4,328 research outputs found

    Analysis of approximate nearest neighbor searching with clustered point sets

    Full text link
    We present an empirical analysis of data structures for approximate nearest neighbor searching. We compare the well-known optimized kd-tree splitting method against two alternative splitting methods. The first, called the sliding-midpoint method, which attempts to balance the goals of producing subdivision cells of bounded aspect ratio, while not producing any empty cells. The second, called the minimum-ambiguity method is a query-based approach. In addition to the data points, it is also given a training set of query points for preprocessing. It employs a simple greedy algorithm to select the splitting plane that minimizes the average amount of ambiguity in the choice of the nearest neighbor for the training points. We provide an empirical analysis comparing these two methods against the optimized kd-tree construction for a number of synthetically generated data and query sets. We demonstrate that for clustered data and query sets, these algorithms can provide significant improvements over the standard kd-tree construction for approximate nearest neighbor searching.Comment: 20 pages, 8 figures. Presented at ALENEX '99, Baltimore, MD, Jan 15-16, 199

    High-dimensional approximate nearest neighbor: k-d Generalized Randomized Forests

    Get PDF
    We propose a new data-structure, the generalized randomized kd forest, or kgeraf, for approximate nearest neighbor searching in high dimensions. In particular, we introduce new randomization techniques to specify a set of independently constructed trees where search is performed simultaneously, hence increasing accuracy. We omit backtracking, and we optimize distance computations, thus accelerating queries. We release public domain software geraf and we compare it to existing implementations of state-of-the-art methods including BBD-trees, Locality Sensitive Hashing, randomized kd forests, and product quantization. Experimental results indicate that our method would be the method of choice in dimensions around 1,000, and probably up to 10,000, and pointsets of cardinality up to a few hundred thousands or even one million; this range of inputs is encountered in many critical applications today. For instance, we handle a real dataset of 10610^6 images represented in 960 dimensions with a query time of less than 11sec on average and 90\% responses being true nearest neighbors

    Maximum Inner-Product Search using Tree Data-structures

    Full text link
    The problem of {\em efficiently} finding the best match for a query in a given set with respect to the Euclidean distance or the cosine similarity has been extensively studied in literature. However, a closely related problem of efficiently finding the best match with respect to the inner product has never been explored in the general setting to the best of our knowledge. In this paper we consider this general problem and contrast it with the existing best-match algorithms. First, we propose a general branch-and-bound algorithm using a tree data structure. Subsequently, we present a dual-tree algorithm for the case where there are multiple queries. Finally we present a new data structure for increasing the efficiency of the dual-tree algorithm. These branch-and-bound algorithms involve novel bounds suited for the purpose of best-matching with inner products. We evaluate our proposed algorithms on a variety of data sets from various applications, and exhibit up to five orders of magnitude improvement in query time over the naive search technique.Comment: Under submission in KDD 201

    HD-Index: Pushing the Scalability-Accuracy Boundary for Approximate kNN Search in High-Dimensional Spaces

    Full text link
    Nearest neighbor searching of large databases in high-dimensional spaces is inherently difficult due to the curse of dimensionality. A flavor of approximation is, therefore, necessary to practically solve the problem of nearest neighbor search. In this paper, we propose a novel yet simple indexing scheme, HD-Index, to solve the problem of approximate k-nearest neighbor queries in massive high-dimensional databases. HD-Index consists of a set of novel hierarchical structures called RDB-trees built on Hilbert keys of database objects. The leaves of the RDB-trees store distances of database objects to reference objects, thereby allowing efficient pruning using distance filters. In addition to triangular inequality, we also use Ptolemaic inequality to produce better lower bounds. Experiments on massive (up to billion scale) high-dimensional (up to 1000+) datasets show that HD-Index is effective, efficient, and scalable.Comment: PVLDB 11(8):906-919, 201

    Down the Rabbit Hole: Robust Proximity Search and Density Estimation in Sublinear Space

    Full text link
    For a set of nn points in â„śd\Re^d, and parameters kk and \eps, we present a data structure that answers (1+\eps,k)-\ANN queries in logarithmic time. Surprisingly, the space used by the data-structure is \Otilde (n /k); that is, the space used is sublinear in the input size if kk is sufficiently large. Our approach provides a novel way to summarize geometric data, such that meaningful proximity queries on the data can be carried out using this sketch. Using this, we provide a sublinear space data-structure that can estimate the density of a point set under various measures, including: \begin{inparaenum}[(i)] \item sum of distances of kk closest points to the query point, and \item sum of squared distances of kk closest points to the query point. \end{inparaenum} Our approach generalizes to other distance based estimation of densities of similar flavor. We also study the problem of approximating some of these quantities when using sampling. In particular, we show that a sample of size \Otilde (n /k) is sufficient, in some restricted cases, to estimate the above quantities. Remarkably, the sample size has only linear dependency on the dimension

    Approximate Nearest Neighbor Search for Low Dimensional Queries

    Full text link
    We study the Approximate Nearest Neighbor problem for metric spaces where the query points are constrained to lie on a subspace of low doubling dimension, while the data is high-dimensional. We show that this problem can be solved efficiently despite the high dimensionality of the data.Comment: 25 page
    • …
    corecore