seamless and flexible coupling of the pore scale to the continuum scale, additionally 

incorporating non-matching discretizations of the continuum. This allows for the gradual 

coarsening of the continuum discretizations away from the pore-scale region.  
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It is noteworthy that the continuum grids used in the previous two cases are very 

small for all practical purposes. In theory, the concept of an REV is not violated since all 

continuum grids were assigned the same macroscopic properties (i.e. no claim was made 

about understanding heterogeneity at grid level) and the macroscopic equations are valid 

at the limit. Nevertheless, the cases hold as proof of concept for the validity and 

flexibility of the mortar methods as hybrid modeling tools. In practice, the pore-scale 

region might involve wellbore cement (during CO2 escape scenarios) or a propped-up 

fracture coupled to the surrounding (continuum) matrix. In such cases, the scales of the 

interfaces shared between the two regions are large enough, and coarser continuum grids 

adjacent to the pore scale region would be applied. 

 

 

Figure 6.13: a) Pressure and b) concentration fields of the hybrid domain with non-

matching continuum grids. Concentration and pressure values are 

normalized against inlet values. Inlet and outlets are indicated with arrows. 

Axes are in cm. Snapshot is taken after ~0.64 pore-volumes are injected. 
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6.4.3 Computational study 

In this section, the computational aspects of the domain decomposition methods 

are studied. We compare the computational advantages of using mortars against solving 

the problem as a whole. We make comparisons between IMPC and EXPC wherever 

appropriate. The domains studied consist of units (called unit blocks) that have 

dimensions of 0.4×0.1×0.4 mm3. These units are also used to construct subdomains of 

larger sizes. We have restricted ourselves, without loss of generality of the results, to a 

moderate transport regime of Pe ≈  2. Boundary and initial conditions are similar to those 

in section 6.4.1. The time-dependent transport problem is simulated until the injected 

plume has traveled roughly 30% of the total x-dimension. The objective is to make fair 

comparisons on a time-step-to-time-step basis for transport simulations. We divide the 

time interval into five segments. The whole and the IMPC solutions are obtained by 

marching five steps forward in time. A backward Euler scheme is used to discretize the 

time derivative for both. The EXPC solution is obtained by synchronizing the 

subdomains five times and marching each subdomain one time step in between two 

consecutive synchronizations. The relatively few time steps were chosen as a 

compromise between keeping the overall computational load at a tractable level 

(considering domain size is variable) and assigning sufficient loads to each processor. 

Since the comparisons are on a time-step-to-time-step basis, the results are valid for finer 

time steps as well. 

Four studies are conducted: 1) domain size is varied keeping everything else 

constant, 2) number of subdomains is varied keeping domain size constant, 3) number of 

interface degrees of freedom is varied keeping number of subdomains and domain size 

constant, and 4) scalability of a nonlinear flow system is studied by changing domain 

size. All simulations are run on a dual CPU (hexa-core per CPU) (Intel(R) Xeon(R) CPU, 
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X5670 @ 2.93GHz) machine. No preconditioners are used for solving the interface 

problems, which would provide additional computational benefits. 

 

6.4.3.1 Variable domain size 

A domain consisting of one unit block is chosen and its size is consecutively 

increased by appending more unit blocks in the y-direction (fig. 6.14a). The domains are 

simulated for both flow and transport by solving them as a whole as well as using mortars 

(GJS for flow, IMPC and EXPC for transport). 2×2 IPP mortars were used between 

subdomains (i.e. unit blocks). Effects of using finer mortar mesh are studied in section 

6.4.3.3. Flow and transport are solved both in parallel and in series to demonstrate 

advantages of mortars both in the presence and absence of parallelism. 

In figure 6.14b, the coupled-in-series solution for flow becomes slightly more 

attractive than the whole solution for domains larger than 8 unit blocks. An extrapolation 

of the plots seems to suggest that at larger domain sizes larger advantages would become 

apparent. It is evident that the parallel schemes in figure 6.14b have obvious benefits over 

the whole solution, and the wall-clock times increase only slightly with domain size. As 

for the transport problem, figure 6.14c suggests a very large difference (nearly one order 

of magnitude) between the whole and the coupled-in-series clock times. Since figure 

6.14c is in log scale, figure 6.14d is presented to highlight further benefits obtained from 

parallelism. The graphs for the parallel IMPC and EXPC schemes remain virtually flat as 

the problem size (and simultaneously the number of processors) is increased. It is 

noteworthy that every time step taken by the EXPC scheme is consistently cheaper than 

an equivalent time step taken by the IMPC scheme (no interface problem is solved in 

EXPC). However, one must note that at low Peclet regimes higher coupling frequencies 
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would increase the total number of time steps taken by EXPC as well as the inter-

processor communication time (as shown in section 6.4.1) and this could shift the balance 

in favor of IMPC. Wall-clock times are much smaller for flow compared to transport. The 

tolerance used in the CG and GMRES solvers, as well as in the Newton iterations of the 

GJS and the IMPC schemes, was 10-10. No restart value was used in the GMRES solver. 

 

 

Figure 6.14: (a) Schematic of increasing domain size by appending unit blocks in y-

direction, (b) wall-clock time vs. problem size (i.e. # of unit blocks) for flow 

including the whole, coupled-in-series, coupled-in-parallel cases. c) wall-

clock time vs. problem size for transport including the whole, coupled-in-

series, coupled-in-parallel cases (log scale). d) Same as (c) excluding the 

whole solution, for a clearer comparison of IMPC and EXPC in series and 

parallel. 

 



 200 

6.4.3.2 Variable decomposition 

A domain size of 12 unit blocks is assembled. The domain is initially solved as a 

whole for flow and transport. It is then successively split into 2, 3, 4, 6 and 12 equal 

subdomains along the x-direction with 2×2 IPP mortars placed in between (Effects of 

finer mortar mesh are studied in section 6.4.3.3). Subdomains consist of 6, 4, 3, 2 and 1 

unit blocks each, respectively. The split domain is solved in parallel for flow and 

transport using mortars with number of processors equaling the number of subdomains. 

Parallel efficiency is calculated using eq. 6.21 (measuring strong scalability). Figure 

6.15a summarizes the efficiencies obtained for each case. 

 

,

series

cpu parallel Ncpu

t
parallel efficiency

N t


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     (6.21) 

 

Since at least two subdomains are necessary for coupling, Δtseries is replaced by 

twice the wall-clock time of the 2-subdomain case (i.e. 2-subdomain case assumes an 

efficiency of 1). The >1 efficiencies result from merely decomposing the domain, 

because flow and transport computational loads scale nonlinearly with problem size. 

Figure 6.15b suggests that the flow problem requires the domain to be split fine enough 

(>2 subdomains here) for mortars to become advantageous (over the whole solution). 

However, immediate benefits are noticeable for the transport problem. We conclude that 

mortars have obvious computational benefits over the single domain solution. Figure 6.15 

suggests that efficiencies decline when maximum number of processors is used. We 

associate this decline to the reduction of per-core resources (e.g. cache space) as the 

number of parallel workers is increased. Increasing the number of physical processors 

would circumvent this problem, but due to technical and resource limitations this was not 
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tested. Similar tolerances were used as in the previous section, and no restart values were 

applied in the GMRES solves. 

 

 

Figure 6.15: (a) Parallel-efficiency (or strong scaling) of flow (GJS) and transport (IMPC 

and EXPC), (b) wall-clock times of flow and transport versus number of 

processors. Clock times of the whole solutions are shown as horizontal lines. 

 

6.4.3.3 Variable interface mesh 

A domain size comprised of six unit blocks is considered. The domain is split into 

three equal subdomains along the x-direction (two unit blocks each). The problem is 

solved for flow and transport in parallel (with three processors). The IPP mesh is changed 

between simulations and is set to: 2×2, 6×6, 10×10, 15×15, 20×20, 25×25, 30×30, 35×35, 

and 40×40 (i.e. total number of interface degrees of freedom (DOFs) between 8 and 

3200). Wall-clock times of simulations are recorded and shown in figure 6.16. Clock 

times of the whole solutions are indicated with horizontal lines. 

Figure 6.16 shows that, as the interface mesh is refined, the computational limit 

imposed by the whole solution is eventually surpassed rendering the mortar methods 

(GJS and IMPC) computationally disadvantageous. This threshold for flow is rather low 
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in this case (since the problem size is small), but it is much higher for transport. It is 

noteworthy that EXPC is insensitive to the interface IPP mesh size, and very accurate 

solutions may be acquired without affecting computational efficiency. 

 

 

Figure 6.16: Wall-clock times for flow (GJS) and transport (IMPC and EXPC) vs. total 

number of interface DOFs. Clock times of the whole solutions are depicted 

with horizontal lines. 

 

Figure 6.16 suggests it is helpful to have an a priori estimate of the computational 

limits beyond which the discussed methods would become unattractive. In general, it is 

difficult to develop an exact criterion but a rough estimate can be made. In chapter 5, we 

first presented a criterion for a problem that has a p-order scaling of computational load 

with problem size. This is given by eq. 6.22 with Nblk being the number of subdomains 

and Ncpu the number of processors. Originally, ρdof was denoted as the number of interface 

unknowns per subdomain. Here, we recognize it as the number of linear interface 

iterations divided by the number of subdomains. Since an a priori knowledge of the 
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number of linear interface iterations may not be available, any modest guess bounded by 

the number of interface unknowns would suffice. 

 

( 2)
1

dof
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        (6.22) 

 

While eq. 6.22 gives a rough estimate of whether mortars provide computational 

benefits over the whole solution, it does not take into account problem setup (step 3 in the 

algorithm of figure 6.2) and benefits from subdomain factorizations. It should merely be 

regarded as a first estimate prior to applying these methods. For the flow problem the 

criterion is satisfied with the 2×2 IPP mesh only, which is a close estimate considering 

GJS becomes disadvantageous beyond 6×6 IPP. For transport, the criterion is satisfied for 

2×2 and 6×6 IPP, which is a conservative estimate considering that IMPC becomes 

disadvantageous beyond 30×30 IPP (fig. 6.16). Considering that the graphs for GJS and 

IMPC in figure 6.16 appear linear on a linear plot, a bundle-point-density of 29 (i.e. 

DOF = 288 and <5% error) would make mortars ~4 times faster than the whole solution 

for transport but ~1.5 times slower for flow (although they become faster for larger 

domains). We conclude that GJS and IMPC are computationally limited by the number of 

interface DOFs and eq. 6.22 can provide a first estimate of this limit, whereas EXPC is 

computationally insensitive to the interface mesh. All simulations were run with similar 

tolerances as in section 6.4.3.1, and the restart value for the GMRES solver was set to 20. 

 

6.4.3.4 Nonlinear flow scalability 

Domain size is augmented similar to section 6.4.3.1 (subdomains consist of one 

unit block). For each domain size, only the nonlinear flow equation (eq. 6.2) is solved 
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(transport not considered). The power-law behavior of the fluid (with index n = 0.5) 

renders the problem non-linear. The flow problem is solved in parallel both as a whole 

domain and as coupled subdomains using GJS with 2×2 IPP mortars (with number of 

processors and subdomains being equal). Effects of finer mortars were studied in section 

6.4.3.3. Figure 6.17a shows wall-clock times of the whole and coupled solutions versus 

problem size. Despite the slight increase in clock times of GJS, there is a ~6 fold 

enhancement in the performance of the 12-unit-block domain over the whole solution. 

The deteriorating performance for higher numbers of parallel workers is ascribed to the 

reduction of per-core resources (e.g. cache space) as mentioned earlier. 

 

 

Figure 6.17: (a) Wall-clock time vs. problem size (i.e. # unit blocks) for non-linear flow 

system solved as a whole (small stars) and as coupled subdomains (big 

circles). (b) Residual error vs. Newton iterations for whole (cross) and 

coupled (plus) solutions. 

 

Figure 6.17b demonstrates residual errors (computed as the root mean squares of 

the residual vectors) versus the number of Newton iterations for both the whole and 

coupled solutions. Residual errors from all domain sizes (both the whole and coupled 

solutions) are collapsed onto figure 6.17b (hence the scatter). The plot shows that the rate 
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of convergence is nearly the same whether the problem is solved as a whole domain or as 

coupled subdomains. This confirms that (at least for the cases studied) there is no loss in 

rate of convergence when GJS is applied. Thus, mortars are more efficient even for 

nonlinear flow problems (as those studied herein) with nearly unaltered rates of 

convergence. 

 

6.5 CONCLUSIONS 

The following summarizes our findings: 

 

 Efficient mortar methods were developed for coupling flow and transport across 

pore- and continuum-scale subdomains (GJS: for flow, and IMPC/EXPC: for 

transport). The methods were verified under various transport regimes and levels 

of heterogeneity. The methods were further shown to be valid and flexible hybrid 

modeling tools. Diffusive transport was included in the coupling scheme, which 

was neglected in chapter 5. 

 EXPC was shown to be more suitable for moderate to high Peclet regimes (Pe >1) 

while IMPC has no such restriction. On a time-step-to-time step basis EXPC 

scaled better than IMPC, and is recommended for Pe >1 (it is also more flexible 

than IMPC). 

 IPP mortars were extended to pore-to-continuum interfaces and shown to be more 

suitable than Lagrangian mortars wherever pore-scale subdomains are involved. 

 The methods were shown to be much more efficient than solving the domain as a 

whole even in series (especially for transport). Favorable (weak and strong) 

parallel scalabilities were obtained. 
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 The methods were applied to the non-linear flow of a power-law fluid and were 

shown to be very efficient with no loss in rate of convergence. 

 

The methods developed remain unaltered in presence of 

(homogeneous/heterogeneous) reactions, multiple species, and more detailed pore-scale 

physics. Future work is directed towards extending the methods to multiphase flow and 

transport, and further enhancement of the IPP mortars (i.e. higher orders). 
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Chapter 7: Conclusions and Future Directions 

In the following we summarize our findings and discuss their implications. Since 

specific conclusions germane to the material in each chapter are already contained 

therein, we refrain from reiterating them here. Instead conclusions are drawn in a rather 

broad sense, so as to highlight possible directions for future research. A list of such 

directions is provided under section 7.2.  

 

7.1. CONCLUSIONS 

An Eulerian network model, referred to as the streamline splitting method (SSM), 

was developed and shown to accurately capture partial mixing within pores. Predictions 

were in very good agreement with CFD simulations as well as micromodel experiments, 

and the model was shown to perform at a very low computational cost, on the order of a 

few minutes on a desktop machine. The specific algorithm developed to approximate the 

distribution of streamlines within pores can also be used in Lagrangian models such as 

particle tracking (PT) without further modification. 

Our results suggest that the choice of pore-level mixing assumptions (perfect 

mixing vs. partial mixing) has a high impact on the magnitude of macroscopic transverse 

dispersion in ordered media. In disordered media, the effects seem to be substantially 

lower. This observation is in agreement with another study regarding two-dimensional 

disordered fracture networks (Park et al., 2001b). While we have focused on three-

dimensional disordered porous media, one may be able to draw a parallel between the 

two studies. That said, two issues still remain outstanding: a) while mixing assumptions 

seem to be of low significance in disordered granular media (e.g. sandstones), more 

research is needed before similar conclusions can be drawn for other types of porous 
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material. b) Even though average differences in pore-scale concentration fields are small, 

the effects of mixing assumptions on transverse dispersion coefficients may still be 

considerable due to possible tailings in the concentration fields. 

An Eulerian network model, referred to as the superposing transport method 

(STM), was developed and shown to accurately capture shear dispersion within throats. 

Predictions were in good agreement with CFD simulations and experimental data from 

the literature. The applicability of STM is for linear transport problems only. The 

formulation of the method is relatively simple and provides a much more efficient 

alternative to Lagrangian methods under certain boundary conditions and domain sizes. 

The method has the flexibility to perform simulations on networks with either finite 

(something current particle tracking models have difficulty with) or zero pore volumes. 

While partial mixing and shear dispersion are separately incorporated into SSM and 

STM, respectively, we note that there are no restrictions for the two models to be 

combined into one. 

While comparatively efficient than alternative methods for certain boundary 

conditions and domain sizes, the computational performance of STM needs further 

improvement. Since current limitations are not inherent to the method, several practical 

solutions were proposed in chapter 4. The main proposition is to approximate recorded 

pore concentration profiles using piecewise linear functions, rather than the current 

piecewise constants. This would potentially reduce computer memory requirements while 

simultaneously increase modeling accuracy. Considering that applications of STM span 

several engineering fields (e.g. electrical, chemical, etc.) and that it can be used, without 

modification, to perform field-scale transport simulations, the proposed improvements 

are worthy of future pursuit. 
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A discussion on the origins of supra-linear scaling of longitudinal dispersion vs. 

Peclet number, conjoined with an analysis of past modeling results from the literature 

was provided. The general conclusion is that supra-linear dispersion arises whenever the 

pore-space contains (near-) stagnant regions for diffusion to laterally stretch the solute 

and produce a minimum in the DL/(vintdp) vs. Ped graph. These regions are either the ever-

present boundary layers near the fluid-solid interface (leading to a DL~PedlogPed scaling; 

Saffman, 1959) or topological features such as dead-end pores (leading to a DL~Ped
2 

scaling; Koch and Brady, 1985). This interpretation seems to corroborate with all 

numerical results discussed from the literature (including this work), that exhibit such a 

supra-linear regime. 

It was shown that the predictive capacity of all Eulerian network models, 

including STM, is inherently limited for ordered media. The limitation is a result of the 

fact that particle “memories” are effectively erased upon their arrival at the pores. The 

consequence is that an erroneous DL~Ped scaling prevails at high Peclet numbers, instead 

of the known DL~Ped
2 scaling in ordered media (Edwards et al., 1991). Circumventing 

this problem requires the delicate task of mapping incoming solute particles (at the pores) 

to appropriate radial positions at the outlet throats. This is currently only possible under a 

Lagrangian framework. 

The combination of the (verified) mortar domain decomposition methods and the 

reactive transport network model developed in chapter 5 for advection-dominated 

transport was used to study “emergent” behavior of calcite precipitation in the context of 

geologic CO2 sequestration.  Field observations along the Little Grand Wash fault suggest 

that pore-filling calcite cement occludes the pore space and potentially leads to observed 

shifts in preferential flow paths. Such an “emergent” behavior was not predicted in our 

simulations, although cementation did eventually lead to an occlusion of the pore space. 
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The disagreement was attributed to either an oversimplification of the problem physics 

(e.g. single-phase flow, simplified geochemistry, etc.), or unrealistic initial conditions 

(e.g. distribution of reactive minerals). Even so, the study demonstrated the application of 

the mortar methods for large and highly heterogeneous pore-scale domains. 

The domain decomposition methods were further extended and verified in chapter 

6 to include diffusive transport and pore-to-continuum coupling. We showed that they are 

accurate and computationally more efficient than single-domain simulations (even in 

series). Satisfactory parallel scalability on a dual CPU (hexa-core per CPU) machine was 

demonstrated. These methods may be applied to: study problems in which REV sizes are 

larger than the scale of a single pore network, conveniently characterize network-scale 

heterogeneities/discontinuities, perform multi-model simulations within the same 

computational domain, and study emergent behavior at sufficiently large scales. In the 

context of hybrid modeling, the methods may be used to perform “concurrent” 

simulations (i.e. when insufficient scale separation exists; Sheibe et al, 2014) of localized 

pore-scale inclusions in an otherwise continuum domain. In reservoir engineering, the 

methods are deemed to be most appropriate for near-well applications (as they provide 

the only point of direct data acquisition from the reservoir, in order to characterize the 

pore-scale subdomains). By envisioning a pore-scale “skin” around the wellbore one may 

be able to study/predict wormhole formation during acid stimulation, and/or CO2 leakage 

through wellbore cement. Other applications include mixing induced mineral 

precipitation/dissolution scenarios (Tartakovsky et al., 2008a), in which two fluids with 

different compositions come into contact and undergo reactions over the range of a few 

pore diameters (that can be represented locally at the pore scale). A purely continuum 

description for such problems is inadequate for quantitative predictions (Tartakovsky et 

al., 2008b). 
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7.2 FUTURE DIRECTIONS 

The following summarizes a number of possible directions for future research: 

 

 SSM predictions have not been compared to transverse dispersion coefficient data 

from the literature. Additionally, the impact of pore-level mixing assumptions on 

this parameter is yet to be quantified. 

 The inter-pocket mass transfer term in the formulation of SSM was derived for 

passive tracer transport. Under reactive transport conditions (mixing induced 

homogeneous reactions and/or fluid-mineral heterogeneous reactions) this term 

needs most likely to be modified, to reflect proper local initial/boundary 

conditions. 

 The algorithmic modifications to STM proposed in chapter 4, would be a worthy 

future research direction. These modifications could substantially alleviate 

computer memory requirements and potentially reduce computational cost by 

nearly an order of magnitude. 

 Currently no computationally efficient while accurate method for transport 

modeling on ordered pore networks exists. Eulerian network models are 

inherently limited in this case, and no simple modifications seem sufficient for 

overcoming the limitations. For this reason, a Lagrangian framework (e.g. particle 

tracking) would be an appropriate starting point for the development of the 

“simplest” modeling approach. 

 The IPP mortars developed in chapters 5 and 6 consist of piecewise constant basis 

functions defined over each bundle. Despite the advantages that piecewise 

constant bases provide (e.g. simple closed-form equations for synchronizing 

interface concentrations in EXPC), they possess the disadvantage of causing 
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numerical artifacts in situations where a concentration front is moving parallel to 

the subdomain interface. The problem is that solute concentrations may be 

unrealistically propagated ahead of the front. To overcome this artifact, one can 

either use a fine interface mesh or adaptively refine it in the vicinity of the 

concentration front. While this would eliminate the problem, a better solution 

would be to use higher order mortars. In order to preserve the current advantages 

of IPP mortars for pore-to-pore and pore-to-continuum interfaces (i.e. local flux 

continuity and avoiding possible singularity of the interface problem due to empty 

interface grids), one may add two more degrees of freedom per IPP basis 

function. This increases their order by one, and results in discontinuous piecewise 

linear bases allowing them to assume gradients in arbitrary directions. 

 The domain decomposition methods presented in chapters 5 and 6 were designed 

for single-phase flow problems. Extensions to two-phase flow are a necessary and 

obvious future direction, but a highly non-trivial one. A preliminary study 

regarding this was performed and determined that the specifics of the domain 

decomposition method and the interface problem depend, to a large extent, on the 

specific pore-scale models (e.g. pore network, Lattice Boltzmann, etc.; there are 

even strong variations within different pore network approaches) involved in the 

simulation. The coupling of the subdomains is also more complicated compared 

to its continuum counterpart, because pore-scale behavior of multi-phase flow is 

dominated by capillarity. This leads to a very discontinuous “on-and-off” type 

behavior, resulting in frequent singularity of the interface problem. 
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Appendices 

APPENDIX A: STREAMLINE SPLITTING ALGORITHM FLOWCHART 

Figure A.1 presents the details of the algorithm used for identifying preferred 

outlets for a given inlet i (i.e. member of the Pri set) and the kind of access the inlet (i.e. 

full, partial or limited) is granted to these outlets: 
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Figure A.1: Flowchart of the algorithm used for determining the preferred outlets of a 

given inlet i (i.e. members of Pri). Sub- or superscripts i, out, in and ex refer 

to the inlet, outlet, interior and exterior. qi is the flow rate of the given inlet 

i.  
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APPENDIX B: EQUIVALENCE OF FLOW RATE-WEIGHTED DISTRIBUTION OF INFLOWING 

STREAMS AND CHOOSING ΩIO = |QO| AS THE COEFFICIENTS OF THE OBJECTIVE 

FUNCTION GIVEN BY EQ. 3.5 

Consider, for simplicity, a pore with two inlets and two outlets. Let the flow rates 

of the two inlets be denoted by q1 and q2 and similarly for the two outlets by q3 and q4 (all 

positive values). Note that since the flow equation (eq. 3.2) is solved, mass balance (i.e. 

q1 + q2 = q3 + q4) applies. We assume that both inlets have partial access to both outlets 

(no full or limited access). We begin by writing the restrictions given by equations 3.4b 

and 3.4c: 
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Since no full-access outlets exist the above system cannot be reduced any further. 

Note that both outlets belong to both Pr1 and Pr2, thus the change of variable given by eq. 

3.7 needs to be applied (e.g. x13 = 1 - y13). Subsequently, we obtain the following system 

(we make use of q1 + q2 = q3 + q4): 
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Converting the above system to reduced-row-echelon form we obtain: 
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The following is the general solution of the above system: 

13 1 4 14 23 1 4 24

3 3

1 1
1 ( ) 1 ( )y q q t y t y q q t y t

q q
         (B.4) 

 
Forming the objective function (given by eq. 3.5) with ωio = |qo| we have: 
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Substituting eq. B.4 into eq. B.5 and taking the derivative with respect to t and 

equating the resulting expression to zero, we obtain the following value for t that 

minimizes the objective function: 
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Finally, by substituting eq. B.6 into eq. B.4 and transforming back to xio we get: 
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This is precisely the result one would get using “stream-tube routing” (i.e. eq. 

3.11) or a flow rate-weighted distribution of the inflowing rates q1 and q2 among the 

outlets. The proof for two inlets and any number of outlets is identical to the proof given 

here, but this simple case was chosen for clarity. For more than two inlets the above 

procedure remains the same, however the objective function could easily become 

multivariate and therefore a general mathematical proof becomes cumbersome and was 
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thus not attempted. Instead, the claim was numerically verified for a large number of 

cases with more than two inlets. 
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APPENDIX C: COUNTER EXAMPLES FOR A PREVIOUSLY PROPOSED STREAMLINE 

SPLITTING METHOD 

The rules proposed by Jha et al. (2011) were a step forward in capturing 

reversibility of advection within pores. However, they were limited to pores with less 

than or equal to four neighbors. More importantly they neglect throat orientations. In 

their method, throats are displaced away from the pore center by a fixed amount (to 

remove overlap), and a mapping is established based only on distances between the inlets 

and outlets. Since throat orientations determine relative positions of opposing streams 

with respect to any given inlet, neglecting them renders any method invalid (ref. section 

3.2.3.1). Figure C.1 consists of simple counter examples to the rules of Jha et al. (2011) 

for two-inlet-two-outlet configurations. We have followed their convention in labeling 

the throats and configurations. Figure C.1 demonstrates concentration fields of a dummy 

tracer in the absence of diffusion at steady state. Boundary conditions for each throat are 

depicted in the figure (units are not necessary in the calculation of xio for reasons 

mentioned in section 3.3.1). Table C.1 summarizes predictions made using their method 

and the streamline splitting algorithm of section 3.2.3.1 vs. COMSOL simulations. Table 

C.1 shows that their method incurs large errors, whereas the streamline splitting 

predictions are very accurate. 

 

 

 



 219 

Figure C.1: Counter examples for the streamline splitting rules proposed by Jha et al. 

(2011). Their conventions for labeling throats/configurations are followed. 

Boundary conditions are annotated. 

 
 COMSOL Simulations Jha et al.  (2011) method Streamline Splitting 

 x13 x14 x13 x14 x13 x14 

Configuration 3 0.99 0.39 0.00 0.8 1.00 0.4 

Configuration 4 0.99 0.49 0.33 1.00 1.00 0.5 

Configuration 5 0.00 0.79 1.00 0.4 0.00 0.8 

Table C.1: Comparison of the predictions made using the method proposed by Jha et al. 

(2011) and the streamline splitting method proposed in this work against 

COMSOL simulations. 
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APPENDIX D: INTER-POCKET MASS TRANSFER TERM 

D.1 Derivation 

Assume a pore that contains two pockets sharing an interface. If we idealize the 

shape of the pore and the containing pockets as cuboids (as shown in figure D.1) the 

species mass transfer term can be quantitatively approximated. Consider that at time t0 

the pockets have initial concentration values of c1 and c2 creating a discontinuity at the 

interface (fig. D.1). The heat equation with homogeneous Neumann boundary conditions 

(given by eq. D.1), describes the inter-diffusion of two bounded bodies. The Neumann 

boundary conditions represent the impenetrability of the pore walls and H(x) represents 

the Heaviside step function. 

 

 

Figure D.1: An idealized cuboid pore containing two pockets with a concentration 

discontinuity at the interface at time t0, which diffuses slowly with time. 

Thick arrows denote flow direction. 
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Eq. D.1 can be solved by the method of separation of variables to obtain the 

concentration field given by eq. D.2: 
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The solution can then be differentiated and multiplied by Dm to obtain the 

instantaneous flux at x = a. Integrating this flux on t ϵ [0, T] and over the interfacial area 

yields the cumulative mass transfer in this time interval (eq. D.3): 
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The average mass transfer rate can, thus, be defined by eq. D.4: 
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In eq. D.3 and D.4, dimensions of the idealized pockets (i.e. L, W, H and a) are 

required. If an a priori knowledge of these parameters is known from the network and 

flow geometry (as is the case in section 3.3.2), then they can be used in the computations. 

Otherwise, one can use the approximations given by eq. D.5, where V1 and V2 are the 

pocket volumes (obtained from eq. 3.13) and Vp is the pore volume. Note that a pore may 

contain more than two pockets, in which case each will be exchanging mass with the rest 

of the pockets in the pore. Thus the same methodology can be used by considering the 

pockets pairwise. 
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T is the transport time scale and is very important in calculating Ψ21.The smaller T 

is, the larger the inter-pocket mass transfer rate will be. At high Peclet numbers it is 
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reasonable to assume that, at the pore level, advection (fast) and diffusion (slow) are 

mathematically decoupled. Therefore, one can envision advection and diffusion taking 

place sequentially over the course of the time required for the pore fluid to be fully 

recycled. This is the fluid residence time in the pore and is denoted by ta in eq. D.6. 

Therefore, after each advection step the pocket concentrations would become completely 

uniform, and the diffuse interface between the pockets would be re-sharpened. This, then, 

justifies solving a Riemann problem for the diffusion step, as is done to obtain ΔN in eq. 

D.3. 

At low Peclet numbers, a similar mathematical decoupling of advection and 

diffusion holds. However, the argument for solving a Riemann problem in the diffusion 

step is not as rigorous. Nevertheless, we intend to use the same equation (i.e. eq. D.3-D.4) 

here as well. To that end, we define td (in eq. D.6) as the diffusion time scale, which is the 

time required for a Brownian particle, starting from the inter-pocket interface, to traverse 

the shortest of the two lateral dimensions of the pockets. This is when the presence of the 

pore boundaries is felt by the particles. The value for T can then be taken as αtd. The need 

for α (<1) comes from the fact that T = td produces the right trend with respect to Peclet 

number but a slight under-prediction of the inter-pocket mass transfer rate (when 

compared to CFD simulations; ref. appendix D.2). 
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We refer to the ratio of td over ta as r, which quantifies the pore-level competition 

between advection and diffusion. Note that ta is the fluid residence time, and thus is 

defined based on the longitudinal length scale of the pore, and td is based on the lateral 

length scale of the pore. Therefore, r embeds characteristics of both the transport regime 
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(i.e. Peclet number) and pore geometry (i.e. pore aspect-ratio). We denote the range for 

the validity of T = ta as r ≥  X (where X must be a value larger than one), and the range 

for the validity of T = αtd as r ≤  Y (where Y must be a value less than one). The physical 

interpretation for X is based on considering how far a Brownian particle would travel in 

the lateral dimension from the time it enters the pore till the time it exits it. The 

interpretation for Y follows from considering the fact that the time at which the presence 

of the lateral pore-boundaries is felt by a Brownian particle must be much smaller than 

the residence time of the particle within the pore at the onset of diffusion-dominated 

regime. For moderate Peclet numbers (i.e. X > r > Y) a continuous interpolation is 

performed to obtain the appropriate values for T. Figure D.2 summarizes the selection of 

the transport time scale, T, for different transport regimes. The interpolation consists of 

the plane going through vectors b1 and b2 given by eq. D.7 (and shown in figure D.2). 

 

1 2 1 2(1, , ) (1, ,1)n b b b Y Y b X        (D.7) 

 

 

Figure D.2: Map for choosing the transport time scale, T in eq. D.3-D.4, based on values 

of the advection and diffusion time scales (i.e. ta and td). 
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D.2: Determining X, Y, and α from direct simulations 

The exact values for X, Y and α were determined through direct COMSOL 

simulations on three pore geometries with very different pore aspect-ratios (= Lp1/Lp2); 

shown in figure D.3. Pore aspect-ratios were equal to 1, 2 and 4 for geometries shown in 

D3a, D3b and D3c. Subsequently, SSM simulations were run for these pores as well. 

Inlet #1 and #2 boundary conditions consisted of (constant) one- and zero- concentration 

values, respectively. Concentration gradients at both outlets were set to zero. The steady-

state outlet concentrations were then recorded while altering Peclet number (i.e. fluid 

velocity). Figure D.4 shows the SSM and directly simulated outlet concentration values 

plotted against r for all three geometries. The SSM simulations correspond to employing: 

X = 6, Y = 0.1 and α = 0.5. Note that these parameters provide good estimates of outlet 

concentration values for all three geometries. X was determined by plotting SSM 

predictions, using T = ta in eq. D.3-D.4 for all transport regimes, against direct 

simulations and determining the point at which the two plots were within 5% of each 

other relative to the maximum concentration value (i.e. one). Y was obtained by simply 

determining the point at which the difference between the two outlet concentrations, 

obtained from the direct simulations, was within 5% of the maximum concentration 

value. Once X and Y were determined, α (<1) was altered in such a way that SSM and the 

direct simulation predictions for Y agreed. Note that for all three pore aspect-ratios, the 

graphs collapse onto one another when plotted against r (indicating proper scaling). This 

is because r is a dimensionless combination of Peclet number and pore aspect-ratio. Note 

that the only two necessary metrics here are the lateral and longitudinal dimensions of the 

pore, thus the X, Y and α found herein could be applied to other geometries as well with 

reasonable accuracy. It is noteworthy, however, that the value for Y depended slightly on 
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pore aspect-ratio and varied between 0.1-0.3; however, a value of 0.1 was deemed as 

appropriate since it appeared to produce good results for all three pore geometries. 

 

Figure D.3: Three pore-geometries, (a), (b) and (c), with aspect ratios equal to 1, 2 and 4, 

respectively. Flow direction is annotated. 

 

 

Figure D.4: SSM and directly-simulated steady-state outlet concentration values versus r 

for the pore geometries shown in figure D.3. 
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APPENDIX E: EFFECT OF TRANSVERSE ANGLE (Ζ) ON SPLITTING OF STREAMLINES 

The dependence of streamline splitting on transverse angle (ζ) was determined 

through numerous CFD simulations. Herein, we summarize some of these results and 

justify the proposed inequality constraint given by eq. 3.9 and 3.10. CFD simulations 

were performed on two-inlet-two-outlet pore geometries with inlet and outlet flow rates 

all equal in magnitude (the choice is justified later). We use case V in figure 3.4 as a 

visual guide for describing these simulations. In a manner similar to that described in 

section 3.3.1, x23 and x24 were measured from CFD. The positions of outlets 3 and 4 were 

systematically varied to sweep a range of transverse angles from 0 to 90
o
. Note that for 

any given value of ζ, the positions of the outlets are still free to vary by changing the 

angle between them. Therefore, not just the transverse angle but also the angle between 

the two outlets was varied. x23 and x24 were then obtained using the SSM algorithm with 

the inequality constraint given by eq. 3.9 and 3.10. 

Figure E.1 provides a comparison between CFD and the SSM algorithm. Note the 

clear correlation between the transverse angle and the “stolen” portion of the inflowing 

streams. In the absence of such “stealing” (e.g. in 2D), x23 and x24 would be 0 and 1, 

respectively (which is why inlet/outlet flow rates were chosen to be equal in magnitude). 

The scatter in the CFD data hints at a small dependence on the angle between the two 

outlets. Note that x23 and x24 do not quite asymptote at 1 and 0, respectively. We suspect 

this to be due to geometric aspects regarding the shape and size of the entrance region of 

the outlet throats (and possibly the distance between them). For the sake of simplicity and 

the difficulty in characterizing these less important factors, such weak dependencies are 

ignored. In this regard, the SSM predictions (with the inequality constraint of eq. 3.9 and 

3.10) in figure E.1 are regarded satisfactory. 
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We conclude by making two further remarks: 1) the SSM algorithm with eq. 3.9 

and 3.10 was further tested on a few pore geometries with more than two outlets and non-

equal flow rates, and equally satisfactory results were obtained. 2) The CFD data were 

also plotted against the angle between the projected outlets onto the flowing plane. This 

resulted in a poorer correlation in the data (with double the scatter). 

 

Figure E.1:  Plot of x23 and x24 (using case V in fig. 3.4 as a visual guide) vs. transverse 
angle (ζ), obtained from CFD simulations and the SSM algorithm (with the 

inequality constraint given by eq. 3.9 and 3.10). 
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APPENDIX F: APPLICABILITY OF TAYLOR-ARIS DISPERSION COEFFICIENT IN PORE 

NETWORKS 

The validity of the Taylor-Aris theory for cylindrical ducts has been rigorously 

delineated in a classic paper by Ananthakrishnan et al. (1965) and can be expressed by 

eq. F.1: 

 

min

0

( )mtD

V
           (F.1) 

t, Dm, and V0 represent time, molecular diffusion coefficient and maximum 

centerline velocity within the cylindrical capillary, respectively. If t is taken to be the 

mean tube residence time (= L/u; u is mean fluid velocity), eq. F.1 can be rearranged to 

obtain eq. F.2; PeR (= V0R/Dm) and κ (= L/R) represent Peclet number and tube aspect 

ratio, respectively. For PeR >100, Tmin = 0.8 and, thus, the aspect ratio of the throat must 

be ≥ 40. In this work, κ ϵ [1-10] (compare to κ ϵ [2-40] in Sorbie and Clifford, 1991; 

κ = 5 in Saffman, 1959).  

 

min2
RPe


           (F.2) 

For PeR <100, Tmin is a rapidly increasing function of 1/PeR. This means that even 

for small values of PeR, large aspect ratios are required (e.g. for PeR = 1, Tmin >20 hence 

κ >10; see Table 1 of Ananthakrishnan et al. 1965). Gill and Ananthakrishnan (1966) 

additionally found that for PeR <100, Tmin is dependent upon the choice of the inlet 

boundary condition, and that dirichelet type inlet conditions (i.e. the most relevant type in 

a pore network) require longer times to asymptote (compared to Danckwert’s- or doubly-

infinite type); the shortest being that of a slug stimulus (Nunge and Gill, 1969; Gill and 

Ananthakrishnan, 1967).  
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APPENDIX G: FORMULATION OF SEMI-EMPIRICAL SOLUTE FLOW RATES 

G.1 Exact asymptotic analysis of solute inflow 

We are interested in deriving the asymptotic behavior of the rate of solute inflow, 

qcd
FI and qcd

FO, in a cylindrical duct at the limit of early times (i.e. as τ→0). This is then 

used to formulate the functional form of the semi-empirical expressions for qcd
FI and qcd

FO 

in eq. 4.6c-d. Consider the following 1D transport problem on a semi-infinite domain 

(variable definitions are the same as in section 4.2.1.1): 
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The solution to eq. G.1 is given by eq. G.2 (Van Genuchten and Alves, 1982): 
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The reason why eq. G.1 and G.2 are relevant, is because at very early times radial 

gradients do not exist (which come about later by advection) and the solute has not had 

enough time to sense the outflow boundary (hence the semi-infinite assumption). Using 

eq. G.2 we can compute the flux of solute inflow (i.e. qc
flx) given by eq. G.3: 
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Integrating eq. G.3 across the duct cross-section (see eq. 4.4) and noting that 

v = V0 (1-(r/R)2), we obtain eq. G.4: 
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 The integration was accompanied by making use of the error function integration 

tables given by Ng and Geller (1969). We remark that eq. G.4 can be used for both 

forward and backward transport by setting the sign of V0 to positive or negative, 

respectively. Taking the limit of eq. G.4 as t→0 and after a series of tedious 

manipulations we obtain eq. G.5a. Additionally non-dimensionalizing eq. G.5a yields eq. 

G.5b. 

 

2

0
lim I m

c
t

D
q R

t




         (G.5a) 

0

1
lim

2

I

cd

L

q
Pe  

         (G.5b) 

Eq. G.5a and G.5b hold for both forward and backward transport, but eq. G.5b is 

only correct in magnitude (not sign) for backward transport. In deriving eq. G.5, we made 

use of eq. G.6, which is easily verified by expressing all components involved in the limit 

by their Taylor expansion: 
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Compare eq. G.5 to the proposed expressions for qcd
FI and qcd

BI (i.e. eq. 4.6c-d). At 

late times the outflow boundary is sensed by the solute and qcd
I approaches its steady state 

value. This is the additive term CF and CB on the RHS of eq. 4.6c-d. Furthermore, the area 

under the (qcd
FI – CF)(τ) and (qcd

BI – CB)(τ) curves must be finite, as discussed in section 

4.2.1.1. The exponential in the numerator of the first term in the RHS of eq. 4.6c-d 
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ensures this. A simple check confirms that eq. 4.6c-d meets both early-time and late-time 

asymptotes. 

 

G.2 Steady state solute flow rate 

At very low Peclet numbers, the steady state concentration field associated with 

eq. 4.1 tends to a linear variation along the tube axis. The steady state solute flow rate 

(i.e. qc,ss) can, thus, be approximated by eq. G.7 (for forward/backward transport); where 

V0 is taken to be a positive number for convenience: 
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Applying the corresponding boundary conditions for forward/backward transport 

in eq. G.7 followed by non-dimensionalizing the resulting expressions yields eq. G.8: 
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On the other hand, at high Peclet numbers diffusion vanishes and CF→1/4 and 

CB→0. Therefore, the functional form of the dimensionless steady state solute flow rate 

(i.e. eq. 4.7b) was formulated such that it satisfies these limits (readily verified by 

inspection). We note that the fitting constants in eq. 4.7b may still be improved by fitting 

it to steady state results of a mass conservative CFD method (accuracy of eq. 4.7b starts 

to fade for PeL >10 even though associated errors maybe negligible as CF  1/4 and 

CB  0 hold for all practical purposes). 
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G.3 Cumulative solute flow expressions 

In STM, expressions for cumulative solute throughput (as opposed flow rates) 

within a given time interval, through each throat, are required to compute the δQc 

quantities in eq. 4.12. Even though one could numerically integrate the rate expressions 

given by eq. 4.6, analytical expressions are highly preferred (for accuracy and 

computational reasons); these are given by eq. G.9. 
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Where, 

 

log( ) log( ) log( ) 0.95F F F B B Ba b a b e             (G.10) 

 

The derivation of these integrals is rather tedious but straightforward, and 

therefore omitted. Integration of eq. G.9a-b was accompanied by making use of the error 

function integration tables given by Ng and Geller (1969). The relationship between the 

lower incomplete gamma function and the error function (i.e. eq. G.11) was used in 

deriving eq. G.9c-d. 
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1
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2

L x erf x          (G.11) 

 

G.4 Constraining solute flow rates and boundary correction 

As discussed in section 4.2.1.1, qcd
FO and qcd

BO had to be recorded a distance of (1- 

ε)L  (ε = 0.95) away from the actual outflow boundary (i.e. the BB’ transect line shown in 

figure 4.1a-b) to avoid numerical errors from the CFD simulations that were in violation 

of global mass conservation. These rate expressions were then corrected for the actual 

outflow boundary following the steps outlined below (we drop superscripts F and B as 

the following applies to both forward and backward transport). These steps additionally 

render the rate expressions in eq. 4.6 mass conservative, by constraining some of their 

parameters. 

i) Eq. 4.5b must hold for the portion of the duct between AA’ and BB’ (denoted 

by the subscript p) as long as the time variable is non-dimensionalized with 

respect to the distance between them; denoted by τp = τ/ε. Thus, we can 

compute WIp from eq. G.12 and the correlations given in eq. 4.8 for WOp and 

,ss pc . 
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ii) Evaluating the first integral in eq. G.12 analytically (with the change of 

variable τ = ετp and using eq. G.9) we additionally obtain eq. G.13 for WIp. A 

is then calculated from eq. G.13 and the WIp value from the previous step (i.e. 

eq. 4.9a). 
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iii) Reapplying eq. 4.5b to the full length of the duct (denoted by the subscript f) 

(the associated time variable, τ, non-dimensionalized with respect the duct 

length) we write eq. G.14. Since WIf = εWIp (verified from τ = ετp), WOf is 

calculated from eq. G.14 and the correlations given in eq. 4.8 for ,ss fc . 
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iv) We assume that parameters a and d, in eq. 4.6a and 4.6b for qcd
FO and qcd

BO, 

remain unaltered in going from BB’ to the actual outflow boundary (C and D 

are known to remain unchanged, because they are associated with steady state 

and solute inflow, respectively). This is a good assumption because (1- ε)L 

constitutes a very small portion of the total residence time and duct length.  

By evaluating the second integral in eq. G.14 analytically for WOf (using eq. 

G.9) and equating it to the value obtained in step (iii), b can be back-

calculated; which is the expression given in eq. 4.9. 

 

All above steps are already implemented in eq. 4.6-10. The max operator in eq. 

4.10 is a precautionary measure to avoid assigning small negative numbers to WIp at high 

Peclet numbers (although their effects are negligible since WIp→0 as PeR→∞ ). Figure 

G.1 shows that the CFD data for css,p
F, css,f

F-εcss,p
F, css,f

B-εcss,p
B, WOp

F, and WOp
B correlate 

very well with PeL (solid lines represent correlations given by eq. 4.8). In figure G.1, all 

aspect ratios (i.e. κ) are collapsed onto the same plot (some dots consist of the 

superposition of multiple points with different κ). The solid line for css,f
F in figure G.1d is 



 235 

back-calculated from all other quantities. The plots for css,p
F, css,f

F-εcss,p
F, css,f

B-εcss,p
B, and 

css,f
F  correspond to PeR≤ 200. We develop analytical approximations for these quantities 

below when PeR >200; which we find to be more accurate than the CFD results. The 

reason css,f
F-εcss,p

F and css,f
B-εcss,p

B were chosen for correlating the data (instead of e.g. css,f
F 

and css,f
B), was to satisfy an additional constraint given by eq. G.15. Eq. G.15 essentially 

states that if qcd,p
O and qcd,f

O (i.e. dimensionless outflow rates) are drawn on the same plot 

(i.e. same time axis), the shaded area shown in figure 4.1c is bigger for the full duct 

compared to the portion between AA’ and BB’ (fig. 4.1a-b). 
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From eq. G.12 and G.14 and noting that WIf = εWIp, eq. G.15 can be expressed as 

follows: 

 

, , 0ss f ss pc c          (G.16) 

When PeR >200, a boundary layer clearly forms towards the outlet at steady state. 

Since the thickness of this boundary layer seems nearly uniform from CFD simulations, 

we approximate forward transport by eq. G.17 with the origin of the x coordinate placed 

at the outlet and directed against the flow direction (backward transport follows 

similarly): 
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Eq. G.17 has a simple solution. Taking the boundary layer thickness, δ, to be the 

distance from the outlet to the point where c = 0.99, we compute the average 

concentration within the boundary layer, cBL = 0.785, and take the concentration in the 

rest of the duct to be equal to 1 (i.e. css,p
F = 1) . The average steady state concentration 
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over the full length of the duct is, therefore, given by eq. G.18. Rearranging eq. G.18 and 

substituting the value for cBL yields eq. 4.8f. These steps can be similarly repeated for 

backward transport. Lastly, we note that the theoretical constants Πi in table 4.1 can be 

easily determined from geometric considerations and the fact that css,f
F→0.5 as PeR→0 

and css,f
F→1 as PeR→∞ . 
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Figures G.2 and G.3 depict some of the parameters appearing in the semi-

empirical rate expressions (i.e. eq. 4.6). In figure G.2, aF, CF, and d are directly correlated 

via eq. 4.7a-c, whereas bF is back-calculated using eq. 4.9b (i.e. the steps outline above). 

It can be seen that bF follows the CFD data quite closely. Directly correlating bF with the 

data was quite challenging because of its complicated shape (which led to mismatches 

between the back-calculated WOp and the data and was, therefore, abandoned). It is 

interesting to note the “humps” and “slumps” in aF and bF respectively. A parallel 

between these and the macroscopic “slump” in figure 4.10b is drawn in section 4.3.3.2. In 

figure G.3, the parameter D is directly correlated via eq. 4.7c, while AF and bB are back-

calculated from eq. 4.9 (i.e. the steps outlined above). Although it appears from figure 

G.3a that AF does not follow CFD data very well, these data are not considered to be the 

most accurate. This is because the CFD data for qcd
I do not satisfy the early-time 

asymptotic behavior of appendix G.1 at high Peclet regimes (see fig. 4.2b). We suspect 

this to be due to the need for finer mesh (than the highest setting in COMSOL©) near the 

inlet at high Peclet numbers. From this perspective, the mass balance constraints provide 

a certain level of confidence in the back-calculated quantities for this parameter. 
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Figure G.1: (a) css,p
F, (b) (css,f

F – εcss,p
F ), (c) (css,f

B – εcss,p
B ), (d) css,f

F, (e) WOp
F, and (f) 

WOp
B vs. Peclet number. Dots include CFD data for all aspect ratios 

examined. (a), (b), (c) and (d) correspond to PeR ≤ 200. 
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Figure G.2: Parameters (a) aF, (b) bF, (c) CF vs. Peclet number, and (d) d vs. aspect ratio 

(in eq. 4.6). Dots represent CFD simulations. The solid lines in (a), (b), and 

(c) represent eq. 4.7 (the global fit). In (b) only the plots for κ = 1 and κ = 20 

are annotated, while the rest lie monotonically in between. The solid line in 

(b) for bF is back-calculated from 4.9b. 

 

Figure G.3: Parameters (a) AF (κ = 1), (b) bB, and (c) D (in eq. 4.6) vs. Peclet number. 

Dots represent CFD simulations. The solid lines in (a) and (b) for AF and bB 

are back-calculated from eq. 4.9. The solid line in (c) represents eq. 4.7c 

(the global fit) for D.  
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APPENDIX H: PLUG-FLOW SOLUTE FLOW RATES 

Consider the 1D transport problem for a semi-infinite cylindrical domain 

described by eq. G.1, with its solution given by eq. G.2. Assuming a plug-flow velocity 

profile of magnitude v, the (dimensional) solute flow rates at the inlet and a distance L 

away from the inlet can be computed and are given by eq. H.1. All other variable 

definitions are the same as in section 4.2.1.1. 
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Using eq. H.1a and H.1b in STM, implies that solute exiting one throat into a pore 

will not diffusion back into another inlet of the same pore. In other words, while counter-

current diffusion within a single throat is accounted for, it is ignored in the transitions 

from one inlet throat to the next in an interconnected pore network. Note that, in applying 

eq. H.1, terms corresponding to BO and BI are set to zero in STM (i.e. eq. 4.12). This 

situation is only valid at sufficiently high Peclet numbers. The transport problem in eq. 

H.2 is considered to derive an appropriate criterion. 
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The steady-state solute flow rate corresponding to eq. H.2 is eq. H.3: 
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 1ln 1LPe tol          (H.4) 

A criterion is now obtained by requiring qcd,ss to be smaller than a set tolerance, 

tol, which yields eq. H.4. For tol = 1e-5, PeL >10 appears to be a practical condition for 

when to safely ignore backward transport in a pore network (and thus using eq. H.1 in 

STM). This criterion can also be used for parabolic velocity profiles (to ignore backward 

transport), since CB rapidly tends to zero in this range according to eq. 4.7b. 
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APPENDIX I: ASSIGNING PORE VOLUMES TO THROATS 

Networks extracted via the modified Delaunay tessellation algorithm used (Al-

Raoush et al., 2003) assign all the void volume (within the tetrahedra) to the pores. In the 

STM simulations of section 4.3.3.1, we assume pores are volumeless and throats contain 

all the void volume. Here, we describe a procedure whereby pore volumes are assigned to 

their neighboring throats in geometrically representative manner (honoring as much of 

the available information as possible). We note that an alternative procedure was 

described by Thompson (1996), although the following seems to be a bit simpler. 

Consider pore pi connected to Npi
t throats. Let Vpi and rcpi denote pore volume and 

the radius of the largest inscribed sphere within the pore, respectively. The distance 

between pi and pj is indicated by dij. Let tij represent the throat connecting pi to pj, and Vtij, 

Gtij, rctij represent its volume, hydraulic conductivity, and radius of the largest inscribed 

sphere at the narrowest constriction, respectively. Denote the fraction of Vpi assigned to tij 

by Vpi
tij. As a first approximation to Vpi

tij, we compute Vpi
tij,* by assuming that the void 

space between the centers of pi to tij is shaped as a truncated cone with height dij/2 and 

base radii rcpi and rctij. Eq. I.1 yields the volume of this truncated cone. These volumes 

are then used as weights to distribute Vpi among tij ∀j via eq. I.2. Note that each throat 

receives contributions from both pores connected to it. 
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Throat hydraulic conductivities, Gtij, are accurately computed using the procedure 

described in Thompson (1996). Using this additional information, lengths (Ltij) and radii 
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(Rtij) of the cylindrically approximated throats can be computed from eq. I.3 (i.e. two 

equations with two unknowns). Since the semi-empirical rate expressions given by eq. 

4.6 are strictly valid for κ(=Ltij/Rtij) ≥ 1, throats with κ <1 (in section4.3.3.1) are set to 

κ = 1 (while keeping Vtij constant).  
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APPENDIX J: PRECIPITATION REACTIONS 

The coupled ODEs that describe the reaction part of the operator-split in chapter 5 are: 

 

  

 

3

3 3

3

3 3

,

, , 1 2 , ,

, , 2

, , ,2

HCO i eq

p i p i HCO i HCO i

CaCO i p i eq

p i HCO i HCO i

dc
V V k k c c

dt

dc V k
V c c

dt



 

 

  

 

    (J.1) 

 

The ODEs are amenable to an analytical solution: 
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Where, 
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Here, cHCO3- is the concentration of bicarbonate species and Vp is the pore volume, 

ρCaCO3 is the density of calcite. A, A*, C0, and C0
* are defined constants. The change in 

volume of the pore is proportional to amount of Calcite produced during the time step: 
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Eq. J.4 was used in combination with eq. J.1 to derive eq. J.2-3. The concentration of the 

generated calcite changes according to: 
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APPENDIX K: GENERALIZED SEMI-ANALYTICAL SOLUTION FOR PASSIVE/REACTIVE 

SOLUTE TRANSPORT IN CYLINDRICAL DUCTS4 

A semi-analytical solution for the transient advection-diffusion-reaction problem 

within finite and semi-infinite ducts is derived. The solution allows for general radial- 

and time-dependent inlet/outlet conditions, complex boundary conditions on the duct wall 

including adsorption and decay, and arbitrary velocity profiles of the transporting fluid. 

The only numerical step of the solution is the inverse Laplace transform in the time 

variable. Therefore, the approach also produces fully analytical steady-state solutions. 

The solution is verified against computational fluid dynamics (CFD) simulations under 

various boundary conditions and velocity profiles (Newtonian and power-law), and in all 

cases good agreement is obtained. Although theoretically applicable to all regimes, the 

solution is computationally difficult at very high Peclet numbers and very early times due 

to numerical instabilities as a result of finite precision arithmetic of computers. A 

convergence analysis is conducted to delineate the boundaries of this limit for two 

important cases.  

The solution was derived using a new approach for solving two-dimensional 

partial differential equations (PDEs) with non-constant coefficients which parallels the 

Frobenius and power series methods for solving ordinary differential equations (ODEs). 

The approach reduces the original PDE to a single infinite-order ODE with constant 

coefficients. The approach is suspected to provide solutions to a large class of PDEs of 

this type. The solution may find applications in a number of engineering and/or 

                                                 
4 The material in this appendix was published under the following reference, which was completed under 

the supervision of Matthew Balhoff. 

 

Mehmani, Yashar, and Matthew T. Balhoff. "Generalized semi-analytical solution of advection–diffusion–

reaction in finite and semi-infinite cylindrical ducts." International Journal of Heat and Mass Transfer 78 

(2014): 1155-1165. 
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biomedical fields, it can be used to verify numerical simulators, and serve as a simple and 

easy-to-implement alternative where access to numerical simulators is not available. 

 

K.1 Introduction 

The problem of heat and mass transfer within cylindrical tubes has been examined 

for over a century since Graetz considered a simplified version of the problem in 1882 

(Graetz, 1882, 1885). His work and those that have followed since consider the steady-

state, fully developed temperature profile of a fluid flowing in a constant-wall-

temperature duct. The problem has relevance in the design and analysis of heat 

exchangers. Graetz had originally considered the steady-state problem ignoring axial 

conduction (or diffusion). An analytical solution including this term was recently 

developed by Lahjomri and Oubarra (1999). Their method employs an approach similar 

to the method of separation of variables, with the difference that the Eigen-functions do 

not form an orthogonal set. The elegance of their approach is that despite the non-

orthogonally of the Eigen-bases the “Fourier-coefficients” are explicitly recovered. The 

solution has been further extended to scenarios with added physics, such as viscous 

dissipation and slip flow (e.g. Barron et al., 1997; Jeong and Jeong, 2006) using very 

similar approaches. 

The problem of solute dispersion within cylindrical ducts appears to be first 

considered by Taylor (1953), who showed that the late-time dispersal of solutes follows 

Fickian behavior. Aris (1956) later extended Taylor’s theory by including axial diffusion 

into his analysis (originally ignored by Taylor). The dispersion problem was later 

extensively studied by various investigators, both with the aim of extending Taylors 

theory and delineating its limits e.g. Ananthakrishnan et al. (1965), Gill and 



 247 

Sankarasubramanian (1970). The majority of the work on dispersion concerns itself with 

the cross-sectional average of the concentration. However, there are scenarios (e.g. 

ascertaining the local Sherwood number along the duct wall) where knowledge of the 

local concentration field becomes important. The solution of the unsteady-state transport 

equation for the local concentration field has been attempted by a handful of 

investigators. Lighthill (1966) derived a simple and elegant analytical solution applicable 

to early times when the stretching solute has not had enough time to sense the walls of 

the duct. The applicability of his solution becomes important at large Peclet numbers. 

Chun (1970) and Hunt (1977) both used perturbation analysis to obtain solutions limited 

to very low (Pe < 0.1) and very high Peclet numbers, respectively. Tseng and Besant 

(1972) derived an exact solution for the solute transport equation in an infinite tube with 

impulse and step-change initial conditions. The solution involved an expansion with 

respect to zero-order Bessel functions (of first kind) in the radial component which 

transformed the differential equation into a matrix form. In the process, Eigenvalues and 

Eigenvectors of the corresponding matrix had to be computed and, overall, the solution 

was rather numerically involved.  

Perhaps the most comprehensive solution and analysis done so far was by Yu in a 

series of papers (1976, 1979, and 1981). His approach was to similarly expand the 

solution in terms of zero-order Bessel functions (of first kind) in the radial component. 

This converted the original differential equation into an infinite system of coupled second 

order differential equations in infinite unknowns. However, for an infinite tube Yu was 

able to use the Fourier and the Laplace transforms to obtain solutions for impulse and 

step change initial conditions. The resulting solution was numerically involved and 

required quite a bit of computational effort. Shankar and Lenhoff (1989) remedied this 

problem by replacing the Fourier transform step of Yu by a Fourier expansion. However, 
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they had to ignore the axial diffusion term in the process. That said Yu showed his 

approach could reproduce the Taylor limit, provided ample comparison with almost all 

previous models developed in the literature, and showed his solution was equivalent to 

that of Tseng and Besant (1972). Although his analysis showing the equivalence of his 

approach to that of Gill and Sankarasubramanian (1970) was later disputed by Gill and 

Sankarasubramanian (1980) and shown to be incorrect. 

All the literature mentioned above, provide solutions for the case of an infinite 

tube with no boundary conditions imposed in the axial direction (other than decay 

conditions at infinity). In fact, the author is unaware of any work that provides analytical 

treatments of finite length pipes with prescribed axial inlet/outlet conditions. This is 

understandable since analysis of the problem becomes even more difficult for finite 

length ducts and previous approaches, for the most part, become inapplicable. 

Furthermore, previous work is limited to very specific and rather simple boundary 

conditions imposed on the duct wall. The goal of the current work is to present a new 

semi-analytical solution that has the flexibility to be applied to a vast majority of 

heat/mass transfer problems in cylindrical ducts (as well as Cartesian slits). It is 

applicable to both finite and semi-infinite tubes and allows for general boundary 

conditions at the duct wall, inlet and outlet. The solution is semi-analytical because it 

involves a numerical Laplace inverse transform step in the time variable (which is 

numerically simple). For steady-state scenarios our approach produces fully-analytical 

solutions due to the absence of the Laplace transform step. The solution approach appears 

to be applicable to a wide class of partial differential equations (PDEs) (in both Cartesian 

and cylindrical coordinates) with variable coefficients, and parallels (and seems to 

extend) the Frobenius and power series methods for solving ordinary differential 

equations (ODEs). 
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K.2 Problem statement 

The transport of a dilute solute species under laminar flow of a single-phase 

Newtonian fluid within a cylindrical duct and subject to first-order decay is described by 

eq. K.1. We assume negligible entrance effects and assume fully developed flow starting 

from the pipe inlet, which is a good assumption for sufficiently long pipes and 

sufficiently small Reynolds numbers (exact quantification of the entrance length can be 

found in Durst et al., 2005). Additional assumptions include isothermal flow and a 

concentration-independent molecular diffusion coefficient. If the species is allowed to 

adsorb onto the walls of the duct and undergo an independent decay process, eq. K.2 is 

additionally needed to describe the rate of change of the adsorbed solute. Note that the 

form of eq. K.1 remains unchanged in the description of heat transfer under similar 

assumptions, in which case concentration needs to be replaced by temperature. In this 

case, eq. K.2, however, requires an additional diffusion term arising from the conduction 

of heat along the duct wall. This term will not be included in the analysis of here (since 

the focus is primarily on solute transport) and requires further analytic treatment. The 

solution approach presented in section K.3 is not limited to parabolic fluid velocity 

profiles (as it appears in eq. K.1). However, to keep the analysis simple we demonstrate 

the approach for a Newtonian fluid. An example of a non-Newtonian (power-law) fluid is 

discussed in section K.4.4. 
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In eq. K.1 and K.2, c is the concentration within the fluid bulk,  is the 

concentration of the adsorbed solute onto the duct wall, V0 is the maximum centerline 

fluid velocity, Dm is the molecular diffusion coefficient, ω is the rate of decay within the 

fluid bulk, δ is the pipe wall thickness, γ the rate of decay of the adsorbed solute, and R is 

the duct radius. Equations K.1 and K.2 are subject to the following initial and general 

boundary conditions: 

 

( 0, , ) 0c t x r   ( 0, ) 0t x         (K.3a) 

0| 0r

c

r






         (K.3b) 

| ( | )m r R r R

c
D h c

r
 


  


      (special cases: | 0r R

c

r






 and  | 0r Rc   ) (K.3c) 

1 0 2 0| | ( )x x

c
a a c f t

x
 


 


       (K.3d) 

1 2| | ( ) [0, ]

, 0 [0, )

x L x L

c
b b c g t if x L

x

c
c as x if x

x

 


   


    

 

         (K.3e) 

 

Eq. K.3b expresses the axial symmetry of the concentration profile across the duct 

cross-section. Eq. K.3c relates the rate of mass transfer at the duct wall to the 

concentration difference between the fluid bulk and the adsorbed solute (h is the mass 

transfer coefficient). To allow analytic treatment, this boundary condition assumes linear 

first-order adsorption rates. Two special cases of this boundary condition are also given 

within parentheses in eq. K.3c. Eq. K.3c is responsible for the coupling of eq. K.1 and 

K.2. Eq. K.3d and K.3e describe general boundary conditions imposed at the inlet and 

outlet of a finite pipe. 1a , 2a , 1b  and 2b can be, in their most general form, functions of r 

(the radial coordinate) (typically related to physical attributes of the system) without 
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setting any limitations on the analysis provided in section K.3. For convenience, they are 

assumed to be constant parameters throughout this appendix unless stated otherwise. A 

discussion pertaining to cases where these parameters are dependent on r is provided at 

the end of section K.3. For similar reasons, f  and g  are assumed to be arbitrary 

functions of time alone, whereas they can generally depend on r as well. For a semi-

infinite pipe the outlet condition is replaced by the limiting condition given in eq. K.3e. 

In order to reduce the number of free parameters and present our final results in a more 

useful format, eq. K.1-3 are non-dimensionalized with the following choice of non-

dimensional variables. 
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The characteristic concentration 0c  is typically chosen as the maximum 

concentration value attainable within the system. In the results presented in section K.4, it 

is chosen as the (constant) inlet concentration value. The resulting dimensionless 

differential equations are eq. K.5 and K.6: 
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Subject to the following dimensionless initial and boundary conditions: 
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In eq. K.5-7, Sh is the Sherwood (or Nusselt in heat transfer) number (mass 

transfer over diffusion), Pe is the Peclet number (advection over diffusion), and κ is the 

aspect ratio of the finite duct. DaI and DaII denote Damköhler numbers (reaction over 

advection) associated with the fluid bulk and the pipe wall respectively. It should be 

noted that for semi-infinite ducts L is replaced by R in all the equations above (eq. K.4-7) 

without any impact on the following mathematical analysis. Other parameters arising 

within eq. K.5-7 are defined in eq. K.7f. The functions f and g are simply obtained by 

transforming the time variable t into τ within f and g . 
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K.3 Problem solution 

As the first step the Laplace transforms of c and ϕ is taken with respect to the time 

variable (i.e. τ). The Laplace transform is defined as: 
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Thus eq. K.5, K.6 and K.7 respectively become: 
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Combining eq. K.10 and K.11b we obtain: 
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Thus we readily observe that by taking the Laplace transform we have decoupled 

eq. K.5 from K.6. Now, we formally introduce eq. K.13 as the solution to eq. K.9 subject 

to eq. K.11a, K.12, K.11c and K.11d. Note that the solution approach that follows bears 

similarities to the Frobenius method for solving ODEs with variable coefficients. 

Therefore, the following solution approach may be regarded as an extension to the 

Frobenius method (or power series method in Cartesian problems) for solving PDEs with 
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variable coefficients, and is expected to be applicable to a large class of PDEs in two-

variables. To the author’s knowledge, this is the first time such an extension is proposed 

(further discussion is provided at the end of this section). 
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Substituting eq. K.13 into eq. K.9 and grouping terms of the same ξ-power we obtain: 
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The derivatives appearing in eq. K.14 are with respect to the variable  . Using eq. 

K.14 all A2m terms can be written as a linear combination of A0 and its derivatives (i.e. eq. 

K.15): 
2

( )

2 2 , 0

0

( )
m

j

m m j

j

A A 


         (K.15) 

The α2m, j coefficients are readily computed recursively from eq. K.14 (note that 

α0,0 = 1). On the other hand, inserting eq. K.13 into eq. K.12 and eq. K.11a respectively 

yields: 
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Eq. K.17 is consistent with eq. K.14 obtained from the differential equation K.9. 

Note that the two special cases of boundary conditions at the duct wall (pointed out in eq. 

K.7c) yield the following equations instead of eq. K.16: 
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Since all An terms in eq. K.16, K.18 and K.19 can be written in terms of A0 and its 

derivatives, they can be considered as “transcendental equations” in the form of infinite-

order ordinary differential equations with respect to the single unknown function A0(λ). 

For computational purposes these equations need to be truncated to a finite number of 

terms; say NR (an even integer in this case). Therefore, truncating eq. K.16 (similarly eq. 

K.18 and K.19) and substituting eq. K.15 for all An terms with n ≥  2, we obtain the 

following: 
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Eq. K.20a is a linear, homogeneous, finite-order ordinary differential equation 

with constant coefficients. The ck coefficients given by eq. K.20b, K.20c and K.20d 
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correspond to eq. K.16, K.18 and K.19 respectively. Note that these coefficients may 

assume different forms depending on the specific problem at hand, but can be easily 

derived (e.g. non-Newtonian fluids when odd An terms are non-zero). In general, these 

coefficients are complex because the Laplace variable T may be complex. However, the 

numerical Laplace inversion algorithm used in this work (Stehfest, 1970; explained later 

in this section) requires function evaluations for which the Laplace variable T is real. In 

this case, the ck coefficients in eq. K.20a can also be expected to be real (because all other 

parameters involved are real) and we proceed further on this basis. We should note, 

however, that this by no means prevents one from using inverse algorithms that require 

function evaluations for complex values of T. The difference would be in the possible 

absence of conjugate roots in the characteristic polynomial (i.e. eq. K.21) discussed next. 

Eq. K.20a has very simple bases for its solution, which can be constructed from 

the roots of its characteristic polynomial given by eq. K.21. 
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The roots of this polynomial are easily obtained via computing the Eigenvalues of 

its companion matrix using a computer. Here, this is readily accomplished by calling the 

“roots” command in MATLAB. Note that this step is no more difficult than computing 

the roots of transcendental equations involving Bessel functions (for obtaining the 

Eigenvalues) in the approaches used by previous authors (e.g. Tseng and Besant, 1972). 

Depending on whether a given root is real or complex, eq. K.22 denotes its corresponding 

basis bi. 
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One may perhaps wish to also consider the possibility of repeated roots. However, 

the occurrence of repeated roots was never observed during numerous calculations 

conducted herein. This renders the analysis and its implementation into computer code 

much simpler. The general solution of eq. K.20a can now be constructed by linearly 

combining the bases bi given by eq. K.23. 
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In order to obtain the unknown βi coefficients, we substitute eq. K.13 into eq. 

K.11c and K.11d (and group similar ξ-powers) from which we get eq. K.24 for the inlet: 
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And eq. K.25 for the outlet of a finite duct: 
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Substituting eq. K.15 for all An terms in eq. K.24 and K.25, we obtain an infinite 

set of equations describing the boundary conditions of A0 at λ = 0 and 1 for a finite-length 

duct. Choosing from this system an equal number of boundary conditions at λ = 0 as at 

λ = 1, one can compute the βi coefficients in eq. K.23. This is done by solving a relatively 

small (depending on the order of truncation, NR) system of equations with respect to the 

unknowns βi. The treatment is even simpler for semi-infinite ducts. Namely, by 
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substituting eq. K.13 into the limiting boundary condition of eq. K.11d at infinity, we 

obtain: 
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Eq. K.26 dictates that bases, bi, in which the power of the exponential function is 

a positive number multiplied by λ (i.e. ire
 or iv

e
  where ri, νi > 0), have a corresponding 

βi coefficient that is zero. This reduces the number of the unknown βi coefficients to be 

calculated. A sufficient number of boundary conditions for A0 at λ = 0 is then chosen 

(from eq. K.24) to determine the rest of the βi coefficients (by again solving a relatively 

small system of equations). Since in the process of determining the βi coefficients it 

becomes necessary to accurately calculate the derivatives of the bases (i.e. bi), eq. K.27-

30 provide simple (and easy-to-implement) means of determining the kth-derivative of 

these bases.  
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Once the βi coefficients are calculated A0 is automatically obtained from eq. K.23. 

Subsequently all An terms can be obtained from eq. K.15. Substituting the An terms into 

eq. K.13 and eq. K.31 yields the analytical solution to the coupled differential equations 

K.5 and K.6 subject to the initial/boundary conditions of eq. K.7 in the Laplace time 

domain. Moreover, the cross-sectional average concentration in the Laplace time domain 

can be calculated from eq. K.32. 
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Finally, we need to transform the analytical solution (eq. K.13, K.31, K.32) from 

the Laplace domain back into the real time domain. Since the Laplace variable T has been 

absorbed into the formulation and into the roots of the characteristic polynomial given by 

eq. K.21, we need to perform the Laplace inversion numerically. In this work, we have 

used the well-known Stehfest (1970) method to perform the inversion. The method is 

given here by eq. K.33 for convenience. In eq. K.33, Y(T) is the Laplace transform of y(t), 

and NL is an even integer. We used this method due to its simplicity and thus ease in 

implementation. Many other Laplace inversion algorithms exist in the literature for which 

the reader is referred to Cheng (1994) and Duffy (2004). Note that one could either 

numerically invert the whole solution (i.e. eq. K.13, K.31 and K.32) at once, or only 

invert A0 and use derivative theorems to invert the rest of the An terms (the former was 

performed herein). The Laplace inversion is the only numerical step in the solution of the 

system given by eq. K.5-7. This is the reason why we refer to it as a semi-analytical 

solution. It is noteworthy that the steady-state solution of the system given by eq. K.5-7 
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does not require the Laplace transform and our analysis yields a fully-analytical solution 

to the problem. This is relevant for steady-state Graetz problems in finite or semi-infinite 

pipes. 
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We conclude this section with a few remarks. As mentioned earlier, the form of 

the solution given by eq. K.13 was inspired by the Frobenius method for solving ODEs 

with variable coefficients and regular singular points. In fact, if one were to draw a 

parallel and form the “indicial equation” for eq. K.9, by insisting A0(λ) ≠  0 one would 

obtain a double root of zero for this equation. This together with considering axial 

symmetry of the concentration field (via eq. K.11a) results in the proposed form of the 

solution (i.e. eq. K.13). Therefore, one can imagine how this way of viewing cylindrical 

problems (among others) both with axial and radial dependence allows for solving a vast 

number of problems by simply following the proposed steps. This in effect reduces the 

original variable coefficient partial differential equation into an infinite order ordinary 

differential equation with constant coefficients. The method allows for the examination of 

finite pipes (which does not appear to have been pursued by previous investigators) as 

well as semi-infinite pipes. One might be tempted to take the analogy with the Frobenius 

method to the extreme and apply it to annular flow geometries. However, non-trivial 

extensions of the current analysis are required which is outside the scope of this work. 

Interestingly enough, the method can also be applied for 2D Cartesian problems (e.g. 

flow through finite/semi-infinite slits) following the same steps outlined above. In this 
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case, eq. K.13 would be expanded with respect to the transverse y-coordinate (instead of 

the radial coordinate) and the resulting analysis would be similar to the power series 

method in solving ODEs (due to an absence of singularities). 

Finally, the formulation of physically meaningful and correct inlet and outlet 

conditions is a non-trivial task and has been the subject of extensive study (e.g. Liou and 

Wang, 1990). Among the different choices of inlet/outlet conditions, typically a 

generalized Dankwerts type boundary condition may be used (taking into account the 

velocity profile of the fluid within the pipe). This consists of Neumann boundary 

conditions at the outlet and an inlet condition of the form given by eq. K.34 (after non-

dimensionalizing and taking the Laplace transform with respect to the time variable). In 

eq. K.34, W(T) represents the Laplace transform of an arbitrary function of time w(τ). 
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By comparison of eq. K.34 with eq. K.11c, it is clear that a2 and F are functions 

of ξ. After substituting eq. K.13 into eq. K.34 and grouping similar ξ-power terms we get 

eq. K.35 as the inlet condition for eq. K.20a (instead of eq. K.24). The analysis then 

proceeds unaltered from this point forward. Therefore, complex radially dependent 

inlet/outlet conditions such as eq. K.34 can be naturally accommodated into the proposed 

solution approach. The verification results and examples provided in section K.4, 

however, focus on relatively simple inlet/outlet conditions. 
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K.4 Results and discussion 

We consider several special cases and present results obtained from the semi-

analytical solution (developed in the previous section). The results are then compared to 

Computational Fluid Dynamics (CFD) simulations performed in COMSOL
©

, which 

utilizes the Finite Element method (FEM) to solve eq. K.5. In the following, the number 

of terms used in the series expansion given by eq. K.13 was taken in the range NR = 50-

74 and the number of terms used in the numerical inverse Laplace transform (i.e. eq. 

K.33) was taken in the range NL = 12-16 (where NL is an even integer). The number of 

elements used in the COMSOL
©

 simulations was 32774 for the semi-infinite ducts, and 

12891 for the finite ducts. In both the semi-analytical solution and the COMSOL
©

 

simulations, NR, NL and number of FEM mesh refinements were increased until negligible 

changes in the results were recorded. In some of the following cases, small but noticeable 

differences between the two solutions are observed (especially at larger Peclet numbers). 

We ascribe this to the incomplete convergence of the series given by eq. K.13. Complete 

convergence could not be achieved for these cases, because inclusion of higher order 

terms in the series (i.e. eq. K.13) resulted in numerical instabilities as a result of finite 

precision arithmetic of computers. For the same reason, the following results could not be 

pursued to very high Peclet numbers (and are presented for Pe ≤ 40 for semi-infinite 

ducts and Pe ≤ 18 for finite ducts). This is discussed in further detail in section K.4.6, 
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where we present a convergence analysis for two of the presented cases in order to 

delineate the applicability limit of the solution. 

 

K.4.1 Zero concentration gradient at the wall, semi-infinite duct 

A semi-infinite duct with initial conditions given by eq. K.7a and boundary 

conditions given by eq. K.36 was considered (with no adsorption and no decay within the 

fluid bulk): 
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To simulate a semi-infinite duct in COMSOL©, a tube of length L = 10R was 

considered and the simulations were stopped before the outlet boundary was sensed by 

the evolving concentration field. Figure K.1 compares snapshots of radial and axial 

concentration profiles (at various radial and axial transects) obtained from the semi-

analytical solution (shown as solid lines) to those obtained from COMSOL© simulations 

(shown as circles) at three different Peclet numbers: Pe = 0.5, 15 and 40. As can be seen, 

there is very good agreement between the two and the boundary conditions are clearly 

satisfied. Figures K.1a and K.1b correspond to Pe = 0.5 and τ = 1, fig. K.1c and K.1d 

correspond to Pe = 15 and τ = 2.25, and fig. K.1e and K.1f correspond to Pe = 40 and 

τ = 6.3. 
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Figure K.1: Radial and axial concentration profiles obtained from the semi-analytical 

solution (solid line) and COMSOL© (circles) at three different Peclet 

numbers for a semi-infinite tube with zero concentration gradient at the duct 

wall. (a), (b) correspond to τ = 1and Pe = 0.5, (c), (d) correspond to τ = 2.25 

and Pe = 15, and (e), (f) correspond to τ = 6.3 and Pe = 40. 

 

K.4.2 Zero concentration at the wall, semi-infinite duct 

The boundary conditions for this case are given by eq. K.37 (with no adsorption 

and no decay within the fluid bulk). 
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Figure K.2: Radial and axial concentration profiles obtained from the semi-analytical 

solution (solid line) and COMSOL© (circles) at three different Peclet 

numbers for a semi-infinite tube with zero concentration at the duct wall. 

(a), (b) correspond to τ = 0.25 and Pe = 0.5, (c), (d) correspond to τ = 7.5 

and Pe = 15, and (e), (f) correspond to τ = 7.4 and Pe = 40. 

 

Figure K.2 compares the semi-analytical solution to the numerical solution of 

COMSOL© at three different Peclet numbers: Pe = 0.5, 15 and 40. Once again very good 

agreement between COMSOL© and the semi-analytical solution is observed, which 

clearly satisfy the boundary conditions imposed. As in the previous section, a tube length 

of L = 10R was considered to simulate semi-infinite ducts in COMSOL©. Figures K.2a 

and K.2b correspond to Pe = 0.5 and τ = 0.25, fig. K.2c and K.2d correspond to Pe = 15 

and τ = 7.5, and fig. K.2e and K.2f correspond to Pe = 40 and τ = 7.4. Note that in this 

case the concentration field eventually reaches steady state (due to solute outflux at the 
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duct wall), for which the analysis of section K.3 provides a fully analytical steady-state 

solution. 

 

K.4.3 Zero concentration gradient at the wall and outlet, finite duct 

The boundary conditions for this case are given by eq. K.38 (with no adsorption 

and no decay within the fluid bulk). 
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Figure K.3 compares the semi-analytical solution to the numerical solution of 

COMSOL
©

 at three different Peclet numbers: Pe = 0.5, 10 and 18. Since the ducts are 

finite in length, κ = 16 is chosen (κ defines the aspect ratio of the pipe). Once again very 

good agreement between COMSOL
©

 and the semi-analytical solution is observed, which 

satisfy the boundary conditions imposed. The satisfaction of the outlet conditions in 

figure K.3.f may not appear to be very clear. It was verified that this is due to a 

combination of using finite number of plotting points close to the outlet (in both the CFD 

and semi-analytical solutions), normalization of the axial coordinate by its length, and 

suppression of outlet effects due to the slight increase in Peclet number. Figures K.3a and 

K.3b correspond to Pe = 0.5 and τ = 0.32, fig. K.3c and K.3d correspond to Pe = 10 and 

τ = 1.2, and fig. K.3e and K.3f correspond to Pe = 18 and τ = 1.92. The outlet condition in 

eq. K.38 is commonly prescribed for finite length domains and is known as the 

Danckwerts (1953) exit condition. 
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Figure K.3: Radial and axial concentration profiles obtained from the semi-analytical 

solution (solid line) and COMSOL© (circles) at three different Peclet 

numbers for a finite tube (κ = 16) with zero concentration gradient at the 

duct wall and outlet. (a), (b) correspond to τ = 0.32 and Pe = 0.5, (c), (d) 

correspond to τ = 1.2 and Pe = 10, and (e), (f) correspond to τ = 1.92 and 

Pe = 18. 

 

K.4.4 Zero concentration gradient at the wall and zero concentration at the outlet, 

finite duct 

The boundary conditions for this case are given by eq. K.39 (with no adsorption 

and no decay within the fluid bulk). 
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Figure K.4: Radial and axial concentration profiles obtained from the semi-analytical 

solution (solid line) and COMSOL© (circles) at three different Peclet 

numbers for a finite tube (κ = 16) with zero concentration gradient at the 

duct wall and zero concentration at the outlet. (a), (b) correspond to τ = 0.44 

and Pe = 0.5, (c), (d) correspond to τ = 1.25 and Pe = 10, and (e), (f) 

correspond to τ = 1.21 and Pe = 18. 

 

Figure K.4 compares the semi-analytical solution to the numerical solution of 

COMSOL
©

 at three different Peclet numbers: Pe = 0.5, 10 and 18. Since the ducts are 

finite in length, κ = 16 is chosen. Once again very good agreement between COMSOL
©

 

and the semi-analytical solution is observed, which clearly satisfy the boundary 

conditions imposed. Figures K.4a and K.4b correspond to Pe = 0.5 and τ = 0.44, fig. K.4c 

and K.4d correspond to Pe = 10 and τ = 1.25, and fig. K.4e and K.4f correspond to 

Pe = 18 and τ = 1.21. In figure K.4, notice the formation of a thin boundary layer at the 

outlet of the duct. Numerical methods typically require substantial refinement in such 
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regions to avoid numerical errors, whereas the semi-analytical solution can produce 

accurate measures of the boundary layer thickness. 

 

K.4.4 Zero concentration gradient at the wall, semi-infinite duct, power-law fluid 

The analysis of section K.3 can also be applied to fluids with non-parabolic 

velocity profiles. This extends further the generality of the solution approach developed 

to almost arbitrary velocity profiles. As long as the velocity profile is analytic (i.e. has a 

Taylor expansion) around r = 0 the analysis remains unchanged (although one may wish 

to use a truncated version of the Taylor expansion for simplicity). This will naturally 

result in a different recursive relation for the An terms than eq. K.14 (with the odd terms 

possibly non-zero).  If the velocity profile is not analytic around r = 0, one can simply fit 

a low order polynomial to the velocity profile as an approximation (which would loosely 

be equivalent to the truncated version of its Taylor expansion around a different point). 

Here we choose to examine a power-law fluid with a power-law index of n = 1/3 

which results in the velocity profile V(ξ) = V0(1-ξ
4
). Following the steps of the analysis 

presented in section K.3, the recursive relation given by eq. K.40 is obtained for the An 

terms: 
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Figures K.5a and K.5b compare radial and axial concentration profiles obtained 

from the semi-analytical solution to those obtained from direct CFD simulations in 

COMSOL
©

. Initial and boundary conditions are similar to those in section K.4.1 (with no 

adsorption and no decay within the fluid bulk). These results correspond to Pe = 20 and 

τ = 5.57. A power-law index of n = 1/3 implies shear thinning behavior of the fluid, and 

thus a relatively flat velocity profile (also higher overall flow rate) compared to the 

Newtonian counterpart. For the same Peclet number this results in the transport of solute 

further downstream from the inlet compared to the Newtonian fluid. This is also partly 

because radial diffusion does not retard the advancing concentration front as much for the 

power-law fluid, due to low radial concentration gradients (except only near the walls) 

imposed by the velocity profile. This is clearly seen in figure K.5c for a Newtonian fluid 

under the same conditions (i.e. maximum fluid velocity, molecular diffusion coefficient 

and pipe dimensions). 

 

 

Figure K.5: (a) radial and (b) axial concentration profiles obtained from the semi-

analytical solution (solid line) and COMSOL© (circles) for a semi-infinite 

tube and a power-law fluid with a power-law index of n = 1/3, at Pe = 20 

and τ = 5.57. (c) axial profile of Newtonian fluid under the same conditions. 
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K.4.5 Adsorption and decay at the wall, semi-infinite duct 

The boundary conditions for this case are given by eq. K.41 (with no decay within 

the fluid bulk). 
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Figures K.6a and K.6b show radial and axial concentration profiles of the bulk 

fluid at various transects, and figure K.6c shows the deposition profile along the duct 

wall. These results correspond to Pe = 20, Sh = 10
6
, DaII = 500, Z = 50, and τ = 20, and 

note that they reflect the boundary condition imposed. Unfortunately these results could 

not be verified with COMSOL
©

 due to the additional coupled equation K.6 (which 

appears to be not supported by the software). Nevertheless, given the verifications 

performed in the previous sections, we assume that these results bear similar levels of 

accuracy as the ones already presented.  

 

 

Figure K.6: (a) radial and (b) axial fluid bulk concentration profiles obtained from the 

semi-analytical solution at τ = 20 for a semi-infinite tube with adsorption of 

solute at the duct wall where Pe = 20, Sh = 106, DaII = 500, Z = 50. (c) 

shows the concentration of the adsorbed solute onto the duct wall at this 

time. 
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K.4.6 Convergence analysis 

The rate of convergence of the series given by eq. K.13 depends upon the 

magnitude of the dimensionless parameters that comprise it (e.g. Pe). Here, for brevity, 

we focus on two of the more important cases already discussed, namely the semi-infinite 

duct of section K.4.1 and the finite duct of section K.4.3. In both cases, the parameters 

appearing in the An terms of eq. K.13 consist of T and Pe, and additionally κ for the finite 

duct case. As Pe and T increase the rate of convergence of the series in eq. K.13 

decreases, requiring more terms for its convergence (i.e. NR needs to increase). However, 

as NR increases beyond a certain limit the series becomes numerically unstable. The 

instability is a result of the order of magnitude differences arising within the internal 

numerics of the solution (mainly due to the recurrence relation given by eq. K.14) which 

leads to the compounding of round-off errors (due to finite precision arithmetic of 

computers). One instance where this occurs is in the computation of the βi coefficients in 

eq. K.23. As NR increases it becomes progressively more difficult to obtain accurate 

values for the βi coefficients, because the system of equations formed by the inlet/outlet 

conditions, given by eq. K.24 (and eq. K.25 for finite ducts), becomes increasingly more 

ill-conditioned. This poses a computational limit on the largest Peclet number (i.e. Pe) 

and smallest time (i.e. τ) for which we can obtain a meaningfully accurate solution. This 

should not be very surprising as similar observations of slow convergence rates for early 

times and high Peclet numbers were made in previously proposed solutions (e.g. Yu, 

1976).  

The convergence of the series in eq. K.13 was studied at various values of Pe, T 

and κ for the two cases mentioned. Specifically, for any fixed Pe (and κ for the finite duct 

case) the largest value of T (the Laplace time variable) for which eq. K.13 converges 

(without instabilities) within a relative error of 10
-4

 was determined. Convergence was 
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considered at four points with λ = 0.001, 0.01, 0.1, 1 and ξ = 1 (where it appeared to be 

the slowest). These maximum T values were then plotted against Pe and a power law 

function was fitted through the data. Eq. K.42 is the inequality that has to be satisfied in 

order for the series in eq. K.13 to converge within a relative error of 10
-4

. This inequality, 

in turn, sets a lower limit for the time variable τ, as they are related via eq. 43 if the 

Stehfest inversion algorithm (i.e. eq. K.33) is used. Combining eq. K.42 and K.43 we 

obtain eq. K.44 which delineates the smallest time (i.e. τ; as a function of Pe and NL) for 

which the semi-analytical solution can be applied without incurring numerical 

instabilities. There also exists a maximum Pe beyond which the series in eq. K.13 

becomes numerically unstable regardless of the value of T. The p and q fitting parameters 

as well as the maximum Pe are summarized in table K.1 for both the semi-infinite and 

finite duct cases considered. If a different Laplace inversion method is used, only eq. 

K.42 would be of value in deriving an inequality for τ similar to eq. K.44. Eq. K.42 and 

K.44 should be regarded as approximate as the behavior close to the limit may not be 

very accurate. At early times (where eq. K.44 is not satisfied), one may find the solution 

proposed by Lighthill (1966) complementary to the current solution, since neither the 

outlet nor the wall boundaries are likely to have been felt by the transporting solute. 
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 Infinite duct Finite duct 

Aspect ratio p q max Pe p q max Pe 

κ = 1 196 -0.67 ~60 268 -0.89 ~20 

κ = 4 - - - 999 -0.88 ~40 

κ = 16 - - - 4507 -1.0 ~80 

Table K.1: summary of exponent parameters in eq. K.42 and maximum Peclet numbers 

applicable for the infinite and finite duct cases considered in section K.4.6. 

 

We conclude section K.4 with the following comment: among all the previous 

literature reviewed, we believe the only method that may have the potential to be applied 

to finite length ducts is that of Yu’s (1976). To that end, the Fourier expansion (instead of 

the transform) of their infinite system of differential equations (in infinite unknowns) has 

to be taken, which makes the incorporation of general inlet/outlet conditions such as eq. 

K.7d and K.7e very difficult, if not unfeasible. The generality and ease-in-

implementation of the current analysis makes it much simpler and thus more favorable to 

that of Yu’s (1976), specifically because instead of dealing with an infinite array of 

differential equations one only deals with one (i.e. eq. K.20a). That said the current 

analysis has the aforementioned computational limit due to finite precision arithmetic of 

computers, making it inapplicable to very high Peclet numbers and very early times. For 

infinite ducts Yu’s analysis does not have this issue (although increasingly more terms in 

their expansion is also required), which seems to be due to the orthogonality of the radial 

basis chosen (i.e. zero order Bessel functions of first kind, instead of polynomials chosen 

herein; see eq. K.13). Therefore, in order to bridge the gap to higher Peclet numbers, one 

either has to remove the computational limit of the current semi-analytical solution 

(through some sort of scaling of the linear system constructed from the inlet/outlet 

conditions given by eq. K.24-25, or perturbation analysis of eq. K.20a) or investigate the 
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possibility of extending Yu’s work to finite-length ducts, both of which appear to be 

areas worth exploring further in the future. 

 

K.5 Applications 

The problem of solute transport within cylinders is ubiquitous in many 

engineering and biomedical applications. Therefore the solution approach presented in 

section K.3 may find interest in a number of different fields, a few of which are 

mentioned in the following. 

In nuclear science, high-temperature reactors of fission products are cooled using 

gaseous Helium. Small leaks of these products into the coolant are transported along 

cylindrical ducts, which then deposit onto the duct wall and undergo radioactive decay. 

An accurate estimate of these deposits would allow determining maintenance 

requirements to minimize any possible health hazards to the operators (Durkee, 1984). 

Durkee and Lee (1984) provide a solution for the estimation of the deposition profile, but 

the solution is limited due to the mathematical simplification made (i.e. eq. K.45 in their 

work). Specifically, their approach does not properly solve the transient problem at hand, 

but simply pre-multiplies the steady-state solution by a moving Heaviside function. 

In the chemical and petroleum industry, internal pipeline corrosion is one example 

where our semi-analytical solution might be utilized. The presence of corrosive 

constituents such as hydrogen sulfide (H2S), carbon dioxide (CO2) and salts within the 

fluid could cause corrosion of the transporting pipeline. Under appropriate boundary 

conditions at the pipe wall and neglecting the slight change in pipe diameter due to 

corrosion, one may calculate the rate of consumption of these solutes at the wall and thus 

obtain an estimate of axial corrosion profiles. The solution may also find use in the field 
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of microfluidic design and experimentation (see Toepke and Beebe, 2006), where duct 

diameters are sufficiently small for Peclet numbers to fall within the computational limit 

of the solution (see section K.4.6). 

In biomedical/biochemical sciences, intravenous delivery of drugs and bioactive 

agents into medium/slow flowing blood vessels such as arterioles and capillaries is a 

scenario in which the axial adsorption or accumulation of concentration near the 

endothelial cells may pose to be of important interest. Tangelder et al. (1986) studied 

velocity profiles within mesenteric arterioles of rabbits. A simple calculation shows that 

the Peclet regime within these arterioles is well within the range of the computational 

limit of our analysis (see section K.4.6). Furthermore, they show that the velocity profile 

within these arterioles is non-parabolic. In fact, the power-law velocity profile considered 

in section K.4.4 serves as a close approximation. Rugonyi (2008) developed a simplified 

model for estimating near-wall axial concentration profiles following drug release into 

blood vessels. Figure K.6c resembles qualitatively the profiles obtained by Rugonyi 

(2008) (although wall conditions and Peclet regimes differ). Note that the delivery of a 

finite amount of drug can be modeled by simply changing the inlet boundary condition 

given by eq. K.7d to eq. K.45. In eq. K.45, П is the rectangular function, c0 is the 

amplitude of the pulse injected and ε determines the duration of the injection period (i.e. 

τ = 0 to 1/ε). 

 

0 0| ( 0.5)c c             (K.45) 
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K.6 Conclusions 

We derive a semi-analytical solution to the transient advection-diffusion-reaction 

equation in finite and semi-infinite ducts. The solution is applicable for general radial- 

and time-dependent inlet/outlet conditions, complex boundary conditions on the duct wall 

including adsorption and decay, and arbitrary velocity profiles of the transporting fluid. 

This is the first time (to the best of our knowledge) such a solution is proposed for finite 

length ducts. The only numerical step of the solution is the inverse Laplace transform in 

the time variable. The approach also produces fully analytical steady-state solutions due 

to the absence of the Laplace transform step. The solution was verified against 

computational fluid dynamics (CFD) simulations for various boundary conditions and 

velocity profiles (Newtonian and power-law), and in all cases good agreement was 

obtained. In some cases, small but noticeable differences between the CFD and semi-

analytical solutions were observed (especially at larger Peclet numbers) which were 

ascribed to the incomplete convergence of the series given by eq. K.13. In these cases, 

addition of higher order terms resulted in numerical instabilities. These instabilities are a 

result of the order of magnitude differences arising within the internal numerics of the 

solution which leads to the compounding of round-off errors (due to finite precision 

arithmetic of computers). Therefore, although theoretically applicable to all regimes, the 

solution is computationally difficult at very high Peclet numbers and very early times. A 

convergence analysis was conducted to delineate the boundaries of this limit for two 

important cases: (a) a semi-infinite duct with Neumann wall conditions, and (b) a finite 

duct with Neumann wall and outlet conditions. For these cases, the minimum time and 

maximum Peclet number for which reliable results, devoid of said instabilities, could be 

obtained from the semi-analytical solution can be determined from eq. K.44 and table 

K.1. At early times (where eq. K.44 is not satisfied), one may find the solution proposed 
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by Lighthill (1966) complementary to the current solution, since neither the outlet nor the 

wall boundaries are likely to have been felt by the transporting solute. 

The derivation of the solution involved using a new approach for solving two-

dimensional partial differential equations (PDEs) with non-constant coefficients, which 

was inspired by the Frobenius (and power series) method for solving ordinary differential 

equations (ODEs). The approach converts the original variable coefficient PDE to a 

single infinite-order ODE with constant coefficients. Although applied here to problems 

in cylindrical coordinates, the method is applicable to Cartesian problems (e.g. flow 

through slits) as well. Thus, the method is suspected to provide solutions for a large class 

of PDEs of this type. The current solution may find applications in a number of 

engineering and/or biomedical fields, it can be used to verify numerical simulators and 

serve as a simple and easy-to-implement alternative where access to numerical simulators 

is not available. 
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