447 research outputs found

    Large Spatial Database Indexing with aX-tree

    Get PDF
    Spatial databases are optimized for the management of data stored based on their geometric space. Researchers through high degree scalability have proposed several spatial indexing structures towards this effect. Among these indexing structures is the X-tree. The existing X-trees and its variants are designed for dynamic environment, with the capability for handling insertions and deletions. Notwithstanding, the X-tree degrades on retrieval performance as dimensionality increases and brings about poor worst-case performance than sequential scan. We propose a new X-tree packing techniques for static spatial databases which performs better in space utilization through cautious packing. This new improved structure yields two basic advantage: It reduces the space overhead of the index and produces a better response time, because the aX-tree has a higher fan-out and so the tree always ends up shorter. New model for super-node construction and effective method for optimal packing using an improved str bulk-loading technique is proposed. The study reveals that proposed system performs better than many existing spatial indexing structure

    R*-Tree index in Cassandra for Geospatial Processing

    Get PDF
    Geospatial data has garnered enough attention in recent times that it is being used everywhere right from simple applications such as booking a taxi ride to complex applications such as autonomous driving. Though the attention towards geospatial processing is something new, substantial research has been going on for years. With the evolution of NoSQL databases in recent times, geospatial processing has attained a new dimension concerning its applications and capability. The most popular NoSQL database to be used for geospatial processing is the MongoDB followed by Cassandra. It is the indexing process that is important concerning the data at hand irrespective of the type of the database. Some of the most common indexes used for the geospatial processing are R-tree, R*-tree, B-tree, Z-curve. R*-tree is the area of our study as it is one among the widely used indexes for geospatial querying. The database of our interest is Cassandra as it is one among the widely used NoSQL database that does not have native support for geospatial query processing. To support geospatial workload, Cassandra should interact with external libraries such as GeoMesa and Solr. In particular, we are interested in the working of the GeoMesa as it uses the Z-curve as the indexing mechanism for the geospatial processing. R*-tree is a dynamic structure capable of representing multi-dimensional data whereas Z-curves are capable of representing multi-dimensional data in a single dimension. In this study, we compare and contrast the performance of R*-tree and Z-curve for various geospatial operations in Cassandra

    Enabling near-term prediction of status for intelligent transportation systems: Management techniques for data on mobile objects

    Get PDF
    Location Dependent Queries (LDQs) benefit from the rapid advances in communication and Global Positioning System (GPS) technologies to track moving objects\u27 locations, and improve the quality-of-life by providing location relevant services and information to end users. The enormity of the underlying data maintained by LDQ applications - a large quantity of mobile objects and their frequent mobility - is, however, a major obstacle in providing effective and efficient services. Motivated by this obstacle, this thesis sets out in the quest to find improved methods to efficiently index, access, retrieve, and update volatile LDQ related mobile object data and information. Challenges and research issues are discussed in detail, and solutions are presented and examined. --Abstract, page iii

    K-nearest neighbor search for fuzzy objects

    Get PDF
    The K-Nearest Neighbor search (kNN) problem has been investigated extensively in the past due to its broad range of applications. In this paper we study this problem in the context of fuzzy objects that have indeterministic boundaries. Fuzzy objects play an important role in many areas, such as biomedical image databases and GIS. Existing research on fuzzy objects mainly focuses on modelling basic fuzzy object types and operations, leaving the processing of more advanced queries such as kNN query untouched. In this paper, we propose two new kinds of kNN queries for fuzzy objects, Ad-hoc kNN query (AKNN) and Range kNN query (RKNN), to find the k nearest objects qualifying at a probability threshold or within a probability range. For efficient AKNN query processing, we optimize the basic best-first search algorithm by deriving more accurate approximations for the distance function between fuzzy objects and the query object. To improve the performance of RKNN search, effective pruning rules are developed to significantly reduce the search space and further speed up the candidate refinement process. The efficiency of our proposed algorithms as well as the optimization techniques are verified with an extensive set of experiments using both synthetic and real datasets

    A Heterogeneous High Performance Computing Framework For Ill-Structured Spatial Join Processing

    Get PDF
    The frequently employed spatial join processing over two large layers of polygonal datasets to detect cross-layer polygon pairs (CPP) satisfying a join-predicate faces challenges common to ill-structured sparse problems, namely, that of identifying the few intersecting cross-layer edges out of the quadratic universe. The algorithmic engineering challenge is compounded by GPGPU SIMT architecture. Spatial join involves lightweight filter phase typically using overlap test over minimum bounding rectangles (MBRs) to discard majority of CPPs, followed by refinement phase to rigorously test the join predicate over the edges of the surviving CPPs. In this dissertation, we develop new techniques - algorithms, data structure, i/o, load balancing and system implementation - to accelerate the two-phase spatial-join processing. We present a new filtering technique, called Common MBR Filter (CMF), which changes the overall characteristic of the spatial join algorithms wherein the refinement phase is no longer the computational bottleneck. CMF is designed based on the insight that intersecting cross-layer edges must lie within the rectangular intersection of the MBRs of CPPs, their common MBRs (CMBR). We also address a key limitation of CMF for class of spatial datasets with either large or dense active CMBRs by extended CMF, called CMF-grid, that effectively employs both CMBR and grid techniques by embedding a uniform grid over CMBR of each CPP, but of suitably engineered sizes for different CPPs. To show efficiency of CMF-based filters, extensive mathematical and experimental analysis is provided. Then, two GPU-based spatial join systems are proposed based on two CMF versions including four components: 1) sort-based MBR filter, 2) CMF/CMF-grid, 3) point-in-polygon test, and, 4) edge-intersection test. The systems show two orders of magnitude speedup over the optimized sequential GEOS C++ library. Furthermore, we present a distributed system of heterogeneous compute nodes to exploit GPU-CPU computing in order to scale up the computation. A load balancing model based on Integer Linear Programming (ILP) is formulated for this system. We also provide three heuristic algorithms to approximate the ILP. Finally, we develop MPI-cuda-GIS system based on this heterogeneous computing model by integrating our CUDA-based GPU system into a newly designed distributed framework designed based on Message Passing Interface (MPI). Experimental results show good scalability and performance of MPI-cuda-GIS system
    • …
    corecore