17 research outputs found

    A Unified View of Graph Regularity via Matrix Decompositions

    Full text link
    We prove algorithmic weak and \Szemeredi{} regularity lemmas for several classes of sparse graphs in the literature, for which only weak regularity lemmas were previously known. These include core-dense graphs, low threshold rank graphs, and (a version of) LpL^p upper regular graphs. More precisely, we define \emph{cut pseudorandom graphs}, we prove our regularity lemmas for these graphs, and then we show that cut pseudorandomness captures all of the above graph classes as special cases. The core of our approach is an abstracted matrix decomposition, roughly following Frieze and Kannan [Combinatorica '99] and \Lovasz{} and Szegedy [Geom.\ Func.\ Anal.\ '07], which can be computed by a simple algorithm by Charikar [AAC0 '00]. This gives rise to the class of cut pseudorandom graphs, and using work of Oveis Gharan and Trevisan [TOC '15], it also implies new PTASes for MAX-CUT, MAX-BISECTION, MIN-BISECTION for a significantly expanded class of input graphs. (It is NP Hard to get PTASes for these graphs in general.

    An LpL^p theory of sparse graph convergence I: limits, sparse random graph models, and power law distributions

    Full text link
    We introduce and develop a theory of limits for sequences of sparse graphs based on LpL^p graphons, which generalizes both the existing LL^\infty theory of dense graph limits and its extension by Bollob\'as and Riordan to sparse graphs without dense spots. In doing so, we replace the no dense spots hypothesis with weaker assumptions, which allow us to analyze graphs with power law degree distributions. This gives the first broadly applicable limit theory for sparse graphs with unbounded average degrees. In this paper, we lay the foundations of the LpL^p theory of graphons, characterize convergence, and develop corresponding random graph models, while we prove the equivalence of several alternative metrics in a companion paper.Comment: 44 page

    A Birthday Repetition Theorem and Complexity of Approximating Dense CSPs

    Get PDF
    A (k×l)(k \times l)-birthday repetition Gk×l\mathcal{G}^{k \times l} of a two-prover game G\mathcal{G} is a game in which the two provers are sent random sets of questions from G\mathcal{G} of sizes kk and ll respectively. These two sets are sampled independently uniformly among all sets of questions of those particular sizes. We prove the following birthday repetition theorem: when G\mathcal{G} satisfies some mild conditions, val(Gk×l)val(\mathcal{G}^{k \times l}) decreases exponentially in Ω(kl/n)\Omega(kl/n) where nn is the total number of questions. Our result positively resolves an open question posted by Aaronson, Impagliazzo and Moshkovitz (CCC 2014). As an application of our birthday repetition theorem, we obtain new fine-grained hardness of approximation results for dense CSPs. Specifically, we establish a tight trade-off between running time and approximation ratio for dense CSPs by showing conditional lower bounds, integrality gaps and approximation algorithms. In particular, for any sufficiently large ii and for every k2k \geq 2, we show the following results: - We exhibit an O(q1/i)O(q^{1/i})-approximation algorithm for dense Max kk-CSPs with alphabet size qq via Ok(i)O_k(i)-level of Sherali-Adams relaxation. - Through our birthday repetition theorem, we obtain an integrality gap of q1/iq^{1/i} for Ω~k(i)\tilde\Omega_k(i)-level Lasserre relaxation for fully-dense Max kk-CSP. - Assuming that there is a constant ϵ>0\epsilon > 0 such that Max 3SAT cannot be approximated to within (1ϵ)(1-\epsilon) of the optimal in sub-exponential time, our birthday repetition theorem implies that any algorithm that approximates fully-dense Max kk-CSP to within a q1/iq^{1/i} factor takes (nq)Ω~k(i)(nq)^{\tilde \Omega_k(i)} time, almost tightly matching the algorithmic result based on Sherali-Adams relaxation.Comment: 45 page

    Extremal results in sparse pseudorandom graphs

    Get PDF
    Szemer\'edi's regularity lemma is a fundamental tool in extremal combinatorics. However, the original version is only helpful in studying dense graphs. In the 1990s, Kohayakawa and R\"odl proved an analogue of Szemer\'edi's regularity lemma for sparse graphs as part of a general program toward extending extremal results to sparse graphs. Many of the key applications of Szemer\'edi's regularity lemma use an associated counting lemma. In order to prove extensions of these results which also apply to sparse graphs, it remained a well-known open problem to prove a counting lemma in sparse graphs. The main advance of this paper lies in a new counting lemma, proved following the functional approach of Gowers, which complements the sparse regularity lemma of Kohayakawa and R\"odl, allowing us to count small graphs in regular subgraphs of a sufficiently pseudorandom graph. We use this to prove sparse extensions of several well-known combinatorial theorems, including the removal lemmas for graphs and groups, the Erd\H{o}s-Stone-Simonovits theorem and Ramsey's theorem. These results extend and improve upon a substantial body of previous work.Comment: 70 pages, accepted for publication in Adv. Mat

    Strongly Refuting Random CSPs Below the Spectral Threshold

    Full text link
    Random constraint satisfaction problems (CSPs) are known to exhibit threshold phenomena: given a uniformly random instance of a CSP with nn variables and mm clauses, there is a value of m=Ω(n)m = \Omega(n) beyond which the CSP will be unsatisfiable with high probability. Strong refutation is the problem of certifying that no variable assignment satisfies more than a constant fraction of clauses; this is the natural algorithmic problem in the unsatisfiable regime (when m/n=ω(1)m/n = \omega(1)). Intuitively, strong refutation should become easier as the clause density m/nm/n grows, because the contradictions introduced by the random clauses become more locally apparent. For CSPs such as kk-SAT and kk-XOR, there is a long-standing gap between the clause density at which efficient strong refutation algorithms are known, m/nO~(nk/21)m/n \ge \widetilde O(n^{k/2-1}), and the clause density at which instances become unsatisfiable with high probability, m/n=ω(1)m/n = \omega (1). In this paper, we give spectral and sum-of-squares algorithms for strongly refuting random kk-XOR instances with clause density m/nO~(n(k/21)(1δ))m/n \ge \widetilde O(n^{(k/2-1)(1-\delta)}) in time exp(O~(nδ))\exp(\widetilde O(n^{\delta})) or in O~(nδ)\widetilde O(n^{\delta}) rounds of the sum-of-squares hierarchy, for any δ[0,1)\delta \in [0,1) and any integer k3k \ge 3. Our algorithms provide a smooth transition between the clause density at which polynomial-time algorithms are known at δ=0\delta = 0, and brute-force refutation at the satisfiability threshold when δ=1\delta = 1. We also leverage our kk-XOR results to obtain strong refutation algorithms for SAT (or any other Boolean CSP) at similar clause densities. Our algorithms match the known sum-of-squares lower bounds due to Grigoriev and Schonebeck, up to logarithmic factors. Additionally, we extend our techniques to give new results for certifying upper bounds on the injective tensor norm of random tensors
    corecore