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A HETEROGENEOUS HIGH PERFORMANCE COMPUTING FRAMEWORK FOR

ILL-STRUCTURED SPATIAL JOIN PROCESSING

by

DANIAL AGHAJARIAN

Under the Direction of Sushil K. Prasad, Ph.D.

ABSTRACT

The frequently employed spatial join processing over two large layers of polygonal

datasets to detect cross-layer polygon pairs (CPP) satisfying a join-predicate faces challenges

common to ill-structured sparse problems, namely, that of identifying the few intersecting

cross-layer edges out of the quadratic universe. The algorithmic engineering challenge is

compounded by GPGPU SIMT architecture. Spatial join involves lightweight filter phase

typically using overlap test over minimum bounding rectangles (MBRs) to discard major-



ity of CPPs, followed by refinement phase to rigorously test the join predicate over the

edges of the surviving CPPs. In this dissertation, we develop new techniques - algorithms,

data structure, i/o, load balancing and system implementation - to accelerate the two-phase

spatial-join processing. We present a new filtering technique, called Common MBR Filter

(CMF ), which changes the overall characteristic of the spatial join algorithms wherein the

refinement phase is no longer the computational bottleneck. CMF is designed based on

the insight that intersecting cross-layer edges must lie within the rectangular intersection

of the MBRs of CPPs, their common MBRs (CMBR). We also address a key limitation of

CMF for class of spatial datasets with either large or dense active CMBRs by extended

CMF, called CMF-grid, that effectively employs both CMBR and grid techniques by embed-

ding a uniform grid over CMBR of each CPP, but of suitably engineered sizes for different

CPPs. To show efficiency of CMF-based filters, extensive mathematical and experimental

analysis is provided. Then, two GPU-based spatial join systems are proposed based on two

CMF versions including four components: 1) sort-based MBR filter, 2) CMF/CMF-grid, 3)

point-in-polygon test, and, 4) edge-intersection test. The systems show two orders of mag-

nitude speedup over the optimized sequential GEOS C++ library. Furthermore, we present

a distributed system of heterogeneous compute nodes to exploit GPU-CPU computing in

order to scale up the computation. A load balancing model based on Integer Linear Pro-

gramming (ILP) is formulated for this system. We also provide three heuristic algorithms to

approximate the ILP. Finally, we develop MPI-cuda-GIS system based on this heterogeneous

computing model by integrating our CUDA-based GPU system into a newly designed dis-

tributed platform designed based on Message Passing Interface (MPI). Experimental results

show good scalability and performance of MPI-cuda-GIS system.



INDEX WORDS: Spatial data, Spatial join, GPU computing, Parallel algorithm, Coloca-
tion pattern mining, Distributed systems, MPI, Heterogeneous systems,
Load balancing, ILP optimization
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Chapter 1

INTRODUCTION

1.1 Introduction

Given two large layers of spatial data representing spatial location of features and bound-

aries, medical images, traffic, electronic circuit and etc, finding cross layer objects satisfying

a predicate such as intersect, overlay, point in polygon, etc., is called spatial join. This

operation is significantly important in many applications including but not limited to Geo-

graphic Information System (GIS), Weather forecasting systems, Biology, VLSI and Social

sciences [1, 2]. The ever increasing volume of these spatial data on the one hand and the

crucial need of real-time processing of them in order to extract helpful information on the

other hand makes it necessary to exploit High Performance Computing (HPC) such domains.

For instance, NASA satellite data archives exceeded 500TB and it is still growing rapidly [3].

Also, the primitive-like overlay operation over two layers of spatial objects, including more

than 700,000 polygons using the state of art ArcGIS software can take more than 13 minutes

on a single compute node [4]. Another example is spatial join of a polyline table with 73M

records representing the contiguous USA with itself that takes roughly 20 hours to complete

on an Amazon EC2 instance [2]

To address these challenges, researchers have designed several distributed architec-

tures to make HPC computing available for geospatial processing including cloud-based

systems [5, 6], Message Passing Interface (MPI) systems [7], and map-reduce systems [8].

Most of these systems make use of powerful and expensive computing clusters to break

down the computations over several distributed nodes. Some of these applications handle

tremendous volume of spatial data which requires using many nodes. While those works

mainly have focused on the system design aspects, there are still some unexplored theoret-

ical and algorithmic areas in the field of spatial join processing that make it possible to
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efficiently reduce search space and as a result computing time decreases without using any

extra computing resources.

Furthermore, even with such a parallelism, employing only CPUs in modern heteroge-

neous architectures, typically equipped also with Graphic Processing Units (GPU), one to

two orders of speedup remains unharnessed [9]. One effective way of reducing the number of

nodes while keeping up with the required computing power is to accelerate the computations

using GPU. Therefore, effective employment of CPU-GPU pair is critical for real-time spatial

processing [1] [2]. GPUs are very popular among the HPC technologies as they are widely

available at low prices yet with powerful features. The state of art GPUs are very powerful

and can reduce CPU-GPU communications by directly transferring some data between each

other. For example, Tesla P100 GPU from NVIDIA with PascalTMarchitecture, has 16 GB

of the main memory and it provides 3, 584 Cuda cores operating at 1480 MHz base clock that

provides 5.3 TFLOPS of double precision floating point calculations. PascalTMarchitecture

also introduces NVLink, the new high speed interconnect technology for GPU-to-GPU and

GPU-to-system communications that is up to 5 times faster than traditional PCIe bus. Each

P100 GPU is equipped with four NVLink connections that can be used in various topolo-

gies. One popular architecture is a mesh network of 8 GPUs connected by these high-speed

links. In this topology GPU-CPU communications use the PCIe bus. Figure 1.1 illustrates a

traditional computing node versus GPU-enabled computing node. Theoretically, these GPU

nodes can process data orders of magnitude faster than traditional nodes depend on the

problem. Upgrading current nodes is a more feasible and less costly solution than adding

more nodes, moreover most supercomputing clusters are already equipped with GPUs and,

because of this, algorithms and data structures based on GPU-architecture are a good fit for

geospatial big data processing.

In general, spatial join is defined as follows: given two spatial datasets R and S and a

spatial join predicate ./ (e.g., overlap, contain, intersect) as input, spatial join returns the

set of all pairs (r, s) where r ∈ R, s ∈ S, and ./ is true for (r, s) [10]. A typical application of

a spatial join is “Find all pairs of rivers and cities that intersect.” Another polygonal spatial
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Figure (1.1) CPU-only computing node vs CPU-GPU computing node

join operation is ST Intersect in which for a given pair of polygons, it returns true if and

only if polygons share any portion of space [11].

Generally, spatial join algorithms over polygonal data follow a two-phase paradigm [10]:

• Filtering phase: reduces all the possible cross-layer polygon pairs to a set of potentially

intersecting candidate pairs based on Minimum Bounding Rectangle (MBR) overlap-

test.

• Refinement phase: removes any results produced during the filtering phase that do not

satisfy the join condition.

The filtering phase can be presented as an ill-structured problem. A problem is ill-

structured if it has well-defined beginning state but usually undefined end state, actions,

goals and constraints [12] [13]. We can represent ill-structured filtering problem as follows:

• Beginning State: We always start with two sets of spatial objects (P and Q where

|P | = m and |Q| = n)(well-defined)

• Goals: The general goal of filtering is to reduce search space as much as possible

for the refinement phase but we cannot further elaborate any objective goals for this

operations. (almost undefined)
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• Actions: As we will see in literature review section, there are several approaches that

have been applied for filtering spatial data including but not limited to R-tree, Quad-

tree, regular grid, plane sweeping and etc. It is also clear that no technique has superior

performance and depend on computing platform and properties of spatial datasets one

method may outperform the others. (undefined)

• End State: Depend on efficiency of applied actions and spatial distribution of objects

End State can vary from empty set to all possible spatial pairs ({(pi, qj) | 1 ≤ i ≤

m , 1 ≤ j ≤ n}). (undefined)

The refinement phase is significantly time-consuming. For instance, an analysis of join

operation on CPU over more than 10,000 spatial objects in [14] shows that refinement phase

takes five times more than the rest of the operations including filtering and parsing datasets.

While this study demonstrates the significance of refinement step, in the current literature,

most GPU-related works have only addressed the filtering phase algorithms.

1.2 Motivation

Based on what is stated so far, there are considerable issues in the current literature of

spatial join processing. The following summarizes these challenges:

1. Lack of efficient parallel data structures and algorithms: Tree-based data struc-

tures such as R-trees and interval trees have been used in spatial data processing. While

these data structures are designed for sequential algorithms, they are not currently suit-

able for large datasets over GPUs mostly because of their hierarchical structures and

memory usage in their implementations. Furthermore, building up tree structures in

cases which spatial objects are skewed such as tall or wide MBRs is inefficient [15].

2. Unexplored efficient filtering techniques: MBR overlap test is the standard

method for filtering out disjoint pairs of objects. However, due to its insufficient

filtering capabilities, output of filtering phase is still too large. There are some un-
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explored aspects of filtering algorithms that can make room for further elimination of

potentially interesting pairs before computationally-extensive refinement phase.

3. Inadequate GPU-based spatial join primitive libraries: Although CudaGIS [16]

has introduced some spatial operations over GPUs, this library is not comprehensive

and some primitives such as edge-intersection are not covered. Also, some of the opera-

tions such as point-in-polygon test are not designed to fully leverage GPU architecture

capabilities.

4. Lack of efficient GPU-based spatial join processing systems: People have used

GPUs for partially processing spatial data but to the best of our knowledge there are

not GPU-based systems for polygonal overlay and ST intersect.

5. Lack of heterogenous distributed systems for processing spatial data: Cur-

rently, all the distributed systems are designed to work on powerful clusters to take

advantage of couple hundreds CPU cores. While almost all the recently built clusters

are also equipped with GPUs, developing a system for heterogenous computing model

to use CPU-GPU power at the same time can significantly increase the speedup and

lead to more scalability.

The goal of this dissertation is to study current challenges of data structure and algo-

rithms used in filtering and refinement phases of spatial join systems and address some of

them based on the state of art heterogeneous models (CPU-GPU-based) to make it pos-

sible to process spatial big data in a near-real-time manner. The rest of this manuscript

is organized as follows: In Chapter 2, first, we provide the basic definitions and concepts.

Then, various aspects of spatial join problem in the current literature are explored in details.

Chapter 3 formulates CMF, a novel space reduction filter based on Common MBR (CMBR)

of two MBR-overlapping spatial objects, and proposes a GPU-based system for spatial join

processing of large polygonal datasets. In Chapter 4, we extend the concept of CMF filter

to CMF-Grid by applying a uniform grid technique over the CMBR area. CMF-Grid effec-

tively achieves more performance over CMF in cases where spatial objects are dense in their
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CMBRs. Chapter 5 provides an example of spatial join in colocation mining over GPU. Our

proposed GPU optimization shows a significant improvement over recently grid-based tech-

nique. Then, in Chapter 6, optimization of load balancing and processing of spatial data in

distributed heterogeneous computing environments is formulated as an Integer Linear Pro-

gramming (ILP) problem. Then, we propose MPI-cuda-GIS system, a distributed system

that integrates CPU and GPU computing into a HPC framework based on MPI and cuda

architectures. Finally, we provide conclusion of future works of our research in Chapter 7.
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Chapter 2

LITERATURE REVIEW

2.1 Introduction

Spatial vector data is a general term that can be applied to any data that presents

geographical objects and locations in any form, referred as spatial data types [17], such as

lines, rectangles, points, or in general polygons. These objects can be one, two or three

dimensional and are used in the same way as attribute data types such as integers, floats

and strings [18]. In other words, every part of a map (cities, rivers, highways, intersections,

forests, electronic objects, etc.) can be presented as a spatial object in the form of geometric

shapes. There are wide ranges of applications from Computer Aided Design (CAD) to

Geographical Information Systems that use these spatial data to process their data [19, 20,

21]. In general, these processes can be any operation on any number of operands representing

the relation between one (etc. self-spatial join), two or more (multiway join) sets of spatial

objects [22]. In the literature, general problem sometimes is reffered as overlay problem [23]

where operations, as well as the number and the type of operands can be of any arbitrary

form; However in practice, binary intersection is more popular. In this chapter, we study

different algorithms used for spatial join. In particular, hierarchical data structures such as

various kind of trees and their applications in spatial join processing and indexing will be

explored in details. We classify these techniques and point out their issues such as memory

limitations and managements. The main goals of this chapter can be summarized as follows:

• We state the basic definitions that are used for comparison and evaluation of different

spatial data structures.

• We provide an introduction of indexing data structures and digging into their basic

concepts. We also state pros and cons of each structure in different applications and
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datasets.

• We review the spatial join techniques in the literature in the following subcategories:

– Hierarchical tree-based and plane sweep algorithms for spatial join processing.

– Grid-based techniques for spatial join processing.

– Distributed systems for spatial join processing.

The rest of this chapter is organized as follow. In the next section, we describe gen-

eral spatial join problem and the basic concepts. Then, we state the classification of data

structures and algorithms. The hierarchical indexing data structures based on classification

is presented in Section 2.3. Grid-based techniques are explained in Section 2.4. Finally, we

point out spatial join systems in Section 2.5.

2.2 Basic Definitions

We presents some basic definitions from the literature that may be used for comparing

the space or performance efficiency of different indexing methods. For some definitions, there

is more than one definition and we try to cover all of them.

2.2.1 Overlap

Overlap is the amount of volume is covered with more than one spatial object. Overlap

has a direct impact on query efficiency. The more the overlap, the less efficient queries we

will have. More overlap means more paths to the search for finding a given query. Efficient

data structures tend to minimize overlap parameter. For example in R-tree, if an interested

area is covered with k intermediate nodes, then k paths must be searched in the worse-case

scenario that increases the processing time by factor of O(k). In [24] two definitions is

presented for overlap as follow:

Simple overlap: The portion of the space covered with more than one hyper-rectangle

in a node. Assume {R1, R2, ..., Rn} is the set of hyper-rectangles in a given node. Then the
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overlap is defined as:

simple overlap =
‖
⋃
i 6=j Ri ∩Rj‖
‖
⋃n
i=1Ri‖

(2.1)

Where ‖A‖ is the volume covered by hyper-rectangle A. This is a simple definition of

overlap that does not take the number of overlapping objects into account. To address this

issue, the weighted overlap is defined as follows:

Weighted overlap: Weighted overlap is the portion of objects lying in the overlapping

area defined as:

simple overlap =
|{p | p ∈

⋃
i 6=j Ri ∩Rj}|

|{p | p ∈
⋃n
i=1Ri}|

(2.2)

where |A| denotes number of elements in A. If the distribution of data is not uniform,

weighted overlap is more efficient than simple overlap.

2.2.2 Coverage

The overall area covered of all the leaf nodes in a tree is defined as coverage [25] formu-

lated as follows:

coverage =
n∑
i=1

|LFi|∑
j=1

A(LFi(j)) (2.3)

where n is the number of leaf nodes in the data structure, LFi is the set of all objects in

the i-th leaf node and A(X) is the area covered by object X. Coverage can also be defined

over other levels of a tree in the same way as leaf level. Efficient data structures tend to

minimize this parameter because the smaller coverage the less dead space (the area covered

in the tree while it contains no object) will be in the data structure.

2.2.3 Range queries

There are different types of range queries for spatial data; however, generally speaking,

range queries can be expressed by determining a region (region query). The formal definition

of range query is presented as follow: given a k dimensional space of the form D0, D1, ..., Dk−1,

we define an interval over this domain as I0× I1× ...× Ik−1 such that Ii ∈ Di. Then, various
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kinds of range queries are defined as below [26]:

Partial range queries: if some of the intervals in a range query are full domains, the

query is a partial range query, more precisely:

{I0 × I1 × ...× Ik−1 | ∃i such that Ii = Di}

Partial match query: If some of the intervals are points and the rest are full domains.

In the other words:

{I0 × I1 × ...× Ik−1 | ∃i such that Ii = a point ∧ (∀i Ii ∈ {point,Di})}

Exact match query: If all the intervals are points that is:

{I0 × I1 × ...× Ik−1 | ∀i Ii ∈ is a point)}

2.2.4 Window-based queries

The following queries are defined based on a window area [27]:

Exist queries: The query to determine whether or not a particular feature exists inside

a window.

Report queries: It finds identity of all the features inside a window. This is the same

as ”exist” query with an additional step of accumulating features and report them as a set

of features that overlap the window.

Select queries: It finds all the blocks that feature f entirely covers inside the window.

In another classifications [28], stated below, ”Exist” and ”report” queries are considered the

same:

Location-based queries: In this query, we are interested in features associated with

a particular location. For example, ”What are Interstate highways passing through Atlanta

area?”.

Feature-based queries: In this case, we are looking for all areas having a specific

feature. For example, ”Which cities does I85 highway pass through?” is a feature-based

query.
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2.2.5 q-edge

A q-edge is part of a line that passes through a block. If both endpoints of an q-edge

are of the degree 1 (no connection), it is called isolated q-edge. In the Figure 2.1 the red

and blue sections of lines, a and b, are examples of q-edge while line b is an isolated q-edge.

Figure (2.1) Two q-edge examples. The blue section of line b and red section of line a are
q-edge. Line b is called an isolated q-edge as its two ends have no connection.

2.3 Hierarchical Indexing Spatial Data Structures

In the following subsections, we explain each hierarchical indexing data structure with

examples and their differences and applications.

2.3.1 R-tree

This data structure is one of the most basic and early tree structures [29]. The key idea

of R-tree is to represent nearby objects together using a MBR covering them. Spatial infor-

mation is stored in leaf nodes using joint rectangles as containers. Leaves contain pointers

to actual objects that usually are stored in disk pages. All leaf nodes in the R-tree contain

index records of the form (I, tupleid) which I = {I0, I1, ..., In−1} and n is dimension and Ii

is closed bounded interval [a, b] describing the extension of the object in that dimension.

On the other hand, non-leaf nodes are in the form of (I, childpntr) where childpntr is the

address of a child node in the subtree and I is the rectangle that covers all the children of

that node [29]. Intermediate nodes are associated with some MBRs enclosing all the MBRs

corresponding to its children nodes.
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The degree of a R-tree is (m, M) pair where m ≤ M
2

and each node except the root

must have between m and M index records and root must have at least two children unless

it is a leaf node. Furthermore, each R-tree like B-tree is a height-balance tree [30] and

all the leaves appear in the same level. Height of R-tree with N index records is at most

dlogmNe − 1. Performance tuning factors of R-tree are parameters m and M. Simulation

results have shown that linear node-split algorithm is as good as other more complicated

algorithm in R-trees [29].

R-trees have some drawbacks. First, the MBRs in the leaves are overlapping which

can degrade searching performance of R-trees drastically as shown in Figure 2.2. Another

problem with R-trees is that they just consider area for their splitting algorithms [31]. In

the section related to R*-tree has shown that this heuristic criterion does not necessarily end

up to best possible result.

Figure (2.2) R-tree example of the degree (2,3), (a) line data. (b) MBR splits of the region
with regards to the line data.(c) Corresponding R-tree.

Figure 2.2 is an example of R-tree with degree (2, 3). As shown, MBRs have overlap

with each other and this degrades the efficiency of R-tree structure. In Fig 2.2, in order to

find associated line to point Q, search must be started from root. Both R1 and R2 in the

root contain point Q. Therefore, we have to search both of them. Searching R1 will not lead

to any result. Finally, by searching R2 and then R5, we are able to find line i.
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2.3.2 R∗-tree

The R-tree optimization algorithms try to minimize the area of each bounding rectangle

in the inner nodes heuristically. There is no proof to show that this heuristic can always

achieve the best possible insertion path. On the other words, the R-tree structure takes only

area into consideration while all the other parameters have impacts on each other and it

is not possible to optimize one without considering the influences of others on the overall

performance. The main idea of R* tree is to address this problem by taking more parameters

into account such as area, margin, and overlap and providing the following rules [31]:

1. Minimizing the area covered by a directory rectangle: this improves the per-

formance by making it possible to choose traversed path in higher levels of tree.

2. Minimizing the overlap between directory rectangles: it decreases the number

of paths to be traversed.

3. Minimizing the margin of a directory rectangle: it leads to more quadratic

rectangles that ultimately improves the structure.

4. Optimizing storage utilization: the higher the storage cost, the lower the query

cost as tree height will be kept low.

In the table 3, the some examples of criteria combinations and their effects have been

presented: R∗ tree algorithms outperforms their R-tree counterparts by considering the area,

margin, and overlap of the directory rectangles and optimizing all of them at the same time.

Thus, this data structure is robust against unusual data distribution. Also, R∗-tree improves

its insertion cost by using Forced Reinsert operation which changes entries between adjacent

nodes to decrease the overlap leading to higher data utilization, less split and margin by

using more CPU cost [31].

The experimental results in [24] shows that R∗-tree does not efficiently support indexing

of more than five dimensions. Figure 2.3 plots the overlap of a R∗-tree versus the dimension.

As the number of dimensions increases there are more overlap in the data structure. In fact,
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Table (2.1) Effect of different criteria combinations on R∗-tree performance

Criteria combination Description Impacs

#1 and #2 Requires More freedom in number of rect-
angles in a node

Lower storage utilization,
Higher margin

#1 Covering of data space is reduced Higher margin, Potentially
less overlap

#3 Better packing May either reduce or increase
storage utilization

#4 Sufficiently large query rectangles, will be
effected more by #4 than #1 to #3

for dimension of 5, the overlap reaches to 90%. Finally, the main drawbacks of R* trees are

listed below:

• Allocation process of entries onto the nodes is non-deterministic and highly data de-

pendence (The same as R-tree).

• Implementation cost of R∗-tree is more than R-tree.

Figure (2.3) Overlap of R∗-tree vs. the dimension of space.

2.3.3 R+-tree

R+-tree is an extension of k-d-B-tree [32] that is built based on disjoint areas to avoid

overlap. In the R-tree, each actual object belongs to one MBR in the leaf level while in the

R+-tree each object is associated to all rectangles that it intersects. On the other words, it
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implies that rectangles in the leaves are not necessarily minimum bounding rectangles. As

a result each object may appear in more than leaf node [23].

In the R+-tree, each leaf node is of the form (oid, Rect) where oid is a pointer refers to a

object in the database and Rect is used to describe the bounds of that object. On the other

hand, an intermediate node is of the form (p,Rect) where p points to lower level of the tree

and Rect is a bounding rectangle which encloses all the children rectangles. Despite leaf-

level rectangles, middle-level rectangles are minimum bounding. Similar to R-tree, leaves

in R+-tree are in the same level (tree is balanced). Finally, as leaf-level rectangles do not

have any overlap, R+-tree has search performance advantage over R-tree especially in point

queries [32]. Another important difference between R-tree and R+-tree is that although in R-

tree number of entries in each node is between m and M/2, this property does not necessarily

hold in R+-tree. However, [26] showed that in practice storage utilization in k-d-B-trees, as

the basic type of R+-tree, remains in acceptable levels close to B-trees.

Finally, to clarify difference between R-tree and R+-tree, the same spatial data in R-tree

example is indexed by R+-tree in the Figure 2.4. As shown, given a point, there is only one

path from root to leaf and this makes search algorithm fast and efficient. As mentioned

above, the problem with this data structure, is that each object may appear in more than

one leaf node that may cause too much overhead.

Figure (2.4) R+-tree example, (a) line data. (b) MBR splits of the region with regards to
the line data.(c) Corresponding R+-tree.



16

2.3.4 X-tree

R∗-tree is not efficient enough to index high-dimensional data because of its higher

overlap. X-tree (eXtended node tree) [24] is introduced to address this issue. Although, the

structure still uses joint rectangles in the directory, the X-tree, as its name implies, tries to

minimize the overlap by introducing super nodes.

Before introducing X-tree, there were two main approaches to deal with high-

dimensional data [24]. The first approach assumes that high-dimensional data are highly cor-

related and as a result informative data are just in some subspaces of that high-dimensional

space. Thus, they can transform high-dimensional data to lower dimensions without any data

loss where data can efficiently be indexed using traditional methods. The second approach

also assumes that in majority of high-dimensional data, a small number of dimensions have

the most of information. Although, reducing dimension is an efficient technique and must

be applied wherever possible. Practical results of this approach show that the dimension of

reduced-space data is still too large.

The main idea of X-tree data structure is to minimize overlap of the directory by using

a new organization of tree that is optimized for high-dimensional space [24]. Generally

speaking, the main reason of overlap is splitting and X-tree tends to reduce the overlap by

avoiding splitting. Instead, it extends directory nodes over normal block size by introducing

super node. By increasing the size of a node, we take advantage of the fact that sequential

search of entries in a super node is much faster than sequential search of all children nodes

(overlap area) with additional overhead of many random page accesses.

The X-tree structure can be viewed as a hybrid approach that combines linear array

with hierarchical R-tree-like structure [24]. In a very low dimensional space that typically

there is no overlap or overlap rarely happens, most efficient organization is a hierarchical

data structure such as R-tree. This is because selectivity in the directory is very high and

the number of required page accesses is directly related to height of the tree. On the other

hand, there are so many overlaps in high dimensional spaces and most of directories must be

searched in order to answer queries. In the case of full overlap in which the whole directory



17

search is needed, the linear directory structure requires less space and performs faster. But

in medium dimensionality cases, a hybrid solution such as X-tree performs well.

Figure 2.5 [24]. illustrates the general structure of X-tree. The leaf nodes contain

rectilinear MBRs together with pointers to the actual objects. The nodes in the middle

or directory nodes contain MBRs together with pointers to their children. X-tree includes

three different types of nodes: 1) data nodes or leaf nodes, 2) directory nodes, and 3) super

nodes. Super nodes, as their names implies, have large variable sizes to avoid splitting to

improve efficiency. In fact, super nodes are alternative to have highly overlapped children

that results in inefficient directories. Despite R-tree with large node sizes, X-tree provides a

heterogeneous structure that makes large nodes (super nodes) wherever it is required.

Figure (2.5) An example of X-tree data structure

Super nodes are created during insertion whenever there is no other way to avoid overlap

and due to the fact that overlap increases as dimensionality goes higher, the internal structure

of X-tree also changes with increasing dimension. Figure 2.6 [24] distinguishes these cases.

Finally, two extreme cases of X-tree structure is explained in [24]. First, no directory has

super node that the structure is the same as R-tree and happens in low dimensionality.

Second, only there is one large super node (root) that happens in high dimensional space or

highly-overlapped data. Experimental results presented in this paper shows that both page

access and CPU time in X-tree has improved over R-tree and this improvement increases in

higher dimensionality.
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Figure (2.6) X-tree with different dimensionality.

2.3.5 KDB-tree

In some applications we want to answer range queries from a large dynamic indexed data

stored in external memory given a k-dimensional key as {key0, ..., keyk−1}. [26] addressed

this problem using K-D-B-trees. A very special case of K=1 (one dimensional key) can be

efficiently solved by B-trees or one of its variants. Also, in the case of static data (data which

do not change frequently), one can use static data structures such as K-D tree or pseudo-

dynamic techniques such as overflow areas for inserting data. K-D-B-trees are balanced

trees with fixed-size nodes like B-trees, however unlike B-trees, 50% utilization cannot be

guaranteed theoretically. Basically, the combination of some B-tree and K-D-tree properties

makes this data structure and one can expect I/O efficiency of B-tree and multi-dimensional

search efficiency of KD-tree in K-D-B-tree [26].

As mentioned above, each K-D-B-tree, in general has K dimensional key domains (point)

as elements of domain0 × domain1 × ...× domaink−1 and each region can be defined as the

set of points (x0, x1, ..., xk−1) satisfying the following criteria [26]:

mini ≤ xi ≤ maxi , 0 ≤ i ≤ k − 1 where mini,maxi ∈ domaini

Also there are two types of pages in a K-D-B-tree:

• Region pages: a collection of (region, page ID) pairs.

• Point pages: a collection of (point, location) pairs where location is the address of

the database record.

Every K-D-B-tree can be defined with the following set of properties [26]:
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• Region pages can be neither empty nor contain null pointers.

• Point pages are the leaf nodes of the tree.

• The regions in each page must be disjoint.

• If both node and children are region pages, then, the union of the children regions must

be equals to region page. If child page is a point page, then all the points must be in

region.

The principle operations such as various queries, insertion, deletion, and reorganization

are facilitated by introducing the concept of splitting of regions. Despite B-trees, insertion

algorithm in K-D-B-tree forces pages at lower levels to split even though they are not overfull.

Experimental results verify efficient search structure for large multi-dimensional indexes

(k ≥ 2. Moreover, full rage queries are quite efficient in this data structure, however, if

objectives are partial match or partial range queries, other search structures such as K-D-

tree might perform better [26].

2.3.6 Quad-tree

The major problem with all variations of R-tree data structures is that they are data-

dependent and it is difficult to find the best composition for some data. Quad-tree address

this dependency issue while they still provide disjoint adaptive decomposition of the space

based on data distribution. The block sizes in the quad-tree are quadratic and also each side

is a power of two. Furthermore, the block positions are predefined.

There are variants of quad-tree. They can be differentiated based on the type of

data they represent (rectangles, points, regions, curves, surfaces and volumes), decompo-

sition rules (regular decomposition or data-governed rules) and resolution (fixed or data-

dependent) [23]. In the following, we explain each variant and classify them based on their

properties and applications in the literature.



20

2.3.6.1 Region quad-tree Region quad-trees [33] can represent a region by its

interior data based on recursive decomposition. The main idea of quad-tree is successive

subdivision of the whole area to find the maximal blocks. Each block has a maximum

capacity and as long as its size is not below the upper bound, it will be broken into smaller

blocks. For example in 2D space, the square area is recursively divided into four equal-size

areas. Quad-trees can store different data types. For example, Figure 2.7 [33] illusterates a

binary data representation in a quad-tree. The recursive subdivision continues in each sub-

square to reach to an entirely uniform area (consist of entirely 1′s or 0′s) [33]. As shown,

block sizes are adaptive based on data distribution, but their sizes are always a power of 2

as a result of consecutive halving of each block.

Figure (2.7) Region quad-tree example, (a) Simple region. (b) Binary representation of
region. (c) Maximal blocks. (d) Corresponding quad-tree.

2.3.6.2 PR quad-tree PR quad-tree (Point Region) uses the same structure as

region quad-tree to store point data [34]. Points are only stored at leaf level (one point in

each node). The drawback of this data structure is that the height of the tree depends on the

minimum separation between points. Bucketing technique can improve the structure. The

idea is the decompose a block only if it contains more than a given threshold. PR quad-trees

are popular in search applications. For example, given a record (point), determine all the

records in a specific distance from it [23].
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2.3.6.3 PM quad-tree PM-quad-tree [28] can store polygonal maps (it is actually

an adaptation of the PR quad-tree). They provide a reasonably compact representation that

satisfies the following three requirements:

1. Storing polygon maps without information loss.

2. Positioning of the map does not affect the structure drastically. For example, shift and

rotation do not significantly increase the required storage for the map.

3. Data structure manipulation is efficient.

To address these requirements, they propose some decomposition criteria as follow:

• C1: At most one vertex can lie in a quad-tree leaf.

• C2: At most one q-edge can be in each leaf.

• C2’: A region that has a vertex, cannot contain any q-edge that includes that vertex.

• C3: A region contains no vertex, can have at most one q-edge.

• C3’: A region contains no vertex, can have only q-edges that meet a common vertex

exterior to the region.

Based on these criteria, three PM-trees [23] are proposed (PM1 to PM3) summarized in

the Figure 2.2 [28]. Figure 2.7 shows that the depth of tree from PM1 to PM3 is decreasing.

In the best case (PM3), the only criterion is C1 (Figure 2.8.c). While PR quad-tree and PM

quad-tree are similar in some aspects, PM3 stores more information in the leaf level without

any information loss. PM quad-tree is efficient in storing dynamic line segments and point

data types as well as map overlay algorithms [23].

PR quad-tree and PM quad-tree are similar in some ways. For example, when a point

is located on the border of some areas, it is inserted in all nodes on whose border , in the

case of PM quad-tree, when a line or part of it, falls on the border between two area, it is

inserted in all nodes associated to that border. Although decomposition rules in PM3 and
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Figure (2.8) Different variants of PM quad-trees, (a) PM1 quad-tree meeting criteria C1,
C2’ and C3. (b) PM2 quadtree meeting criteria C1, C2’ and C3’. (c) PM3 quadtree meeting
criteria C1.

Table (2.2) The summary of PM1 to PM3 quad-tree data structures

Name Criteria Description

PM1 C1, C2’, C3

1) More than one q-edge can be stored in a leaf nod.
2) There are different approaches to organize q-edges in a node.
3) Simplest organizing method is based on dictionary.
4) Depth of tree is maximum required.
5) Depth C3 depends on positioning of grid(may be too large).

PM2 C1, C2’, C3’
1) The problem with C3 has been addressed.
2) Depth is bounded by maximum required by C1 and C2’.
3) Worst-case tree depth is less sensitive to depth of tree.

PM3 C1 Worse-case depth is less than two previous cases.

PR-quad-tree are almost same, in the case of PM3 more information is stored in the leaf

nodes. Also, polygon maps can be stored without any information loss in the PM3. PM

quad-tree is efficient in storing dynamic line segments and point data types as well as map

overlay algorithms [23].

Finally, In the Table 2.3, R-tree and quad-tree are compared based on results presented

in [35]. The creation time for the quad-tree is less than R-tree. As shown, R-trees are always

better in terms of space requirements. Their efficiency also surpasses quad-tree for large

polygon data, but for point data and small polygon data, quad-trees outweigh R-trees. Also,

query time on large polygonal datasets is faster using R-trees than quad-tree.
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Table (2.3) Efficiency of quad-tree and R-tree for different data types

Faster Creation Faster Update Faster Insertion Less Storage

Point Quad-tree Quad-tree Quad-tree R-tree

Polygon (small) - - Quad-tree R-tree

Polygon (large) R-tree R-tree R-tree R-tree

2.3.7 Pyramid-tree

Quad-tree is suitable to answer location-based queries because its data is indexed based

on spatial information. On the other hand, there is no efficient way to answer feature-

based queries (no feature indexing). The only approach is to traverse the whole tree to

determine the regions satisfying a given feature value. This brute-force search algorithm is

very time consuming and inefficient in practice. The pyramid data structure [23] addresses

this problem.

Feature-based queries searching for answers without examining any particular location.

Intermediate nodes in pyramid tree hold index of feature information of their sub-trees in a

compact form. This makes the searching process faster and more efficient. For example, by

looking at the root of every pyramid, one can easily find out whether a particular feature

value presents in the whole tree or not. If value exists, the same process can be applied to

sub-trees in a recursive manner until we find the given value or no more node is available

to search. Figure 2.9 [23] shows a pyramid example over non-binary data. To find all the

areas that are associated to feature value ”A”, we start processing from the root. Because

”A” exists in the feature list of root, the answer set is not empty. Then, we should process

all the four children of the root. The only useful sub-tree to further processing is the last

child. Doing so, we end up to two areas in this sub-tree as the answer of query. Pyramid

data structure can eliminate so many unnecessary tree traverses because of feature indexes

in the middle nodes.
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Figure (2.9) Pyramid example for non-binary data.

Table (2.4) Spatial indexed hierarchical data structures classification

Feature Value Hierarchical data structure

Overlap
Joint R-tree, R∗-tree, KDB-tree, X-tree

Disjoint R+-tree, PR quad-tree, PM quad-tree, Region quad-
tree

Size
Fixed PR quad-tree, PM quad-tree, Region quad-tree,

Pyramid
Adaptive R-tree, R∗-tree, R+-tree, KDB-tree, X-tree

Position
Predefined PR quad-tree, Pyramid, PM quad-tree, Region

quad-tree
Random R-tree, R∗-tree, R+-tree, KDB-tree, X-tree

2.3.8 Classification of Hierarchical Indexing Data Structures

Table 2.4 classifies indexing data structures based on three parameters (overlap, size

and position). In the following subsections, we explain each parameter.

2.3.8.1 Joint vs. disjoint data structures The datasets can be indexed based

on joint or disjoint areas. For example, if a technique makes use of MBRs and they are

overlapping in the leaf level the method is called joint (R-tree). Otherwise it is a disjoint

technique (R+-tree). In a disjoint method, the overlap parameter is zero, while in joint

data structures some optimization techniques must be applied to minimize the overlap of

bounding area in the leaf level.

2.3.8.2 Adaptive-size vs. fixed-size All the indexing hierarchical data structures

decomposes the whole area based on some criteria. The splitting process can be either
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bottom-up or top-down, but all the data structures ultimately end up to the structure in

which the data or their pointers is stored in the last level of the tree. In the splitting process,

if the size of areas achieved from splitting is predefined based on some criteria, the method

is called fixed-size, otherwise it is called adaptive-size. For example, R-tree (described later)

is adaptive size while PM tree variants are fixed-size.

2.3.8.3 Adaptive-position vs. fixed-position The decomposition rules can be

defined in a way that sub-areas resulted in each step are placed only in the predefined

locations. In this case, the method is called fixed-position, otherwise, it is called adaptive

position. The quad-tree is an example of a fixed-position data structure which bounding

boxes can only be put in the locations with a power of two values.

2.4 Grid-based Spatial Join Techniques

Grid-based filters for spatial data has been deeply investigated over the past thirty

years. Uniform grid methods for various spatial operations have been introduced in [36,

37, 38, 39, 40, 41] by Franklin. Although these works provide a strong theoretical and

practical framework for applying non-hierarchical uniform grid approaches to reduce the

workload of refinement phase of the most spatial join operations including but not limited

to polyline intersection and polygon overlay, they have two major limitations. First, they

are not specifically designed for many-core architectures such as GPUs mainly because these

HPC technologies did not exist of that time. Second, they are built based on grid-cells

of the same size that makes those algorithms less efficient in the presence of spatial data

distributed non-uniformly over the whole area. In [42], an analytical model is presented

to explore the effect of skewed data on parallel join algorithms. Their results confirm that

data skew can have a significant impact on the performance of parallel algorithms. In the

following paragraphs we summarize grid-based algorithms in the literature.

PBSM, Partition Based Spatial Merge spatial join operation [43] introduces a grid-

based filter step. This method provides a good performance especially when neither of the



26

input layers have an index. PBSM partitions MBRs data into non-overlapping uniform cells

using a spatial partitioning function such as round robin or hash on tile number. Then it

assigns each MBR to the cells and applies plane-sweep technique in each cell independently

to find overlapping MBRs. Impact of various parameter changes on the performance of

the algorithm is studied in this work. Although sequential implementation of PBSM shows

a better performance than R-tree and Indexed Nested Loop-based algorithms, this work

does not offer any improvement for the refinement phase that is the most computationally-

intensive part of spatial join operation.

A parallel uniform-grid polygon overlay algorithm on CPU based on OpenMP and on

GPU based on CUDA has been recently proposed in [44]. This algorithm works for any

polygonal dataset including self-overlapping, degenerate, disjoint or objects with holes. This

algorithm has space and time complexity of O(N + K) where N and K are the number of

edges and intersections respectively. They have reported up to 4 fold speedup on NVIDIA

Tesla C2075 GPU over a 4-cores CPU implementation over synthesized and real datasets.

They reported an average 16-fold speedup over ArcGIS software application. Their experi-

mental results show that the best grid size must includes 10 to 20 edges per cell. They did

not study this theoretically, beyond heuristic methods to achieve this optimized workload

per cell. In general, determining the best cell size is one of the most challenging issues in

all grid-based techniques. Experimental results presented in [45] show that optimal cell size

is close to average edge sizes. They also state that a variation from this optimum value by

a factor of 3 increases the running time only 20% to 50%. These statistics are provided

based on their datasets and they did not provide any theoretical framework to generalize

this assumption. Although [44] is specifically designed for GPU, the limitations of uniform

grid, stated above, have not been addressed yet.

2.5 Spatial Join Systems

In this subsection, we have summarized related work focusing on the design and imple-

mentation of various types of join operations. Table 2.5 has summarized these techniques
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based on computing framework they are built upon. In the following subsections, we point

out some of the centralized (CPU/GPU) techniques.

Table (2.5) Summary of Spatial Join Techniques.

CPU-based GPU-based

Centralized Sequential / Multicore: [46, 15, 47, 48, 49]
CudaGIS: [50, 16]

CMF-based: [51, 52]
Others: [53, 54]

Distributed

MPI: MPI-GIS [55, 56, 57]
Hadoop: SpatialHadoop [8, 58]

Spark: SparkGIS [59, 60]
Cloud (Microsoft Azure): Crayons [61, 62, 63]

MPI-cuda-GIS (Chapter 6)

2.5.1 Sequential and multi-core spatial joins algorithms

A sequential plane-sweep MBR filtering algorithm has been explained in [46]. In this

paper, the basic idea is to sort lower boundaries of rectangles for plane sweeping in a recursive

manner. An extensive performance evaluation on synthetic datasets with various ranges of

properties including tall-shape or wide-shape rectangles is carried out in this paper. The

results shows that the algorithm efficiency significantly depends on the width to height ratio

of the rectangles. Some methods for dealing with tall/wide rectangles is described in [15].

GIPSY [48] is a novel approach for spatial join of two datasets with contrasting density to

address space oriented coarse-grained partitioning challenges. GIPSY partitions the dense

dataset using a method similar to STR [47] and then joins it with the non-indexed sparse

dataset. Their extensive evaluation results using synthetic and real datasets yields up to

18-fold speedup. The main limitation of this algorithm is the assumption that one of the

datasets is sparse.

A bottom-up spatial join approach based on CPU parallelism has been proposed in

[49]. This algorithm does not rely on pre-existing spatial indices. The MBR join over

Sequoia2000 dataset [64] (58411 by 20,974 size) takes more than 7 seconds on a platform

with 40 processors.
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2.5.2 GPU-based spatial joins algorithms / systems

A naive parallel implementation of spatial join using R-tree has been described in [53].

This top-down query search method runs less than 3 times faster on GPU than CPU on

average and considering the CPU-GPU data transfer time, the performance is even worse

than CPU implementation. Parallel spatial join using R-tree has been implemented in [50].

The GPU algorithm runs 8 times faster than multi core CPU implementation. A simple

parallel r-tree query implementation on GPU is stated in [54] which runs 20 times faster

than CPU. Another R-tree-based spatial join on GPU with less than 4-fold speedup has

been reported in [53]. In [65], six spatial join queries has been implemented over GPU

and they have achieved 6-10 fold speedup including transfer time from CPU to GPU. They

have shown the significant impact of transfer time over speedup such that by not considering

transfer time speedup could be as large as 318-fold. One of the fastest R-tree implementation

and querying on GPU has been recently described by our group in [9]. We have proposed five

algorithms for batch MBR querying and the best performance comes out of the modified-

DFS algorithm, which employs all-to-all search on parents of the R-tree leaves. Speedup

gain for querying algorithms is in the range 76-fold to 153-fold which is much higher than

previous algorithms in the literature. However, a key limitation is the small datasets it

currently handles because of O(n2) space complexity.

CudaGIS [16] exhibits 20-40 fold speedup versus sequential CPU implementation for

spatial indexing and some spatial join operations. Uniform grid-based approach has also

been exploited to create various indexing data structures such as R-tree, quad-tree, CSPT-

P-tree and BMMQ-tree data structures. [66]. The main idea is to assign rectangles to grid

cells and compute the operations locally in each grid cell. The speedup results show up to

20-fold improvement over CPU implementation for end-to-end system.

An Impala-based in-memory Spatial Processing system has been designed in [67]. Most

of their library has been implemented on top of Thrust parallel library in Cuda SDK. Single

node performance test of their framework demonstrates speedup less than 2 for two different

datasets.



29

2.5.3 Distributed spatial join systems

2.5.3.1 Load balancing for distributed systems The load balancing problem

in different field of computer science including network and HPC has been long established.

Researchers have tried to look at this problem from different angels from practical and

experimental perspectives to theoretical aspects. In this section, we summarized some of the

most significant theoretical load balancing works. We pointed out their pros and cons and

their limitations compared to our proposed framework.

A general static load balancing model for job scheduling over a distributed computer

network to minimize the mean response time of a job is proposed in [68]. They formu-

lated the load balancing task as a nonlinear optimization problem with n(n+ 1)/2 variables

where n is the number of nodes. Optimal solution is presented using a Lagrange multi-

plier approach. They also provided two efficient algorithms that determine optimal load

for each host. parametric-study algorithm that generates optimal solution as a function of

communication time and single-point algorithm that gives optimal solution for given system

parameters including communication time. The framework has some limiting assumptions.

First, they did not consider the problem of partitioning a big job into small task. In fact,

they assumed all nodes have the same processing capabilities and a job may be processed

completely at any node in the system. However, considering the big data era and jobs pro-

cessing huge volume of data, this is an impractical assumption. Second, the model assumed

the communication between different nodes is one way that is if node A transfers a job to

node B, no job can be sent to node A from B. Third, as name implies, the framework is

static and decision to transfer a job from one node to another does not depend on the state

of the system.

[69] proposed a framework for load balancing iterative computations in clusters with

heterogeneous computing nodes. The model assumes that application data is already par-

titioned between the processing nodes forming a virtual ring. In each iteration, the com-

putation involves independent calculations carried out in parallel in each node followed by

exchanging the partial results between neighboring nodes in the virtual ring. The goal is
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to select a subset of processing nodes from all nodes and balance the load between them

such that it minimizes execution time while these nodes are not fully connected and pairs

may share physical communication links due resource limitations. The model considered two

scenarios, 1) SharedRing that there may exist several messages sharing a link, 2) SliceRing

that dedicated links are used for communications. Some heuristic algorithms is provided in

this work to solve these optimization problems. The main limitation of this model is that it

is suitable only for application iterative computations with local partial results exchange in

each step. In fact, it is limited to ring topologies. Moreover, the problem of big data IO and

initial partitioning of data between nodes is not addressed.

Dynamic load balancing on message passing multiprocessor has been studied in [70]

as diffusion schemes. They provided converging conditions as well as convergence rate for

arbitrary topologies. Hypercube network analysis is provided as a case example and they

showed that diffusion approach to load balancing on a hypercube topology of multiprocessors

is inferior to dimension exchange method. This well-presented model has several limitations.

First, they quantified work in terms of tasks and assume all tasks require an equal amount of

computational time and nonuniform task partitioning of heterogeneous data is not addressed.

Second, although the model is designed for any topology it did not consider spatially related

tasks that means it is not suitable for load balancing applications that need to maintain

locality.

In [71] and [72] two data migration-based load balancing models are provided. In [71]

a load balancing framework called Ursa is proposed for large scale cloud storage services.

It formulates an ILP optimization problem that chooses a subsets of objects from heavy-

loaded nodes called hot-spots and performs topology-aware migration to minimize latency

and bandwidth. Ursa is designed to identify cost-optimal source-destination node pairs for

dynamic and scalable load reconfiguration by applying 1) a workload-driven integer linear

programming optimization approach to eliminate hot-spot nodes while minimizing reconfig-

uration costs, and 2) a divide and conquer technique to break down expensive computations

to provide scalability. While this work provides a practical framework for load balancing in
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cloud storage services, because it is designed at a storage layer it is not application-aware

and does not consider data locality or other application-specific requirements for distributing

the work load between nodes. Furthermore, it assumes that architecture is organized as a

spanning tree topology that makes unsuitable for other network architectures. SWAT [72],

a load balancing algorithm, is proposed to address the problem of performance isolation of

multi-tenant databases in cloud systems that caused by resource sharing among co-located

tenants. Similar to [71], the general idea is to select tenant pairs for load-swap in a highly

resource and time efficient manner. SWAT initially tries to eliminates all the hotspots and

balance the load among all the nodes by load leveling. If it is not possible to balance the load,

then, it eliminates the hotspots through hotspot elimination process. Finally, in case both

load balancing and hotspot elimination fail, SWAT tries to minimize the overload rather

than eliminating it by hotspot migration. Partitioning problem and maintaining locality

while swapping workload have not been addressed in this work.
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Chapter 3

GCMF: AN END-TO-END SPATIAL JOIN SYSTEM OVER LARGE

POLYGONAL DATASETS

3.1 Introduction

Spatial data comprising rectangles, polygons, lines, and points are wide-spread in Ge-

ographic Information Systems (GIS). Because of advanced remote sensing technologies, the

volume of data generated in such applications has tremendously increased over the past

decade. For instance, Light Detection and Ranging (LiDAR) systems produced 40 PB of

data in 2014 but domain scientists were able to handle only 30PB of data [3]. Researchers

have predicted LiDAR technology will generate up to 1, 200 PB of data by 2020, while GIS

workforce has the capacity to process only 50 PB. This demonstrates ever-increasing de-

mand for High Performance Computing (HPC) in GIS domains. In particular, GPUs are

very popular among the HPC technologies as they are widely available at low prices yet with

powerful features. For example, GeForce GTX 1080, the latest NVIDIA GPU released in

May 2016, is driven by the new NVIDIA PascalTMarchitecture which provides 2560 Cuda

Cores operating at 1607 MHz base clock and 8 GB of the main memory with 320 GB/sec

bandwidth that makes it feasible to handle larger data in a real time manner.

Spatial join is one of the most computationally intensive operations in spatial computing.

For instance, spatial join of a polyline table with 73M records representing the contiguous

USA with itself takes roughly 20 hours to complete on an Amazon EC2 instance [2]. There-

fore, harnessing parallel processing capabilities of modern hardware platforms to perform

join operation over big spatial datasets is essential. In general, spatial join can be defined

as follows: given two spatial datasets R and S and a spatial join predicate ./ (e.g., overlap,

contain, intersect) as input, spatial join returns the set of all pairs (r, s) where r ∈ R, s ∈ S,

and ./ is true for (r, s) [10]. A typical application of a spatial join is “Find all pairs of rivers
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and cities that intersect.” The focus of this paper is on polygonal data with ST Intersect

operation in which for a given pair of polygons, it returns true if and only if polygons share

any portion of space [11].

Generally, spatial join algorithms over polygonal data follow a two-phase paradigm [10]:

• Filtering phase: reduces all the possible cross-layer polygon pairs to a set of potentially

intersecting candidate pairs based on minimum bounding rectangle overlap-test.

• Refinement phase: removes any results produced during the filtering phase that do not

satisfy the join condition.

The refinement phase is significantly time-consuming. For instance, an analysis of join

operation on CPU over more than 10,000 spatial objects in [14] shows that refinement phase

takes five times more than the rest of the operations including filtering and parsing datasets.

While this study demonstrates the significance of refinement step, in the current literature,

most GPU-related works have only addressed the filtering phase algorithms. In this work,

we plan to bridge this gap by introducing GCMF, a GPU-based spatial join system including

both filtering and refinement steps. Our work can be distinguished in two ways: 1) To the

best of our knowledge, there is no such system to process end-to-end polygonal intersection-

based join over GPU, and, 2) comparable systems that proposed other spatial join predicates

such as k-Nearest Neighbor [73] cannot handle the amount of data that we are able to process

on a single GPU and they have reported less speedups.

In summary, our key contributions in this work are:

• GCMF : An end-to-end spatial join system built on a single GPU to generate cross-

layer polygon pairs from two large datasets that satisfy spatial join condition in near

real-time manner. Based on our experimental results, GCMF was able to handle real

datasets as large as (not limited to) 3GB files up to 39 times faster than an optimized

GEOS library within a few seconds.

• A sort-based MBR filtering algorithm with a suitable GPU-specific data structure that
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yields up to 20-fold speedup compared to optimized GEOS library. Proof of correctness

of this algorithm is also provided.

• Common MBR Filter (CMF) based on the MBR resulting from the intersection of

MBRP1 and MBRP2 that makes refinement phase 28 times faster than the same

implementation without CMF by 1) reducing the number of candidate polygon pairs

by up to 66% and 2) making the polygon pairs 40-fold smaller in size by removing

many of the non-intersecting edges. We provide proofs and performance analysis for

this filter.

• A load-balanced implementation of parallel point-in-polygon test that is up to 9 times

faster compared to the naive implementation over GPU. It also achieves 30-fold speedup

compared to sequential implementation over CPU.

The remainder of this paper is organized as follows. In the next section, we summarize

the current work in the literature with a focus on performance of algorithms. Then, in Sec-

tion 3.2, we introduce GCMF system overview, its components, algorithms and theoretical

analysis. Experimental results are presented in Section 5.5. Finally, we provide conclusions

and point out our future work plan.

3.2 Algorithms

In this section, we present the problem definition and notations, datasets employed, the

overall system design, and the filtering and refinement algorithms.

3.2.1 Problem Definition

Given a polygon P , MBRP = (xP,0, yP,0, xP,1, yP,1) is the minimum bounding rectangle

of P that can be described by its bottom-left coordinate (xP,0, yP,0) and top-right coordinate

(xP,1, yP,1). We also use xP (or yP ) to refer to x-coordinates of MBRP regardless of being left

or right coordinate (xP ∈ {xP,0, xP,1}). For two overlapping bounding rectangles, MBRP1

and MBRP2, we define Common MBR, MBRP1∩P2, as the minimum bounding rectangle of
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their overlapping area. Finally, for any polygon P , EP is the list of edges and EP (i) denotes

i-th edge.

As stated before, spatial join operation can be defined over two spatial objects and a

predicate. In this paper, we define spatial join as follows: for any given pair of polygons, P1

and P2, P1 ./ P2 returns true, if and only if either there exists a pair of edges EP1(i) and

EP2(j) such that they intersect, or if overlap or one of the polygons lies inside the other one.

3.2.2 Datasets

We have used two real polygonal dataset pairs (Urban-Admin, Water-Block) from

http://www.naturalearthdata.com and http://resources.arcgis.com from GIS domain with

various sizes and characteristics (Urban-Admin and Water-Block). The third dataset

(Telecom) comes from telecommunication domain. The details of the datasets are

provided in Table 6.2. All the datasets are available online at the project site at

http://grid.cs.gsu.edu/ daghajarian1/SpatialJoin.html in both shapefile and text formats.

Table (3.1) Three real datasets used in our experiments.

Label Dataset Polygons Size

Urban-Admin
ne 10m admin states 11,878 46MB
ne 10m urban areas 4,646 41MB

Telecom
GA telecom base 101,860 171MB

GA telecom overlay 128,683 240MB

Water-Block
US block boundaries 219,831 2.175GB
US water bodies 463,591 921MB

3.2.3 System Design Overview

ST Intersect predicate requires both edge-intersection and point-in-polygon tests. Fig-

ure 3.1 illustrates a typical workflow of the spatial join algorithm which has been used in

the literature. R-trees are used to index polygons and then R-tree query is used to detect

potentially overlapping polygons. Finally, point-in-polygon and edge-intersection tests are

applied in the refinement phase. Overall running time of the traditional system is heavily
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dominated by the refinement phase which we try to address by introducing our new system

design.

Figure (3.1) Typical spatial join processing pipeline

Edge-intersection test is more compute-intensive than point-in-polygon test. We take

advantage of this fact in our system design workflow by adding one more filtering phase based

on Common MBR. Figure 4.1 shows the overview of the GCMF system. GCMF has two

subsystems. The first subsystem includes two filtering components. The first is Sort-based

MBR Filter (SMF ) which reduces set of all cross-layer polygon pairs into the set of potentially

intersecting polygon pairs (C) by overlap-test over their minimum bounding rectangles. The

second component is Common MBR Filter (CMF ) that applies intersection test to edges

of each pair in C and their common MBR to classify polygon pairs into following three

groups: 1) Intersecting-Edge candidate set (I), 2) within candidate set (W) and 3) disjoint

pairs which can be discarded. We explain these two filters in more details in the following

subsections. The refinement subsystem comprises two components: point-in-polygon test

(PnP Test) and edge-intersection test (EI Test). The first component takes W as input and

performs the point-in-polygon test. If a pair passes the test successfully, it goes to output

directly, otherwise it is sent to edge-intersection test for further processing. As shown in

the Figure 4.1, the input of the EI Test comes from I as well as those pairs from W which

failed point-in-polygon test. Finally, EI Test adds a pair to output if it can detect at least

one cross-layer edge-intersection/overlap in that pair.

3.2.4 Sort-based MBR Filtering

Tree-based data structures such as R-trees and interval trees have been used in MBR

filtering. While these data structures are perfectly matched to sequential algorithms, they

are not suitable currently for large datasets over GPUs mostly because of their hierarchical
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Figure (3.2) GCMF system design overview

structures and memory usage in current implementations. To address this issue, we introduce

SMF which is a sort-based MBR filter algorithm, highly suitable for GPUs in particular.

SMF takes MBR sets R and S with |R| = m and |S| = n as input and generates

cross-layer MBR-overlapping pairs as output set C. If two MBRs overlap then their (interval

defined by) x-coordinates overlap and their y-coordinates overlap. In essence, this algorithm

looks for two interval overlaps in x and y dimensions. It sorts the x coordinates of the MBRs

from both layers (set X). Then for each MBRi with x coordinates (xi,0, xi,1), it finds all the

MBRj from the other layer with x-coordinates (xj,0, xj,1) such that

xi,0 ≤ xj,0 ≤ xi,1. Then MBRi is tested against all such MBRj for overlap in their y

coordinates, thus yielding the output set C. Same can be done by sorting the y coordinates

and then testing in x-dimension. Later, we prove that this algorithm neither generates a

duplicate pair nor misses one.

Algorithm 1 describes the Sort-based MBR Filter suitable for GPUs. As mentioned

above, X is a vector of x-coordinates of the MBRs in both layers. CRadixSort is our cus-

tomized radix sort function which generates two vectors:

• sortIndex : In order to prevent swapping 64-bytes elements in X over GPU main mem-

ory which is not efficient, CRadixSort prepares sorted indices such that sortIndex[i] is

the index of i-th smallest element in X.

• rankIndex : To have an efficient parallel algorithm, each MBRi needs to know indices
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of its left and right coordinates in vector X in O(1) time without searching through

sortIndex. To provide this information, we introduce rankIndex which keeps track of

MBRs in sortIndex vector. rankIndex[i] is the index of xi at sortIndex.

The following properties are always held by these two vectors for any 0 ≤ i ≤ m+ n− 1:

rankIndex[ sortIndex[ i ] ] = isortIndex[ rankIndex[ i ] ] = i (3.1)

To better understand the data structure, Figure 6.1 provides an example. Part (b) is X

for 4 MBRs presented in part (a). For any MBRi, xi,0 and xi,1 can be accessed through 2× i

and 2 × i + 1 indices of X respectively. For instance, the first two values are left and right

x-coordinates of MBR0. Parts (d) and (e) represent sortIndex and rankIndex, respectively.

Generating rankIndex has two advantages. 1) For a given MBRi, we can access its

sorted indices in O(1). For example, position of x3,0 at sortIndex (equal to 1) is the 6th

element of rankIndex. 2) This vector is helpful for balancing the load. If we want to figure

out how many elements may potentially lie in between an MBR range (an estimation of load

of the block handing that MBR), we can subtract its corresponding values in the rankIndex

vector. The value gives us an upper bound which also can be used as a relative measure

of number of overlapping MBRs for a given MBR. For example, MBR3 includes just one

element in its x-interval {x0,0}, while MBR1 has three {x3,0, x0,0, x3,1}.

To implement sort-based MBR filter, we launch a kernel with m + n (total number

of MBRs in both layers) blocks and each block handles the interval corresponding to one

MBR. By evenly distributing the load among the threads within a block, we make the

implementation load-balanced. In GPU Blocki, algorithm finds all the elements xj,0 ∈ X

which lie between xi,0 and xi,1 using rankIndex and sortIndex (Line 5 in Algorithm 1). Then

if they also intersect in y-coordinate, the block produces (i, j) pair as output if MBRi is the

firs-layer MBR (Line 8), otherwise, (j, i) is generated (Line 10).

Lemma 3.2.1 proves the correctness of sort-based MBR filtering algorithm.

Lemma 3.2.1. SMF: Given two sets of MBRs, R and S, Algorithm 1 will generate all
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Figure (3.3) An example of data structure used for sort-based MBR filter. Part (a) is actual
MBRs, (b) is X set, (c) is sorted X, (d) is sorted indices of X and (e) is sorted indices of
MBRs. For example index of 2-th smallest coordinate (which is 22) can be retrieved from
sortIndex[1] = 6. Part (e) is rankIndex which keeps track of MBRs in sortIndex. For
example, position of (x30 , x3,1) (red MBR)in sortIndex can be fetched from rankIndex[3×
2] = 1 and rankIndex[3× 2 + 1] = 3

overlapping MBR pairs without any false positives or duplicates.

Proof. The first part of proof can be derived from the algorithm by showing that O ⊆ A

and A ⊆ O where O is output of algorithm and A is pairs of overlapping MBRs. For the

second part, lets assume MBR pair (i, j) is generated twice. Pair (i, j) may be generated

by Blocki or Blockj. As such, one of these two blocks may generate this pair twice or each

of the blocks may generate only one of the duplicated pairs. First case is impossible as we

process each MBR just once in its corresponding block and no coordinate is duplicated in

the data structures. Let us assume both Blocki and Blockj reports (i, j) as output. Given

this, Blocki implies that xj,0 appears after xi,0 and before xi,1 in X. Blockj also requires that

xi,0 appears between xj,0 and xj,1 in X at the same time which is impossible. Therefore, each

intersecting pair (i, j) is exactly generated once in the output.
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Algorithm 1 Sort-based MBR filtering algorithm

Input: R and S set of MBRs Output: set C

Building data structure
1: let X = {xi|xi ∈ x-coordinate of R ∪ S}
2: (sortIndex , rankIndex) ← CRadixSort(X)

3: procedure (Filter for R and S MBRs)
4: for each GPU Blocki, 0 ≤ i < (m + n), do in parallel
5: for each xj,0, xi,0 ≤ xj,0 ≤ xi,1 do
6: if (yj,0, yj,1) intersects (yi,0, yi,1) then
7: if MBRj ∈ S then
8: Add pair (i, j) to the output set
9: else

10: Add pair (j, i) to the output set
11: end if
12: end if
13: end for
14: end for
15: end procedure

3.2.4.1 SMF Analysis For average case analysis, we assume that average height

and width of MBRs are h̄ and w̄ respectively and they are scattered in a Ha×Wa rectangle

area. The sequential time complexity of CRadixSort is O(n ·b) where b is the average number

of digits of the coordinate values. Also, Algorithm 1 includes two nested loops. The outer

loop has n + m iterations. The inner loop goes through all the x-coordinates lying in the

range (rankIndex(xi,0), rankIndex(xi,1)) for a given MBRi which on the average has davg

elements (w̄/Wa fraction of (n+m) MBRs).

davg =
w̄ × (n+m)

Wa

(3.2)

Thus, the algorithm’s sequential complexity is:

= O((n+m) · b+
w̄

Wa

· (n+m)2) (3.3)

The complexity of the algorithm depends on w̄
Wa

factor which is proportional to the
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number of output pairs. If w̄
Wa

= O( 1
n+m

) then the second term in equation 4.10 becomes

linear and therefore total complexity becomes O((n+m)× b). This is what usually happens

in real datasets. If we have w̄
Wa

= O(1), the complexity would be order of O((n+m)2). One

of the scenarios that may lead to O((n + m)2) complexity, is the case with w̄ ≈ Wa which

means each MBR is almost as wide as the entire area and therefore has potential overlap

with almost all the other MBRs.

SMF has linear space complexity. As described in the preamble of Section 3.2.4, it

estimates the maximum number of overlapping MBRs for a given MBR and then allocates

the memory in advance. Although this estimation has some time-overhead, applying this

strategy makes it possible for SMF to test large MBR layers for intersection. SMF could

process two datasets each including more than 1M MBRs on a GPU node with 6 GB of the

main memory.

3.2.4.2 SMF Performance We have used a sequential optimized GEOS library

as baseline to compare with SMF. Table 3.2 shows our experimental results using all three

datasets introduced in Section 4.4.1.

Table (3.2) Running time of SMF and GEOS for MBR filtering

Dataset
Running time (ms)

] of Outputs
GEOS SMF

Urban-Admin 197 16 28,687
Telecom 2,683 240 747,086

Water-Block 13,048 676 1,020,458

The results in this table shows up to 20-fold speedup. As we explained in the related

work, RTree method introduced in [9] can achieve more speedup versus SMF, but it cannot

query datasets with more than around 20,000 MBRs in the second layer because the memory

space requirement of its current implementation isO(n·m) due to matrix based data structure

for O(1) access.

Also to show the scalability, Figure 3.4 plots transfer time and SMF running time versus

input size in the largest dataset. As shown, when input size becomes larger, transfer time
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linearly increases while SMF growth is closer to linear order than O((n+m)2) which implies

w̄
Wa

= O( 1
n+m

).
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Figure (3.4) Transfer time and SMF running time for various input sizes. SMF is almost linear.

3.2.5 Common MBR Filter

CMF is an additional level of filtering that is applied on polygon edges to reduce number

of candidate polygon pairs as well as the number of edges to be considered in the refine-

ment phase by eliminating those edges that do not intersect the Common MBR. Given a

pair (P1, P2) ∈ C, with corresponding MBRs, MBRP1 and MBRP2, their Common MBR

(MBRP1∩P2) is defined as the area covered by both of them (see green rectangles in Fig-

ure 3.5).

Algorithm 2 shows how CMF eliminates more polygon pairs from SMF output set C

and classifies the remaining pairs into two groups for point-in-polygon and edge-intersection

tests for the refinement phase while it eliminates all the non-intersecting edges from each

polygon which does not intersect with the respective Common MBRs. The correctness of

Algorithm 2 will be shown through Lemma 3.2.2 and 3.2.3.

Lemma 3.2.2. CMF-Pre-PnP Test: Given polygon pair

(P1, P2) ∈ C with corresponding minimum bounding rectangles MBRP1 and MBRP2, if P1

contains P2, then MBRP1 contains MBRP2. In other words, MBRP1∩P2 = MBRP2.
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Figure (3.5) Examples for three CMF output classes: (a) MBRP1∩P2 = MBRP2 and CMF will tag (P1, P2) for “P1
contains P2” point-in-polygon test. (b) MBRP1∩P2 6= MBRP1 and MBRP1∩P2 6= MBRP2 and P1 ∩MBRP1∩P2 6= ∅ and
P2 ∩MBRP1∩P2 6= ∅, therefore (P1, P2) is directly sent to edge-intersection test. (c) P2 ∩MBRP1∩P2 = ∅ which means the
pair is disjoint.

Proof. MBRP1 contains P1 from definition. Also P1 contains P2 from Lemma assumption.

Applying transitive property over contain relation leads to MBRP1 contains P2.

Now lets assume MBRP1∩P2 = MBRc 6= MBRP2. Because P2 is inside of both MBRP1

and MBRP2, it is also inside of MBRc and since MBRP2 contains MBRc and MBRc 6=

MBRP2, MBRc is minimum bounding rectangle of P2 that is on the contrary with lemma

assumption (minimum bounding rectangle of P2 is MBRP2). Thus, MBRP1∩P2 = MBRP2

Lemma 3.2.2 provides a necessary condition for point-in-polygon test. We can classify

a given polygon pair of C, (P1, P2), into one of the three following categories:1) Pairs with

MBRP1∩P2 = MBRP1, 2) Pairs with MBRP1∩P2 = MBRP2, and 3) Pairs with partially-

overlapping MBRs (see Figure 3.5). The first two classes can be added to within candidate

set W for actual point-in-polygon test. By applying Lemma 3.2.2 before doing this test over

all C elements, we gain performance due to the following reasons:

• For any given pair, verifying whether Lemma 3.2.2 holds true is only a constant-time

operation while actual point-in-polygon test takes O(ne) where ne is the number of

edges.
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Algorithm 2 Common MBR filtering algorithm

Input: set C Output: sets W and I

1: procedure CMF-filter
2: for each pair (i, j) ∈ C do
3: if MBRi∩j == MBRi then
4: W←W ∪ (i, j) for polygon i inside polygon j test
5: else if MBRi∩j == MBRj then
6: W←W ∪ (i, j) for polygon j inside polygon i test
7: else
8: Êi ← {Ei(k) | Ei(k) intersects MBRi∩j}
9: Êj ← {Ej(k) | Ej(k) intersects MBRi∩j}

10: if |Êi| == 0 or |Êj | == 0 then
11: Discard (i,j)
12: else
13: I← I ∪ (i, j)
14: end if
15: end if
16: end for
17: end procedure

• Join predicate requires testing for both “P1 contains P2” and “P2 contains P1” cases,

but Lemma 3.2.2 identifies which polygon may contain the other one that eliminates

one unnecessary test.

Later in Section 3.2.5.1, we provide more analysis.

Lemma 3.2.3. CMF-Pre-Edge-intersection Test: Given two edges EP1(i) and EP2(j)

from polygons P1 and P2, if the edges intersect, then they either completely lie inside

MBRP1∩P2 or intersect it. In either case, their intersection point is not outside MBRP1∩P2.

Proof. For the explanation refer to [10].

Lemma 3.2.3 provides a necessary condition for edge-intersection test. It says that given

(P1, P2) pair, if any edge from P1 lies completely outside of MBRP1∩P2, it will not intersect

with P2. As a result, we can remove that edge from polygon edge list for the refinement

phase. The following Corollary is a direct result of Lemma 3.2.2 and 3.2.3 and it can be

used to detect some disjoint pairs in C before refinement phase.
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Corollary 3.2.3.1. Given pair (P1, P2) ∈ C, let ÊP1 =

{i|EP1(i) either intersects MBRP1∩P2 or lies inside it}. Similarly, we can define ÊP2,

intersecting-edge candidate set for P2. P1 and P2 are disjoint if (P1, P2) /∈W, the within

candidate set, and ÊP1 = ∅ or ÊP2 = ∅

Proof. It can be derived directly from Lemma 3.2.2 and Lemma 3.2.3.

To illustrate Lemma 3.2.2 and 3.2.3 and Colorrary 4.2.1, three different examples are

shown in Figure 3.5. Figure 3.5 (a) shows a case for Lemma 3.2.2 where MBRP1∩P2 =

MBRP2. In this example, CMF assigns (P1, P2) to within candidate set for point-in-polygon

test for “P1 contains P2” case. In Figure 3.5 (b), MBRP1∩P2 is equal to none of the MBRs.

As such, using Lemma 3.2.3, CMF makes intersecting-edge candidate sets for P1 and P2

that are ÊP1 = {s1, s2, s3} and ÊP2 = {c1, c2} respectively. In this case, because neither

of ÊP1 and ÊP2 is empty, CMF categorizes (P1, P2) into Intersecting-Edge candidate set.

Later, EI Test will use only ÊP1 and ÊP2 instead of EP1 and EP2 for refinement phase.

Figure 3.5 (c) is an example of Corollary 4.2.1 as (P1, P2) /∈ W and ÊP2 = ∅. Therefore,

CMF identifies this pair as disjoint and just discards it.

CMF thus classifies elements of C as follows:

1. Within candidate set (W): set of all the polygon pairs (P1, P2) ∈ C such that

MBRP1∩P2 is either equal to MBRP1 or MBRP2.

2. Intersecting-edge candidate set (I): set of all polygon pairs (P1, P2) ∈ C such that

(P1, P2) /∈W and ÊP1 and ÊP2 are non-empty.

3. Disjoint set : Polygon pairs (P1, P2) ∈ C that are neither in W nor in I.

As CMF iterates through each edge once, the algorithm complexity is O(ne) which ne

is number of edges and its implementation is straightforward. For a polygon pair (P1, P2),

we assign a two dimensional GPU block to handle edges of each polygon in a separate

block dimension. Polygon edges are evenly distributed among threads in each dimension

to make the algorithm load-balanced. Each thread verifies Lemma conditions for its data
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and partially keeps list of potentially intersecting edges. Finally, using shared memory and

reduction tree, algorithm classifies pairs in C based on results and prepares intersecting-edge

candidate sets ÊP1 and ÊP2.

3.2.5.1 CMF Analysis For a given candidate set C, we define edge-reduction factor

as

RE =

∑
(i,j)∈C |Ei|+ |Ej|∑
(i,j)∈C |Êi|+ |Êj|

(3.4)

In the worst-case, all edges may lie inside their common MBR or intersect it and RE = 1,

but based on our experimental results, shown in Table 4.3, RE ≈ 40 which shows effectiveness

of CMF in pruning polygons before refinement phase. Table 4.3 shows timing and workload

of edge-intersection test with and without CMF. CMF eliminates almost two-third of pairs

by applying Lemma 3.2.3. It also, makes edge-intersection test almost 30 times faster by

making intersecting-edge candidate set 40 times smaller than all the edges.

Table (3.3) CMF effect on reducing workload of the refinement phase for Water-Block
datasets.

No CMF With CMF
Time (ms) 120,751 4,401

] of Edge-intersecting pairs 566,656 198,142
] of edges (layer1) 1,048,479,573 25,969,322
] of edges (layer2) 954,431,290 20,451,866

The following lemma proves that even in the worst-case scenario, CMF will reduce

number of operations in our point-in-polygon test.

Lemma 3.2.4. PnP analysis: Given a candidate set C of potentially intersecting polygons,

applying CMF filter will always reduce the overall work for point-in-polygon test.

Proof. Equation 3.5.a and 3.5.b represent the number of operations in point-in-polygon test
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with and without CMF filter.

k · |C|+ N̄e · |W| (a)2 · N̄e · |C| (b) (3.5)

where N̄e is the average number of edges in polygons and k is a constant factor such that

in general, k < N̄e (k ≈ 8 as we only need to test for two MBR equalities each with 4

coordinate values). We need to show 3.5.a < 3.5.b. Since 0 ≤ |W| ≤ |C| and k < N̄e, we

have N̄e · |W| < (2 · N̄e − k) · |C|. As such the condition always holds true.
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Figure (3.6) Running time of CMF versus various range of input sizes.

Figure 3.6 shows CMF running time for various data sizes. As shown, CMF running

time increases linearly as data size becomes larger.

3.2.6 Refinement Algorithms

The refinement phase removes all the non-intersecting polygon pairs by finding the pairs

with intersecting edges or detecting if one of the polygons lies inside the other one. Sequential

plane sweep-based edge-intersection algorithms are generally used in the refinement phase

but these methods have not been proven suitable for fine-grained data parallel processing

over GPUs [44]. While some work has been done to parallelize the plane sweep on CPU [74],

none of the proposed candidates result in an algorithm amendable to fine-grained SIMD

parallelism such as with GPUs. Our approach is embarrassingly parallel. For a given polygon
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pair (i, j), it performs an all-to-all edge-intersection test with O(|Êi| · |Êj|) time complexity.

As we described in Section 3.2.3, our refinement phase includes two subsystems. Al-

though we have not developed any new algorithm for these two components, efficiently

parallelizing their sequential counterparts over GPU is not a trivial task and requires some

design changes to fit them into shared memory model. In the following subsections, we

explain some of their implementation details.

3.2.6.1 Parallel Point-in-Polygon Test To detect if a polygon is inside the other

polygon, we have used point-in-polygon test. We apply crossing test method to detect if

a given test point is inside a polygon [75]. The technique is to shoot a ray from the test

point along an axis and count number of crossings of the polygon edges to check if it is odd.

Sequential implementation of this algorithm uses a for loop that iterates through all vertices

of a given polygon. We have implemented this algorithm over GPU by breaking down this

for loop by distributing equitably among different threads of a GPU-block. Finally, using a

reduction tree algorithm, we combine the partial results from different threads.

We compare load-balanced PnPTest with two other algorithms 1) sequential version of

crossing test and 2) naive point-in-polygon test over GPU in which each thread is responsible

for the entire for loop and there is no workload distribution for a given test point. The results

are summarized in Table 3.4. PnPTest speedup is in the 28 to 30-fold range compared to the

sequential version. Our load-balanced point-in-polygon test also achieved a good speedup

in 8 to 9-fold range versus naive GPU version which demonstrates the importance of GPU-

load-balancing.

Table (3.4) Running time of PnPTest versus sequential

Dataset N̂e.|W|
Running time (ms)

Seq.
GPU

Naive PnPTest

Urban-Admin 11,266,110 672 210 24

Telecom 7,615,041 165 45 6

Water-Block 105,314,500 22,058 6,459 725
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PnPTest running time of Urban-Admin dataset is greater than Telecom dataset while

number of polygons in Telecom is much larger because as shown in Lemma 3.2.4, the time

complexity of our point-in-polygon algorithm is O(N̂e.|W|).

3.2.6.2 Parallel Edge-Intersection Test As we explained in Section 3.2.3, ele-

ments of I and those pairs from W which do not pass point-in-polygon test successfully

along with intersecting-edge candidate sets generated by CMF are sent to edge-intersection

test component. We implemented a load-balanced edge-intersection algorithm using a shared

memory model. The algorithm assigns a GPU-block to each pair of polygons. Within a block,

edge pairs are distributed evenly among threads. For actual intersection test, the algorithm

calculates intersection point of a given edge pair, then tests if this point lies on the both

edge segments (and not outside them). We have implemented this algorithm efficiently by

applying two optimization techniques:

• Calculating line intersection requires floating point computations which is the most

time consuming operation in any processor. To optimize the algorithm, first we test

if MBRs built from edges have overlap and then, calculate intersection point for only

the MBR-overlapping edge pairs.

• All threads within a block work over the same polygon pair and once a thread finds

two cross-layer intersecting-edges, the polygon pair can be identified as output. As a

result, if a thread detects such a case, it sends signal to other threads in the block to

terminate. This makes their resources available for other blocks.

3.2.6.3 Refinement Analysis Figure 3.7 shows running time for PnPTest and

EITest for various input sizes.

As shown, PnPTest has a linear running time while EITest is O(n2). As point-in-polygon

test iterates through all vertices of a given polygon, linear complexity is expected. On the

other hand, the complexity of EITest is quadratic, because edge-intersection algorithm, for

a given pair (P1, P2) with intersecting-edge candidate sets ÊP1 and ÊP1, tests for all to all
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Figure (3.7) Linear running time of PnPTest versus quadratic complexity of EITest for different input sizes.

cross-layer edge-intersection. As a result, complexity is O(|ÊP1| · |ÊP2|).

3.3 Performance Evaluation

First, we describe the experimental setup and then we compare the results with other

base-line methods.

3.3.1 Experimental Setup

We have done all the GPU experiments on a compute node that has 12-core Intel Xeon

CPUE5-2650 CPU running at a clock speed of 2.0 GHz with 64GB of main memory. The

node is equipped with a NVIDIA GTX 780 GPU that has 6GB of memory with 288.4 GB/sec

memory bandwidth. We have verified that similar results are obtained on other NVIDIA

GPU’s including Tesla K40 models.

To the best of our knowledge, there is no GPU-based work which has implemented

ST Intersect operation. Therefore, we used PostgreSQL version 9.4 with PostGIS version

2.2 and GEOS library version 3.4.2 [11] as sequential baselines for comparison with GCMF.

PostGIS is a spatial database extender for the PostgreSQL object-relational database. It adds

support for geographic objects allowing spatial queries to be run in SQL. We ran PostGIS

on a desktop with 3.6 GHz processor with 16 GB of main memory. Since our datasets are

shapefiles, we use shp2pgsql tool in PostGIS for converting shape files into database tables.

ST Intersect predicate was used in spatial join query [11]. We also used Intersects method
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of PreparedGeometry class that is the optimized and indexed implementation of Geometry

class of GEOS C + + library. GEOS experiments are done on a node equipped with 2.6

GHz Intel Xeon E5-2660v3 processor in the Roger NCSA cluster.

3.3.2 Results

Table 3.5 shows end-to-end running time of different algorithms on different datasets

including CPU-GPU transfer times. The relative speedup gain for our GPU-based system

is up to 39-fold versus both GEOS library and PostGIS software.

Table (3.5) End-to-end running time for three different methods

Dataset
Running time (ms)

] of Outputs
PostGIS GEOS GCMF

Urban-Admin 3,120 5,770 149 23,634
Telecom 17,900 8,200 560 581,351

Water-Block 232,122 148,040 7,856 539,974

3.3.2.1 System Component Analysis We have provided detailed running time

of each system component in Table 3.6 and Figure 3.8 for all datasets. As value ranges are

large, time in the bar chart is presented in the logarithmic scale for easier comparison.

Although by applying CMF filter, we tried to reduce edge-intersection processing time,

this component still takes more than half of the total running time.

Table (3.6) Detailed running time of system components for all three datasets

Dataset
Detailed running time (ms)

Transfer SMF CMF PnPTest EITest

Urban-Admin 12 16 53 24 44
Telecom 55 240 89 6 170

Water-Block 383 676 1671 725 4401

Our real datasets are heterogeneous in size. They include polygons with various ranges,

from less than 100 vertices up to 50,000 vertices, that makes load-balancing task hard.
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Figure (3.8) Detailed running timing of system components for Urban-Admin, Telecom and Water-Block datasets (log scale)

We tried evenly distributing the edge-intersection test over all threads across all blocks

by assigning a constant number of tests to each thread. But because of inefficient use of

memory bandwidth and other GPU resources, the performance was worse than our simpler

current method. Determining the impact of this load-imbalance on the performance requires

comprehensive understanding of the behavior of GPUs under these circumstances that is

part of our future work.

Table (3.7) Running Time and Workload Reduction of Each Component for Water-Block
dataset

SMF CMF PnP EI
Space Complexity O(k1) O(k2) O(n) O(n)
Time Complexity O(n · b+ k1) O(n) O(n) O(n2)

n: # of inputs (Polygon pairs) 219, 831× 463, 591 1,020,458 842,516 198,142
k: # of outputs (Polygon pairs) 1,020,458 198,142 453,802 86,172

Reduction ( k
n
) > 99% 65% 46% 57%

Time Fraction 8.6% 21.27% 9.23% 56.02%

Finally, Table 3.7 summarizes time and space complexities of each phase of GCMF

system. In the filtering phases, GCMF estimates the required memory space for the output

and then allocates the memory. To estimate space, we have used two strategies. 1) Roughly

estimating the number of outputs in SMF. 2) Counting the exact number of outputs and
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then allocate the memory in CMF. Therefore, for these components, the space complexity

is proportional to their corresponding outputs k1 and k2, respectively. Our space-optimized

design lets the system handle large datasets on a single GPU. Also, time complexity of most

of the phases is linear. Edge-intersection is an exception, however, because of effective linear

filters (SMF and CMF ) applied before it, workload of this operation significantly reduces.

As Table 3.7 shows, for Water-Block dataset, more than 99% of all possible polygon pairs

are eliminated by SMF, and then CMF further reduces 65% of the remaining pairs. Finally,

the total running time of the filter phases is less than one-third of the overall execution time,

which shows the effectiveness of the proposed filtering methods. However, Edge-intersection

test is still the most time-consuming operation as it takes more than 50% of the execution

time.

3.4 Conclusion

In this paper, we have introduced GCMF, an end-to-end spatial join system for non-

indexed polygonal data over a single GPU platform. The system included 4 subsystems:

two filtering components as well as point-in-polygon test and edge-intersection test subsys-

tems. We proposed sort-based MBR filtering algorithm for GPU with linear average time

complexity. Also, we introduced CMF with linear time complexity as an efficient filtering

technique to reduce the number of polygon candidate pairs before the refinement phase. We

also have shown that CMF reduces the size of remaining candidate pairs by pruning dis-

joint edges apriori. Our experimental results over real datasets yielded up to 39-fold relative

speedup gain versus optimized sequential GEOS library and Postgres with PostGIS spatial

database system. Moreover, it confirmed the efficiency of CMF in removing about two-third

of pairs from the set of candidate polygons before edge-intersection. It also reduced the size

of polygon pairs for refinement phase up to 40-fold smaller.

Our plan is to integrate this system into a MPI based system which can partition 1-3

order larger datasets among the compute nodes, such as our MPI-GIS system [55] [4] that has

a potential for speeding up such systems by 1-2 orders of magnitude by effectively employing
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GPUs.
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Chapter 4

CMF-GRID: A NON-UNIFORM PARALLEL GRID-BASED FILTER

4.1 Introduction

The ever increasing volume of spatial data from various communities representing geo-

graphic location of features and boundaries, medical images or traffic on the one hand and

the crucial need of realtime processing of these datasets in order to extract helpful informa-

tion on the other hand makes it necessary to exploit High Performance Computing (HPC)

in Geographic Information System (GIS) domains [1]. For instance, Light Detection and

Ranging (LIDAR) systems will generate up to 1, 200 PB of data by 2020 [3]. Currently, the

primitive-like overlay operation over two layers of spatial object, including less than 700,000

polygons using state of the art ArcGIS software takes more than 13 minutes on a single

node [4]. To address these challenges, researchers have designed several distributed archi-

tectures to make HPC computing available for geospatial processing including cloud-based

systems [5, 6], Message Passing Interface (MPI) systems [7, 55], and map-reduce systems [8].

Most of these systems make use of powerful and expensive computing clusters to break down

the computations over several distributed nodes. Some of these applications handle tremen-

dous volume of spatial data which requires using many nodes. Even with such parallelism,

employing only CPUs in modern heterogenous architectures, typically equipped also with

GPU, one to two orders of speedup remains unharnessed [9]. One effective way of reducing

the number of nodes while keeping up with the required computing power is to accelerate

the computations in Graphic Processing Units (GPU). Effective employment of CPU-GPU

pair is critical for real-time spatial processing.

Generally, spatial join algorithms over two layers of polygonal (vector) datasets follow

a two-phase paradigm [10]:

• Filtering phase: reduces all possible pairs of cross-layer spatial objects to a smaller
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set of potentially intersecting candidate pairs based on some computationally light

algorithms such as Minimum Bounding Rectangle (MBR) overlap test.

• Refinement phase: removes any results produced during the filtering phase that do not

satisfy the join predicate, such as ST intersect, overlap, union, overlay, and etc.

The refinement phase is significantly time consuming as it typically involves O(n2)

algorithms. Our GCMF algorithm recently reduced the refinement phase processing time

for edge-intersection test down to about 50% of the total time [51]. Older analysis of join

operations on CPU show that refinement phase can take up to five times more than the rest

of the operations including filtering and parsing datasets [14]. In this work, we introduce

CMF-Grid, a non-uniform grid-based filtering technique that is specifically designed based

on GPU architecture to further reduce refinement processing time.

In our previous work, we designed our GCMF spatial join system based on 2-step

filter and 2-step refinement phase as shown in Figure 4.1. A MBR sorting-based filter step

identifies the set C of all pairs of cross-layer MBRs, which are potentially intersecting. The

set C is further filtered by eliminating those pairs of MBRs which do not have edges from

both polygons in the intersection of the two MBRs, called Common MBR. The set I of

surviving pairs is processed for join predicate. Special caution is taken for spatial pairs

wherein an MBR is inside the other (W set). Finally, GCMF processes only those polygonal

edges from set I which are within the common MBR.

In this work, we delve deeper into the Common MBR concept. The overall idea is

to partition each Common MBR into grid-cells (uniform for each pair but variable across

different pairs, suitably determined). CMF-Grid algorithm then discards those pairs that

none of whose grid-cells contain edges from both polygons. As a case study, we also present

an improved grid-based algorithm for intersection test with ST intersect operation.

Our key contributions in this chapter are:

• CMF-Grid : A GPU-based non-uniform grid technique over Common MBR, the MBR

resulting from the intersection of MBRP1 and MBRP2, that can significantly reduce
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Figure (4.1) 2-step filter and 2-step refinement upgraded spatial join system with two new components (green boxes).

the workload of the refinement phase. It reduces this phase to the same extent as

uniform grid with at least three times coarser grid-cells that implies less parallel over-

head. It reduces the refinement phase workload more than 30, 000 times compared to

the naive all-to-all algorithm. It improves over its predecessor, CMF filter, by reducing

workload by 700 times [51].

• Theoretical analysis: We provide a mathematical analysis to estimate the refinement

phase workload after applying CMF-Grid and provide proof of correctness for the

algorithm.

• Experimental analysis: We present an extensive experimental analysis to study the

impact of grid-cell size and grid-cell shape on the performance of CMF-Grid technique.

We show that in order to achieve the fastest end-to-end running time, CMF-Grid does

not need to minimize the workload by applying a very fine grid; 4 to 6 times coarser

grid-cell sizes can lead to best performance.

• ST intersect spatial join use case: To demonstrate the efficiency of CMF-

Grid technique, we refine a GPU-based system for spatial join based on ST intersect
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operation. The experimental results show that by applying CMF-Grid this system

is 225% faster than GCMF [51], which is the state of art. The proposed system can

process end-to-end spatial join over more than 600, 000 polygons with over 2 billions

edges in less than a second on a single NVIDIA P100 GPU.

• GPU-based edge-intersection: A load balanced grid-based edge intersection test

over GPU that is 10-times faster than its GPU-based predecessor in [51]. The signifi-

cant improvements made by CMF-Grid reduce the edge-intersection processing time

from more than 50% in GCMF to less than 15% of the total processing time for spatial

join with ST intersect operations.

The remainder of this chapter is organized as follows. In the next section, we summarize

the relavant work in the literature about different grid techniques. Then, in Section 4.2, we

introduce the CMF-Grid technique and a theoretical analysis of this algorithm. In Sec-

tion 4.3, we present a spatial join use case with ST intersect operation based on CMF-Grid

to study the efficiency of this technique. Experimental results are presented in Section 5.5.

We conclude the chapter and point out our future work plan in Section 4.5.

4.2 CMF-Grid

The main contribution of this chapter is to introduce a novel adaptive grid technique

to further filter out potential pairs of spatial objects before the refinement phase to reduce

total end-to-end running time. In this section, we introduce CMF-Grid technique including

motivation, algorithm, proof of correctness and theoretical analysis.

4.2.1 Motivation

As we explained in Section 2.4, uniform grid algorithms are not among the best tech-

niques for datasets with unevenly distributed spatial objects to achieve the highest perfor-

mance. They perform well only if objects are distributed uniformly over the universe where

by applying a uniform grid we can have equal size grid-cells with almost balanced work-
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load per cell for further refinement phase in-cell all-to-all processing. Furthermore, classic

grid-based techniques are not designed for many-core parallel architectures.

To address these issues, we introduce CMF-Grid, a non-uniform grid-based filter ap-

plicable to Common MBR area of potentially overlapping pairs. Figure 4.2 illustrates the

difference between traditional grid techniques and our adaptive approach. CMF-Grid can be

distinguished from all the other grid-based techniques in the geospatial processing literature

by following two features:

1. In CMF-Grid, grid-cells do not necessarily cover the whole universe (Figure 4.2-b).

2. In CMF-Grid, grid-cells may overlap with each other (in cases that Common MBRs

of overlapping pairs overlap). Later on, we see that such overlaps are infrequent and

therefore do not impact performance.

CMF-Grid is carefully designed to be an embarrassingly parallel algorithm to exploit

key aspects of many-core parallel architectures.

Later in Section 4.4.3, we compare efficiency of our proposed technique with uniform

grid.

4.2.2 Problem Definition and Notations

In this section, we state the notations and problem definition. Table 4.1 has summarized

list of symbols that are used for the rest of this chapter.

CMF-Grid can be formulated as an adaptive grid method as follows. For every pair

of polygons i, (Pi1 , Pi2) in set C, set of MBR overlapping polygon pairs, we want to break

down CMBRi into Ngi equal-size cells (grid-cell) of wgi by hgi size and identify all the edges

of Pi1 and Pi2 that lie in each cell. Let Ek
i1

and Ek
i2

be list of edges in cell k from Pi1 and

Pi2 respectively for 0 ≤ k < Ngi . we refer to these edges as edge-cells (edges that belong

to cells). It is worth mentioning that each edge can belong to zero to several grid-cells. We

want to partition each Common MBR in a way that the total workload for in-cell all-to-all

refinement phase becomes small enough to minimize end-to-end processing time.



60

Figure (4.2) (a) uniform grid technique, and (b) CMF-Grid : In CMF-Grid, grid-cells are not of the same size and may not
cover the whole universe.

As you can see in Table 4.1 for every pair i, (Pi1 , Pi2) ∈ C, let Êi1 and Êi2 be the list

of all the edges of Pi1 and Pi2 which lie either completely or partially inside CMBRi. Let

ˆ̄Ei1 and ˆ̄Ei2 be partial average of these two sets, respectively. The reason we refer them

as partial average is that for those edges that are not completely inside CMBRi, we only

consider the portion of the length that is inside the Common MBR. Therefore:

ˆ̄El = cl · ¯̂
El =

cl

|Êl|

|Êl|∑
j=1

Êl(j) , for l = i1, i2 (4.1)

where 0 < cl ≤ 1.

Note that grid-cell sizes in each CMBR are fixed while different CMBRs have different
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Table (4.1) List of primitive symbols.

Symbol Description

Set C Pairs of MBR-overlapping polygons: (Pi1 , Pi2 )

MBRP Minimum Bounding Rectangle of polygon P

EP , EP (i) Edges in polygon P, and EP (i) is the i-th edge

ĒP Average length of edges in polygon P

CMBRi ∀ pair i = (Pi1 , Pi2 ) ∈ C The minimum
bounding rectangle of MBRi1 and MBRi2 ,
also MBRi1∩i2

wi, hi Width and height of CMBRi

Êi1 Pair i = (i1, i2) ∈ C, ∀ edge j ∈ Ei1 such
that j intersects with/lies inside CMBRi

ˆ̄Ei1 cl · avg(Êi1 ): Partial average of edges in Êi1

Ek
i List of edge-cells in cellk of CMBRi

Ngi Number of cells in CMBRi

wgi , hgi Width and height of cells in CMBRi

ki =
wgi
hgi

width-to-height ratio of cells in CMBRi

Ng/e Average grid-cells that an edge crosses

WE
i (wgi ) Average-case estimated refinement phase

workload of pair i with wgi

WE
total(C) Average-case estimated refinement phase

workload of the pairs in set C

WA
total(C) Actual refinement phase workload of the pairs

in set C

grid sizes.

4.2.3 Grid-CMF Algorithm

For any given pair i in C, CMF-Grid partitions the CMBRi into Ngi grid-cells and

generates 2Ngi lists, Ek
l where l = i1, i2 and 0 < k ≤ Ngi (one list for each polygon per cell),

such that they hold all the edge-cells belonging to each cell separately. Then, potentially

edge-intersecting polygon pairs can be identified as set of all polygon pairs (i1, i2) ∈ C such

that ∃k such that Ek
i1 and Ek

i1
are non-empty. Algorithm 3 provides an abstract view of

CMF-Grid. Lemma 4.2.1 shows the correctness of CMF-Grid.



62

Lemma 4.2.1. CMF-grid Pre-Edge-intersection Test: Given a pair i, (Pi1 , P i2) ∈ C,

Pi1 and Pi2 are not edge-intersecting if ∀ k Ek
i1

= ∅ or Ek
i2

= ∅ for all grid-cells k.

Proof. Grid-cells, cellk where 1 ≤ k ≤ Ngi , are a partition of CMBRi. Then ∀ k Ek
i1

= ∅ or

Ek
i2

= ∅ means that if there is any intersecting edge from Pi1 and Pi2 the intersection point

does not lie inside CMBRi. However based on Lemma 3 in [51] this is not possible.

It is worth mentioning that Lemma 4.2.1 is a stronger condition than Lemma 3 in [51].

We will see in Section 4.4.4 that CMF-Grid can filter out up to 700 times more edge-pair

tests before refinement phase compared to CMF filter in [51] as a result of this stronger

lemma.

Algorithm 3 CMF-Grid Algorithm

Input: C Output: Set I, Lists of edge-cells (Ek
i ).

1: procedure CMF-Grid Filter
2: for each pair (i1, i2) ∈ C do
3: Ek

i1
← {Ei1(l) | Ei1(l) lies partially inside Cellk}

4: Ek
i2
← {Ei2(l) | Ei2(l) lies partially inside Cellk}

5: if ∃k | (Ek
i1
6= ∅ && Ek

i2
6= ∅) then

6: I ← I ∪ (i1, i2)
7: else
8: Discard (i1, i2)
9: end if

10: end for
11: end procedure

4.2.4 GPU-based Implementation

To better understand how we take advantage of GPU architecture to accelerate this

algorithm, we provide some more detailed explanations as follows. Since processing of each

pair in CMF-Grid is independent of others, we can process them in different asynchronous

GPU-blocks. Furthermore, if we have access to more than one GPU, workload can be

distributed among multiple GPUs. Even elements of of a pair (layer 1 and layer 2 objects)
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can be processed independently in different GPUs. These features make this technique

embarrassingly parallel.

The key part of Algorithm 3 is how to design a parallel algorithm that calculates Ek
i

and Ek
j lists in lines 3-4. There are two main approaches for this as follows:

1. Cell-oriented: In this technique, for each cell in a given pair i, (Pi1 , Pi2), we launch

a parallel thread in which it identifies the edges that are completely/partially inside

that cell. Since each cell needs to iterate through all the edges of that pair, the total

computations in each pair would be O((|Ei1|+ |Ei2|) ·Ngi).

2. Edge-oriented: In this method, edges are distributed among parallel threads and

for each edge the corresponding thread determines the cells in which that edge passes

through. For a given pair i, the computations would be O((|Ei1| ·Ng/e1 + |Ei2|) ·Ng/e2)

in this technique.

Although, the memory requirement of both designs is equal to O((|Ei1| ·Ng/e1 + |Ei2|) ·

Ng/e2) for a given pair of polygons, the time required for Cell-oriented method is greater than

Edge-oriented (Ngi � Ng/ep1 +Ng/ep2 for all the pairs). On the other hand, GPU implemen-

tation of Cell-oriented design is more straightforward. In other words, computations within

each thread (handling just one cell) are independent of others in a block and this makes

Cell-oriented algorithm a lock-free data structure. However, in Edge-oriented technique,

different thread-blocks may happen to work on the same cell simultaneously. As a result,

implementation of Edge-oriented method requires use of locks that could potentially impact

the performance of the code. However, due to light and efficient design of atomic operations

in CUDA libraries, Edge-oriented implementation of CMF-Grid outperforms Cell-oriented

approach over modern GPUs.

To implement either Cell-oriented or Edge-oriented technique, first we need to the count

number of edges belonging to each cell and assign enough memory to each cell for storing the

edge-cells. This is because assigning a maximum fixed memory to every cell is impractical

due to memory limit of GPUs. Therefore, the algorithm applies a 2-step count-and-compute
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approach which is fairly common for GPU implementations [76, 51]. In the first step, it just

counts the number of edges inside each cell without storing them. Then, it assigns required

memory to all the cells, and, in the second step, it stores the edge-cell.

Algorithm 4 GPU-based Edge-oriented CMF-Grid

1: procedure Edge-oriented CMF-Grid (First polygon of pair i:(i1, i2), thread t)

2: ePT=
⌈

|Ei1
|

|blockDim|

⌉
3: wgi = x ·min( ˆ̄Ei1 ,

ˆ̄Ei2)
4: Ngi = Function(wgi)
5: for each Ei1(k) : ePT · t ≤ j < ePT · (t+ 1)) do
6: if(Ei1(j) ∩ CMBRi = ∅)continue
7: Let (a1, b1) and (a2, b2): two end points of Ei1(j)

truncated by CMBRi boundaries.
8: Let cell(a1,b1) the cell that (a1, b1) belongs to.
9: Let cell(a2,b2) the cell that (a2, b2) belongs to.

10: for each cellk between cell(a1,b1) and cell(a2,b2) such
that cellk ∩ Ei1(j) 6= ∅ do

11: Ek
i1
← Ek

i1
∪ j

12: end for
13: end for
14: if ∃k | |Ek

i1
| 6= 0 then

15: I ← I ∪ (i1, i2)
16: else
17: Discard (i1, i2)
18: end if
19: end procedure

Algorithm 4 is a thread-level edge-oriented implementation of CMF-Grid over GPU.

The ePT variable in Line 2 holds the number of edges that need to be processed in each

thread (edges are evenly distributed among all the threads in a thread-block). |blockDim|

is the number of threads in each block. Ngi is calculated from Equation 4.3 as a function of

wgi . Later in Section 4.4.3.1.2, we explain about calculation of wgi .

Each thread partially iterates through the corresponding edges of the given polygon.

First, it makes sure that the edge is inside the Common MBR area and then it truncates

two ends of the edge by CMBR boundaries. As you can see in Figure 4.3 the left end of



65

edge E is truncated by point (a1, b1) on the left side of CMBRi. However, the right end

does not need truncation.

Figure (4.3) Edge-oriented CMF-Grid algorithm truncates each edge by CMBRi ((a1, b1) to (a2, b2)). Then, it identifies the
cells the edge belongs to.

4.2.5 Theoretical Analysis of CMF-Grid

Here, we provide analysis for CMF-Grid technique. As mentioned earlier, the goal is

to minimize the end-to-end running time by reducing total refinement phase workload. Our

aim is to calculate the workload of CMF-Grid as a function of wgi (grid-cell width) based

on average case analysis. In order to do so, we need to borrow some concepts from Buffon’s

Needle problem [77]. The method we apply here is inspired by the one used in [40] with

two major differences. First, grid-cells are not necessarily of square shape (different height

and width) and, second, grid-cell sizes are not equal in the whole universe (adaptive grid).

CMBRs can be very skewed in shape depicted in Figure 4.2-b. To see the impact of this

skewness on the grid-cell sizes and to generalize the formulation, we assume wgi and hgi sizes

are not the same size as mentioned earlier. Therefore:

wgi
hgi

= ki (4.2)

where wgi and hgi are grid-cell width and height of Common MBR respectively and ki

is width-to-height ratio. As a result, number of cells in CMBRi can be derived as:

Ngi = Function(wgi) =
kiwihi
w2
gi

(4.3)
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where Ngi is a function of wgi .

Lemma 4.2.2. Given a uniform grid with wg and hg width and height cell sizes, respectively,

and polygon P with the average length of edges in P , ĒP , the average number of grid-cells

that each edge crosses is equal to

Ng/e = 1 +
2 · ĒP · (wg + hg)

π · wg · hg
(4.4)

Proof. Uniform grid can be seen as two sets of equally spaced parallel lines with wg and hg

distances apart in x and y dimensions respectively. By following Buffon’s Needle formulation,

the average number of lines that each edge crosses would be 2·ĒP

π·wg
and 2·ĒP

π·hi that divide x and

y dimensions into 1 + 2·ĒP

π·wg
and 1 + 2·ĒP

π·hi partitions respectively. Adding up these values

(minus one because of one cell is counted twice) we end up having 1 + 2·ĒP ·(wg+hg)

π·wg ·hg as number

of cells crossed by an edge in the average.

For any given pair i, (Pi1 , Pi2) ∈ C, after applying CMF-Grid , CMBRi can be seen as a

uniform grid over Êi1 and Êi2 sets of edges. Following lemma provides a basis for calculating

total workload of all grid-cells in a pair after applying CMF-Grid.

Lemma 4.2.3. Given a polygon pair (Pi1 , Pi2) in C and CMBRi, the average number of

cross-polygonal in-cell all-to-all edge-intersection tests (workload) after applying CMF-Grid

can be formulated as a quadratic function of wgi as:

WE
i = Function(wgi) =

|Êi1 |.|Êi2 |
π2kihiwi

×
[
π2k2

iw
2
gi

+2πki(ki+1)( ˆ̄Ei1 + ˆ̄Ei2)wgi +4(ki+1)2 ˆ̄Ei1
ˆ̄Ei2

]
(4.5)

where 0 < wgi ≤ wi

Proof. Using Lemma 4.2.2 and Euations 4.2 and 4.3 we have:

Ni1 = |Êi1 | ·Ng/ei1
total number of edge-cell of Pi1 (4.6)

Nei1/g
=
Ni1

Ngi

average number of edges per cell for Pi1 (4.7)

workloadEi = Nei1/g
·Nei2/g

·Ngi (4.8)
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In the Equations 4.2 through 4.8, all the parameters but wgi and hgi are constant for a

given pair. By replacing hgi by wgi from Equation 4.3 and combining Equations 4.6 and 4.7

with 4.8, we have workload function based on wgi variable as shown in Equation 4.9.

workloadEi (wgi) =
|Êi1|.|Êi2|
π2kihiwi

×
[
π2k2

iw
2
gi

+2πki(ki+1)( ˆ̄Ei1+ ˆ̄Ei2)wgi+4(ki+1)2 ˆ̄Ei1
ˆ̄Ei2

]
(4.9)

where 0 < wgi ≤ wi

As a result of Lemma 4.2.3, the total estimated in-cell all-to-all refinement phase work-

load after applying CMF-Grid over set C can be formulated as a function as follow:

WE
total(C) =

|C|∑
i=1

(WE
i (wgi)) (4.10)

Also total actual in-cell all-to-all edge-intersection refinement phase workload can be

stated as:

WA
total(C) =

|C|∑
i=1

Ngi∑
k=1

(|Ek
i1
| · |Ek

i2
|) (4.11)

where set C is set of MBR-overlapping pairs of polygons.

Finally, uniform grid can also be considered a Common MBR that covers the whole

universe. Therefore, its estimated workload can be derived as a special case of Equation 4.10

where |C| = 1, ki = 1, Êi1 = Elayer1, Êi2 = Elayer2.

4.3 Use Case: ST intersect Spatial Join

In this section, we demonstrate the efficiency of CMF-Grid by applying this filter to

upgrade one previous GPU-based spatial join system referred to as GCMF [51]. To the best

of our knowledge, GCMF is the state of art for ST intersect join operation over GPU. For

any given pair of polygons (P1, P2), ST intersect is true if and only if 1) one polygon lies

inside another one, or 2) there exists a pair of edges EP1(i) and EP2(j) such that they
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intersect, or overlap. In other words, ST intersect is true if and only if two polygons share

any space.

In the following subsections, we explain the system architecture and point out the

changes we needed to apply in GCMF to make it functional with CMF-Grid.

4.3.1 System Design

GCMF introduced CMF filter to reduce edge-intersection refinement phase workload

by filtering out those edges that lie outside of their Common MBR for pairs of polygons [51].

Building on our previous work in GCMF, the improved system is shown in Figure 4.1.

This system has two upgraded components (Figure 4.1-green boxes ) compared to GCMF

as follows:

• We replace CMF filter with CMF-Grid technique.

• A new grid-based edge-intersection test component substitutes all-to-all Edge-intersection

test used in GCMF.

We already explained details of CMF-Grid filter in Section 4.2. Similar to its prede-

cessor (CMF [51]), CMF-Grid classifies polygon pairs in set C into three groups as follows:

1. Within candidate set (W): set of all the polygon pairs (i1, i2) ∈ C such that MBRi1∩i2

is either equal to MBRi1 or MBRi2 .

2. Intersecting-edge candidate set (I): set of all polygon pairs (i1, i2) ∈ C such that

(i1, i2) /∈W and also k ∃ such that 0 ≤ k < Ngi and Ek
i1

and Ek
i1

are non-empty.

3. Disjoint set : Polygon pairs (i1, i2) ∈ C that are neither in W nor in I.

4.3.1.1 Grid-based edge-intersection The grid-based edge-intersection algo-

rithm takes edge-cell lists from CMF-Grid as input and performs an in-cell all-to-all inter-

section test. As shown in Algorithm 5, each thread-block is assigned to a pair of polygons.

Cells belonging to each pair of polygons are evenly distributed among the threads within each
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block, and every thread processes its assigned cells (outer loop in line 3 of Algorithm 5) by

performing an all-to-all test (two inner loops in lines 4-5 of Algorithm 5). Since ST intersect

predicate requires the existence of at least one intersecting/overlapping edge pair, as soon

as a thread detects such an edge pair, it sends a block-termination signal to other threads

within its block. This ends the whole block and makes its GPU resources available to other

waiting blocks.

Algorithm 5 Grid-based Edge-intersection Test over GPU

For each GPU Block i, 0 ≤ i < |I|, in parallel
1: procedure Grid-based-EI-test(pair i : (i1, i2), thread t)

2: cellPT=
⌈

Ngi

|blockDim|

⌉
3: for t · cellPT ≤ k < (t+ 1) · cellPT do
4: for 0 ≤ j < |Ek

i1
| do

5: for 0 ≤ l < |Ek
i2
| do

6: if Ek
i1

(j) intersects Ek
i2

(l) then
7: Add (i1, i2) to output
8: Send block-termination signal
9: end if

10: end for
11: end for
12: end for
13: end procedure

4.4 Performance Evaluation

4.4.1 Datasets

We use two real datasets (Urban-Admin, Water-Block) each including two sets of polyg-

onal objects from [51] for evaluation of our algorithms. They are originally from GIS domains

from http://www.naturalearthdata.com and http://resources.arcgis.com with various sizes

and characteristics. The details of the datasets are provided in Table 6.2 and they are

available online on our website at http://grid.cs.gsu.edu/ daghajarian1/Grid-CMF.html in

shapefile and text formats.
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Table (4.2) Two real datasets used in our experiments.

Label Dataset # of Polygons File Size

Urban-Admin
ne 10m admin states 11,878 46 MB
ne 10m urban areas 4,646 41 MB

Water-Block
US block boundaries 219,831 2.175 GB
US water bodies 463,591 921 MB

4.4.2 Experimental Setup

We carried out all the GPU experiments on Bridges cluster located at Pittsburgh Super-

computing Center (PSC), one of the XSEDE (Extreme Science and Engineering Discovery

Environment) resources supported by the National Science Foundation (NSF) cyberinfras-

tructure program [78]. We used a Regular Shared Memory node (RSM-GPU) with 128 GB

of RAM memory equipped with two NVIDIA Tesla P100, the latest GPUs from NVIDIA

that has 16 GB of the main memory and it provides 3, 584 CUDA cores operating at 1480

MHz base clock that provides 5.3 TFLOPS of double precision floating point calculations.

For spatial join use case, we used results of PostgreSQL version 9.4 with PostGIS version 2.2

and GEOS library version 3.4.2 [11] presented in [51] conducted on a 2.6 GHz Intel Xeon

E5-2660v3 processor, as a sequential baseline. However for GPU baseline, we ran GCMF

experiments on the P100 GPU to make a fair comparison.

4.4.3 Performance Analysis of CMF-Grid

In this section, first we explore the impact of grid-cell size and grid-cell shape of CMF-

Grid on refinement phase workload and end-to-end system running time. Second, we com-

pare its performance to standard uniform grid in terms of workload, and finally average case

estimated workload results is presented.

4.4.3.1 CMF-grid properties: Cell shape and size

4.4.3.1.1 Cell-shape:

As explained in Equation 4.2, we considered grid-cells as rectangles with an arbitrary
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width-to-height ratio (ki). To see the impact of this ratio on performance of CMF-Grid, we

choose two values for ki in this experiment as follows:

• Square grid-cells: This is the most used grid-cell shape in the literature. Almost all the

grid-based algorithms in the literature have used square-shape grid-cells that translates

into ki = 1.

• CMBR-proportioned grid-cells: Common MBRs can have various rectangular shapes.

In particular, they may be skewed in one dimension (Figure 4.2-b). To see the impact of

CMBR on the performance of CMF-Grid, we make dimensions of grid-cells proportional

to their Common MBR dimensions by choosing ki = wi

hi
.

Figure 4.4 shows workload of CMF-Grid method for two grid-cell shapes. CMF-Grid

with square grid-cells generates slightly less workload than CMBR-proportioned, however,

this difference is less than 10%. Therefore, we can infer that CMBR shape does not have a

significant impact on workload. Figure 4.5 also shows that using either grid-cell shapes does

not make a considerable difference in number of active grid-cells. A cell is active if there are

edges from both layers in that cell. In other words, cell k of pair (i1, i2) is active if and only

if |Ek
i1
| 6= 0 and |Ek

i2
| 6= 0. We refer to the edges belonging to an active-cell, active edge-cells.

Note that we only need to consider active-cells for the refinement phase. In summary, both

schemes generate almost the same number of active-cells, however, workload of square-shape

grid-cells is marginally smaller.

4.4.3.1.2 Cell-size:

Another challenging design issue for grid-techniques is how to determine the grid-cell size

to optimize the workload. For any given pair of polygons, CMF-Grid chooses grid-cell

size (wgi) of corresponding Common MBR as a function of average length of edges of those

polygons, (Ēi1 and Ēi2). wgi can be chosen as minimum, maximum or average of Ēi1 and

Ēi2 . Our experimental results over all datasets confirm that the best function is based on

minimum of the two as wgi(x) = min( ˆ̄Ei1 ,
ˆ̄Ei2) · x where x is grid-cell size factor. Figure 4.6
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Figure (4.4) Impact of grid-cell shape on workload of edge-intersection refinement phase.

shows workload of CMF-Grid for wide range of this factor. As the plot illustrates, the

minimum workload of refinement phase occurs around x ≈ 1. In [40], x ≈ 1.33 is reported

that is consistence with our results.

Generally in sequential frameworks the smaller the workload the faster the processing

time will be. However, in many-core parallel architectures this is not always true. Since these

parallel frameworks have the ability to run thousands of threads, simultaneously exposing

sufficient parallelism to the available resources and optimizing global and shared memory

accesses are two of the most effective ways to achieve higher speedups. Furthermore, the

smaller the workload the finer the grid; which means CMF-Grid requires more processing

time. As a result, even though Figure 4.6 verifies that the minimum workload can be achieved

by choosing x ≈ 1, it does not necessarily mean it would lead to minimum running time.

In fact to optimize the total running time, we need to make sure that the code exposes

enough parallelism to the GPU (active grid-cells have enough workload to be processed in

GPU thread-blocks) and CMF-Grid does not take much time applying too fine grid scheme.

To see these impacts on running time, we show average workload per active grid-cell and

total running time (time for CMF-Grid and refinement phase) versus grid-cell size factor in

Figure 4.7. For fine grid schemes (x < 2), the running time is considerably high yet total

workload is close to minimum in that range. Another plot in Figure 4.7 (red line, right y-axis)
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Figure (4.5) Impact of grid-cell shape on number of active grid-cells.

shows that workload per active grid-cell in range x < 2 is smaller than 5 edge-intersection

tests per thread. This makes each grid-cell too lightly-loaded for GPU. Figure 4.7 shows that

the best running time is achieved in grids with roughly 30 to 70 tests per active grid-cells

(3 < x < 6). Figure 4.8 further breaks down the total running time into CMF-Grid and

edge-intersection time. For fine grids (small cells), the overhead of applying CMF-Grid is too

high. As we increase the grid-cell size this time decreases, however, edge-intersection running

time increases. Therefore, on one hand, CMF-Grid performs faster with coarser grids, and

on the other hand, edge-intersection test takes less time to process finer grids. Since the

goal is to minimize the total time, as Figure 4.8 shows, we can see that this happens in the

range 3 < x < 6. In summary, in order to achieve highest speedup in CMF-Grid, we do not

need to minimize the workload. Instead, by choosing a 3 to 6 times larger grid-cell size than

the workload-optimized size, we can achieve the fastest running time. Finally, it is worth

mentioning that the running time for two grid-cell shapes (square and CMBR-proportioned)

did not show a significant difference (square scheme was 1% faster).

4.4.3.2 Average Case Analysis Figure 4.9 is provided to evaluate our average

case analysis presented in Equation 4.10 versus the actual workload of CMF-Grid method

shown in Equation 4.11. Although average case analysis does not yield the exact workload,
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Equation 4.10 experimentally provides an approximation of the expected workload. The

more accurate estimation can be achieved by using a distribution model, such as Poisson,

presenting the number of edges per cell. This is part of our future work.

4.4.3.3 CMF-grid vs. uniform grid Figure 4.10 shows the actual total workloads

of CMF-Grid (Equation 4.11) and uniform grid for a wide range of grid-cell sizes (coarse

to fine). The refinement workload in the case of CMF-Grid seems to be converging to the

minimum value much faster than uniform grid. In other word, workload of uniform grid for

the coarser grid-cells (smaller number of grid-cells) is much larger than CMF-Grid. However,

as the number of grid-cells increases (finer grid) it converges toward CMF-Grid. Given that

for a larger number of grid-cells more time is needed to process the whole grid and more

memory is needed to keep its data structure, the efficiency of our method is significantly

better than that of uniform grid. In fact, if we want to lower the workload of uniform grid

down to optimal (converged point) we need to have almost three times more grid-cells (finer

cells) than CMF-Grid.

We also provide Figure 4.11 to compare the number of active edge-cells of both methods.

This plot shows that the number of active edge-cells does not change significantly for CMF-
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Figure (4.7) The impact of grid size (wgi ) on total running time of CMF-grid and edge-intersection test. The minimum time
happens in the range 4 ≤ x ≤ 6.

Grid while it does increase for uniform grid as the grid becomes finer (more grid-cells).

Even for a finer grid CMF-Grid has fewer active edge-cells than uniform grid. As a result,

the refinement phase in CMF-Grid requires less processing time.

Figure 4.12 plots number of active grid-cells versus total number of grid-cells in CMF-

Grid and uniform grid. Total number of active grid-cells in our method is up to 8 times

greater than uniform grid for a fine grid scheme. The larger the number of grid-cells the

greater this difference is. However, given that CMF-Grid does not need fine grids to optimize

the running time, this difference is practically less than 2 times. It actually happens because

of overlapping cells for different pairs in CMF-Grid.

4.4.4 CMF vs. CMF-grid

To compare CMF-Grid with CMF in terms of workload reduction, we define edge-

reduction factor in CMF-Grid for a pair i ∈ C similar to the one in [51] for CMF as:

REgrid−CMF
=

∑
i:(i1,i2)∈C |Ei1|+ |Ei2|∑

i:(i1,i2)∈C
∑Ngi

k=1 |Êk
i1
|+ |Êk

i2
|

(4.12)

For Ngi = 1 (one grid-cell covering the whole CMBRi) CMF-Grid and CMF are

technically equivalent. Table 4.3 shows timing and workload of edge-intersection test for
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naive all-to-all, CMF, and CMF-Grid algorithms for Water-Block dataset. Both CMF and

CMF-Grid eliminate almost two-third of pairs. CMF edge reduction factor is more than

43 times while CMF-Grid edge reduction factor is about 13 (third row in Table 4.3). Also

N̄g/e is equal to 3.17 which implies that each edge passes through almost three grid-cells on

average. On the other hand, number of active edge-cells in CMF-Grid is less than that of

edges in CMF by a factor of 3. As a result, total workload of edge-intersection test after

applying CMF-Grid is more than 30, 000 times smaller than all-to-all and also more than

730 times smaller than CMF filter. This tremendous decrease in workload leads to more

than 10-fold speedup of grid-based edge-intersection test versus the one used in GCMF that

brings down Edge−intersection time
Total time

ratio from 58% in GCMF to 12% in new system. It also

achieves more than 800-fold speedup versus sequential all-to-all test.

Finally, Table 4.4 shows running time for two sequential PostGIS and GEOS optimized

library systems reported in [51]. We also provide running time for our new system based

on CMF-Grid and the current state of the art, GCMF. New end-to-end running time of

GCMF is more than 4 times faster than its original results reported in [51] that is because of

P100 GPU used in this experiment. The end-to-end running time for our new system with

CMF-Grid shows a significantly impressive improvement of 225% compared to GCMF. It
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Figure (4.9) Estimated workload of CMF-grid versus actual workload of CMF-grid.

also shows up to 200-fold speedup gain compared to the best sequential system.

Table (4.3) Refinement workload reduction of Water-Block dataset for all-to-all, CMF and
CMF-Grid.

All-to-all CMF [51] CMF-grid

Time (ms) 120,751 981 89

Pairs ∈ I 566,656 198,142 198,125

Edges(all) 2,002,910,863 46,421,188 147,002,513

Edges(active) 2,002,910,863 46,421,188 15,043,183

Workload 535, 108, 085, 968 12,794,606,592 17,370,352

4.5 Conclusion

In this chapter, we have introduced CMF-Grid, a new non-uniform grid technique that

is designed with consideration of many-core GPU architectures. We provided comprehensive

experimental results based on real datasets to analyze the impact of grid-cell properties such

as grid-cell size and grid-cell shape on workload and running time. We showed that to achieve

the highest running time we need a grid scheme with 4 to 6 times larger grid-cells than a

workload-optimized scheme. Finally, we designed a system for spatial join with ST intersect

operation as a case study that improved the end-to-end running time of the current state
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Figure (4.10) Workload of CMF-Grid versus uniform grid for a wide range of grid-cells.

Table (4.4) End-to-end running time of spatial join with ST intersect operation for four
different systems.

Dataset
Running Time (ms) CMF-grid Speedup

Sequential Parallel
Best Sequential Parallel ( GCMF

CMF−grid)
PostGIS GEOS GCMF [51] CMF-grid

Urban-Admin 3,120 5,770 52 31 101 (PostGIS) 1.68

Water-Block 232,122 148,040 1,663 739 200 (GEOS) 2.25

of the art GPU-based system (GCMF) by 225%. The system was upgraded in two ways,

CMF-Grid component was able to reduce the edges for refinement phase by a factor of 800

compared to GCMF and a new grid-based edge-intersection algorithm was able to achieve

more than 10-fold speedup compared to the one in GCMF.

Our future work plan is to scale the system up by exploiting MPI to distribute the work-

load across nodes making it possible to process much larger datasets among the distributed

GPU nodes.
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Figure (4.11) Number of active edge-cells of CMF-grid versus uniform grid.
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Chapter 5

GPU-JOIN+: AN OPTIMIZED GRID-BASED SPATIAL JOIN

ALGORITHM FOR COLOCATION MINING OF BIG SPATIAL EVENT

DATA OVER GPU

5.1 Introduction

This chapter provides an example of the applications of spatial join in data mining,

called mining colocation patterns from big spatial event data (e.g., up to millions of spatial

instances). Given a set of spatial instances with their feature types and locations, the

colocation mining problem [79] aims to identify subsets of feature types whose instances are

frequently located in close spatial proximity. For example, in ecology, species with symbiotic

relationships tend to live close with each other in geographic space (e.g., Nile Crocodiles and

Egyptian Plover). In public health, diseases (e.g., lung cancer) may co-occur with certain

environmental factors (e.g., air pollution).

Colocation mining is important in many applications that aim to find associations be-

tween different spatial event types and environmental factors. For example, in public safety,

law enforcement agencies are interested in finding relationships between different crime event

types and potential crime generators [80]. In ecology, scientists analyze common spatial foot-

prints of various species to capture their interactions and spatial distributions [81, 82]. In

public health, identifying colocation patterns can help study disease transmission and envi-

ronmental factors can help reveal the causes [83, 84]. In climate science, colocation patterns

help reveal relationships between the occurrence of different climate extreme events. In lo-

cation based services, colocation patterns help identify travelers that share the same favorite

locations to promote effective tour recommendation [85].

Mining colocation patterns from big spatial event data poses several computational

challenges. First, the number of candidate colocation patterns are exponential to the number
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of spatial features. Evaluating a large number of candidate patterns can be computationally

prohibitive. Second, the number of pattern instances can be enormous when the number

of event instances is large and instances are clumpy (i.e., there are many instances within

the same spatial neighborhoods). For example, given 100,000 event instances and assume

that the clumpiness is 10 (i.e., every event instance has 10 neighboring instances of the

same event type), the number of colocation pattern instances of cardinality 5 (i.e., there are

five event types in the pattern) can be up to 100, 000 × 105 = 1010. This not only makes

pattern instance generation a computationally challenging task, but also creates a memory

bottleneck.

Colocation pattern mining has been studied extensively in the literature. Most of exist-

ing colocation mining algorithms are sequential, including early work on spatial association

rule mining [86, 87] and colocation patterns based on event-centric model [79].

Recently [88] proposed parallel grid-based colocation mining algorithms on GPUs. The

algorithms include a novel cell-aggregate-based upper bound filter and two parallel imple-

mentation of refinement algorithms. Proposed cell-aggregate-based filter computes upper

bounds of the interest measure of colocation patterns based on aggregated counts of event

instances in neighborhood cells. The upper bound can be computed in parallel on GPU with-

out generating pattern instances, and is also insensitive to pattern clumpiness (the average

number of overlaying colocation instances for a given colocation instance) compared with

the existing multi-resolution filter. The main goal of this chapter is to focus only on issues

related to computational efficiency of parallel colocation mining algorithms on GPUs as an

example spatial join. This chapter extends this recent work [88] with following contributions:

• GPU-grid-join+: we carried out a GPU profiling over their code and foud out that

the problem is memory bound for GPU architecture. Then, based on detected bottle-

necks, we proposed GPU optimizations including reducing unnecessary memory trans-

fer and using batch memory transfer to replace frequent small memory transfers. We

also redesigned preprocessing and filter kernels.
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• We conducted experimental evaluations. Results on real data show that our optimized

GPU algorithm achieves 4 to 12-fold speedup over our conference version (GPU-grid-

join) on Nvidia P100 GPU, as well as 56 to 126-fold speedup over OpenMP implemen-

tation on Intel(R) Xeon(R) CPU with 12 cores. On synthetic data, the speedup is in

ranges of 3 to 7-fold and 9 to 42-fold respectively.

The rest of this chapter is organized as follows:

5.2 Problem Statement

5.2.1 Basic Concepts

This subsection reviews some basic concepts based on which the colocation mining

problem can be defined. More details on the concepts are in [79].

Spatial feature and instances : A spatial feature is a categorical attribute such as a crime

event type (e.g., assault, drunk driving). For each spatial feature, there can be multiple

feature instances at the same or different point locations (e.g., multiple instances of the

same crime type “assault”). In the example of Figure 5.1(a), there are three spatial features

(A, B and C). For spatial feature A, there are three instances (A1, A2, and A3). Two feature

instances are spatial neighbors if their spatial distance is smaller than a threshold. Two or

more instances form a clique if every pair of instances are spatial neighbors.

Spatial colocation pattern: If the set of instances in a clique are from different feature

types, then this set of instances is called a colocation (pattern) instance, and the correspond-

ing set of features is a colocation pattern. The cardinality or size of a colocation pattern is

the number of features involved. For example, in Figure 5.1(a), (A1, B1, C1) is an instance

of colocation pattern (A, B, C) with a size or cardinality of 3. If we put all the instances

of a colocation pattern as different rows of a table, the table is called an instance table. For

example, in Figure 5.1(b), the instance table of colocation pattern (A, B) has three row

instances, as shown in the third table of the bottom panel. A spatial colocation pattern is

prevalent (significant) if its feature instances are frequently located within the same neigh-
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borhood cliques. In order to quantify the prevalence or frequency, an interestingness measure

called participation index has been proposed [79].

The participation ratio of a spatial feature within a candidate colocation pattern is

the ratio of the number of unique feature instances that participate in colocation instances

to the total number of feature instances. For example, in Figure 5.1, the participation

ratio of B in candidate colocation pattern (A,B) is 2
3

since only B1 and B2 participate

into colocation instances ((A1, B1), (A3, B2)). The participation index (PI) of a candidate

colocation pattern is the minimum of participation ratios among all member features. For

example, the participation index of the candidate colocation pattern (A,B) in Figure 5.1 is

the minimum of 3
3

and 2
3
, and is thus 2

3
. We use “candidate colocation patterns” to refer to

those whose participation index values are undecided.

5.2.2 Problem Definition

We now introduce the formal definition of colocation mining problem [79].

Given:

• A set of spatial features and their instances

• Spatial neighborhood distance threshold

• Minimum threshold of participation index: θ

Find:

• All colocation patterns whose participation index are above or equal to θ

Objective:

• Minimize computational time cost

Constraint:

• Spatial neighborhood relationships are defined in Euclidean space
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Figure (5.1) A problem example with inputs and outputs. (a) Input spatial features and
instances; (b) Candidate and prevalent colocation patterns, instance tables

5.3 Algorithm Overview

There are several challenges in the design and implementation of GPU parallel colocation

mining algorithms. First, the number of row instances of a candidate colocation pattern can

grow significantly with pattern cardinality when instances are dense, creating both intensive

computational load and memory bottleneck. Second, memory coalesce is also a challenge

due to the fact that the number of row instances produced by each kernel thread cannot be

predetermined, and thus it is non-trivial to map a kernel thread index to the corresponding

row numbers of the output instance table in GPU global memory.

Recently proposed GPU implementations [88] did not address most of these challenges.

The algorithm generates and evaluates candidate colocation patterns by iterations over pat-

tern cardinality (similar to sequential the algorithm in [79]). Specifically, the instance table

of a size k+ 1 pattern is generated by join operations over instance tables of size k patterns.

Their implementation uses both CPU and GPU (not in parallel), and it consists of three

major components: preprocessing, filtering, and refinement.

1. preprocessing phase: it is done in CPU sequentially. It generates size 2 candidate

patterns, creates a grid index over instances (cell to instance index), and counts the

number of instances under each feature type in each cell (CountMap). After the
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computation, the grid index and CountMap are transfered from host memory to device

memory.

2. filtering phase: it is done in GPU mostly. For each candidate pattern c with a cardi-

nality of k+1 (in the k+1th iteration), the filter kernels (ParallelCellAggregateFilter)

will be launched, before which the candidate pattern c is transferred from host to de-

vice. After kernel execution, an upper bound of participation index (PI) of c will be

returned by the kernel from device to host.

3. refinement phase: it is executed only if the upper bound of PI of candidate pattern c

is above the minimum threshold. It generates the instance table of c and computes the

exact PI through GPU refinement kernels (either grid-join based or prefix-join based).

Since each kernel thread is used to generate a number (unknown before execution)

of rows in the output instance table of c, there is a memory coalesce issue between

threads. We address the issue with two rounds execution and a slot count array for

kernel threads.

5.3.1 Cell-Aggregate-Based Upper Bound Filter

To introduce proposed cell aggregate based filter, we define a key concept of quadru-

plet. A quadruplet of a cell is a set of four cells, including the cell itself as well as its

neighbors on the right, bottom, and right bottom. For a cell that is located on the right

and bottom boundary of the grid, not all four cells exist and its quadruplet is defined empty

(these cells will still be covered by other quadruplets). For example, in Figure 5.2, the

quadruplet of cell 0 includes cells (0, 1, 4, 5), while the quadruplet of cell 15 is an empty set.

For each quadruplet, our filter computes the aggregated count of instances for every feature

in the candidate pattern. If the aggregated count for any feature is zero, then there cannot

exist colocation instances in the quadruplet. Otherwise, we pretend that all these feature

instances participate into colocation pattern instances. This tends to overestimate the par-

ticipating instances of a colocation pattern (an “upper bound”), but avoids expensive spatial
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Figure (5.2) Grid-aggregate based Upper Bound Filter: (a) A regular grid (b) An execution
trace of upper bound filter

join operations. Compared with the existing multi-resolution filter [79], which computes the

upper bound based on generating coarse scale instance tables, the cell aggregate based filter

has two advantages: first, it is embarrassingly parallel and can leverage the large number of

GPU cores; second, its performance does not rely on the assumption that pattern instances

are clumpy into a small number of cells, which is required by the existing multi-resolution

filter.

5.4 GPU Optimization

GPU Profiling and Bottleneck Analysis: After profiling our recent GPU imple-

mentations [88], we found that the problem is a memory-bound with a significant amount

of memory allocation and transfer. The bottleneck is due to the limited amount of avail-

able device memory, as well as the significant growth of the size of instance tables with

pattern cardinality when event instances are spatially dense. The memory transfer between

host and device in our conference GPU implementations is summarized in Table 5.1. Based

on the identified memory bottleneck, we further optimize our recent GPU implementation

with refined memory management, including reducing unnecessary memory transfer between

host and device, replacing a large number of small memory transfer into a small number of
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batch memory transfer, and reducing excessive use of pinned memory. We also design a new

kernel function for the preprocessing, and redesign the filtering kernel (e.g., utilizing GPU

shared memory, reducing kernel calls). GPU optimization procedures in different phases are

summarized in Table 5.2.

Table (5.1) Memory Data Structures Transfered Between Host and Device

Phases Host to Device Device to Host

Preprocessing
* Cell to Instance Index

* CountMap
N/A

Filter * Candidate Pattern c Upper Bound of PI

Refine

Round R1:
* Candidate Pattern c

(size k+1)
* Instance Table of size k

Round R2:
*Slot Counts

Round R1:
* Participation Index

(PI) of c
* Slot Counts
Round R2:

*Instance Table of c

Table (5.2) Summary of GPU Optimization in different algorithm phases

Reducing mem.
trans. (1)

Batch mem.
trans./alloc.(2)

Replacing pinned
mem.(3)

New kernel
function(4)

Redesigning kernel
functions(5)

Preprocessing 4 4 4

Filter 4 4 4

Refine 4 4

1. Reducing unnecessary host-to-device and device-to-host memory trans-

fers: In the preprocessing phase, our recent implementation conducts preprocessing in CPU

and transfer results (CountMap and Cell to Instance Index) from host to device. Preprocess-

ing may take up a significant ratio of total time cost. Thus, we design a new kernel function

for preprocessing (details are in item 4 below), so results were directly generated in GPU

memory without the need of memory transfer.

2. Replacing frequent small memory transfers with batch memory transfers

or allocation: In the filtering phase, our recent implementation launches the filtering kernels
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for each candidate pattern c in the iteration. We need to transfer the candidate pattern

c from host to device before kernel launch, and transfer upper bound of PI back from

device to host after kernel launch. Since the number of candidate patterns in each iteration

(cardinality) is combinatorial, there are frequent small memory transfers. To address this,

we redesign the filtering kernel (details are in item 5 below) so that upper bounds of all

candidate patterns in each iteration are computed all together in only two kernel launches.

Thus, the candidate patterns and their upper bounds of PI are transferred all together once

(batch mode) between host and device. In the refinement phase, our recent implementation

allocates a fix amount of global memory for slot count arrays for each candidate pattern. We

reduce that by allocating a bigger global memory buffer only once, and manage the buffer to

write slot count arrays for different candidate patterns contiguously. This uses more memory

but reduce the number of memory allocations.

3. Reducing the use of pinned memory: In all phases, our recently GPU imple-

mentation used pinned memory on the host. We used pinned memory to reduce the cost of

memory transfer. However, since pinned memory is shared between operating system and

applications and it is a limited resource. Therefore, excessive allocation of this memory (e.g.,

the big instance tables up to several gigabytes) may lead to degrading the performance of

the system. We optimized pinned memory usages by replacing unnecessary cudaMallocHost

allocations with system malloc API.

4. Adding new kernel function for preprocessing: The grid processing is an

embarrassingly parallel problem and if it is efficiently implemented over GPU, it can be

achieved at least an order of magnitude speedup over the CPU implementation. In our

recent GPU versions, the preprocessing phase of applying uniform grid over data is handled

over CPU. Although the preprocessing time is not large, by designing a kernel to do the

computation over GPU we are able to gain significant speedup for this part over our recent

versions. Each thread handles one feature instance to calculate which cell that instance

belongs to. Therefore, total number of threads is equal to total number of feature instances.

Since the input vector (x and y coordinate of feature instances) is linear, we use a linear
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kernel configuration to provide coalesce memory access in each block.

5. Redesigning filtering kernel function: As discussed earlier, the number of

kernel function calls in the filtering phase of our recent implementations is combinatorial

to the number of features. There are two kernel launches for each candidate pattern (one

launch to compute PCountMap, and another launch to compute the upper bound of PI).

For example, if there are 13 features, there will be 156 and 572 kernel calls for filtering all

the degree-2 and degree-3 patterns respectively. The number of kernel calls can potentially

go as high as 3432 for these features. To address these issues, we redesigned the GPU-based

filter algorithm such that only two kernel calls are needed to filter out all the uninteresting

patterns of the same cardinality (in the same iteration). In particular, we assign each three

dimensional GPU block to count the number of feature instances of a given candidate pattern

in one quadruplet with X-dimension size of block defined by the number of features and Y

and Z-dimensions form a 2 × 2 strucure for processing each cell in quadruplet. Then, by

using GPU shared memory, the first kernel aggregates the results within each GPU block

(quadruplet) and the second kernel simply eliminates all the patterns that are below the

given threshold. In the first kernel, each thread counts the number of instances of one feature

within each GPU block. Then, each GPU block determines if all the features presented in the

pattern have non-zero counts in the quadruplet using shared memory signaling. Therefore,

the kernel configuration is a function of grid structure, the number of features and the

number of candidate patterns for any given degree. In the second kernel, the algorithm uses

a reduction tree for each candidate pattern in one 1-dimensional GPU block to find out if

the minimum feature instance count passes the threshold. The block size of this kernel (only

x-dimension) is a function of the number of features.

In the above, we discussed our further GPU optimization proposed in this paper based

on refined memory management and kernel redesign. We acknowledge that there is still

space of further improvement, such as redesigning refinement kernels, which could be done

in future work.
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5.5 Performance evaluation

5.5.1 Experimental setup

We performed GPU experiments on Bridges cluster located at Pittsburgh Supercomput-

ing Center (PSC). We used one NVIDIA Tesla P100 GPU on a GPU Shared Memory node.

Nvidia P100 GPU has 16 GB of the main memory and it provides 3, 584 CUDA cores oper-

ating at 1480 MHz base clock that provides 5.3 TFLOPS of double precision floating point

calculations. Furthermore, we ran CPU sequential and multi-core (OpenMP) experiments on

Dell Precision Tower 7910 equipped with Intel(R) Xeon(R) CPU E5-2687w v4 @ 3.00GHz,

64GB main memory, and Ubuntu operating system. Algorithms were implemented in C++

and CUDA and compiled using g++ (without optimization flags) and nvcc compilers. For

each experiment, we measure the average time cost of five runs. We compared the following

candidate colocation algorithm implementations.

• CPU Sequential: the baseline presented in [79] (multi-resolution filter, grid-based

instance table generation for size k = 2, and sort-merge based instance table generation

for size k > 2).

• CPU Multi-core (OpenMP): OpenMP implementation of grid-join based refine-

ment in [88] in multi-core CPU.

• GPU-prefix-join and GPU-grid-join: GPU algorithms presented in [88].

• GPU-grid-join+: Our optimized version of GPU-grid-join based on optimizations

proposed in this chapter.

5.5.2 Dataset

We use the synthetic data generated similarly to [79]. We first chose a study area size

of 10000 × 10000, a neighborhood distance threshold (also the size of a grid cell) of 10, a

maximal pattern cardinality of 5, and the number of maximal colocation patterns as 2. The

total number of features was 12 (5× 2 plus 2 additional noise features). We then generated
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a number of instances for each maximal colocation pattern. Their locations were randomly

distributed to different cells according to the clumpiness (i.e., the number of overlaying

colocation instances within the same neighborhood, higher clumpiness means larger instance

tables). In our experiments, we varied the number of instances and clumpiness to test

sensitivity.

5.5.3 Results

5.5.3.1 Effect of the number of instances We conducted this experiment with

two different parameter settings. For both settings, the minimum participation index thresh-

old was 0.5. In the first setting, we set the clumpiness to 1 (very low clumpiness), and varied

the number of feature instances as 250,000, 500,000, 1,000,000, 1,500,000 and 2,000,000.

Results are summarized in Figure 5.3(a). With the number of event instances increasing,

the speedups of all parallel methods increase due to increasing computational load. We find

that our recent GPU implementations (GPU-Grid-Join and GPU-Prefix-Join) outperform

OpenMP parallelization. Among all parallel methods, GPU-Grid-Join+ persistently outper-

forms the others (30 to 60 versus below 10), due to our proposed further GPU optimizations.

In the second setting, we set the clumpiness value as 20, and varied the number of

feature instances as 50,000, 100,000, 150,000, 200,000, and 250,000. The number of feature

instances were set smaller in this setting due to the fact that given the same number of

feature instances, a higher clumpiness value results in far more colocation pattern instances

but we only have limited memory. The results are summarized in Figure 5.3(b). With the

number of instances increasing, the speedups of different parallel methods remain relatively

stable. The reason is that on highly clumpy data, the main computational bottleneck is

the significantly growing intermediate instance table size, instead of the number of event

instances. GPU-Grid-Join+ method persistently outperforms the other methods (over 70

versus less than 30).
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(a) (b)

(c)

Figure (5.3) Comparison of parallel methods on synthetic datasets: (a) effect of the number
of instances with clumpiness as 1 (b) effect of the number of instances with clumpiness as
20 (c) effect of clumpiness with the number of instances as 250, 000

5.5.3.2 Effect of Clumpiness We set the number of instances to 250k, and the

prevalence threshold to 0.5. We varied the clumpiness value as 1, 5, 10, 15, and 20. The

results are summarized in Figure 5.3(c). With the clumpiness increasing, the speedups of

all parallel method increase, due to the increasing computational load. The speedup of

GPU-Grid-Join+ increases faster and is persistently higher than the others, primarily due

to improved host and device memory management under increasing intermediate data sizes.

5.5.3.3 Comparison on Preprocessing, Filtering and Refinement Phases

We also compared the computational time costs of preprocessing, filtering and refinement

phases of all parallel methods in the results of Figure 5.3(a-b). Results are shown in Fig-
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(a) (b)

Figure (5.4) Comparison of methods in their preprocessing, filter and refinement time costs
on synthetic data: (a) when clumpiness is 1 and the number of instances is 2, 000, 000 (b)
when clumpiness is 20 and the number of instances is 250, 000

ure 5.4. Figure 5.4(a) shows results on input data with clumpiness as 1 and the number of

instances as 2 million. In the results, our recent GPU implementations have slightly higher

preprocessing cost than OpenMP (due to the extra memory transfer from host to device after

preprocessing), but significantly lower costs in filtering (due to the utilization of GPU cores).

The proposed method (GPU-Grid-Join+) significantly reduces the preprocessing cost due

to parallelization on GPU, reducing memory transfer, as well as the refinement cost due to

batch memory allocation and elimination of improper usage of pinned memory. Figure 5.4(b)

shows the results on the data with clumpiness as 20 and the number of instances as 250, 000.

In the results, all methods have tiny preprocessing and filtering costs compared with the

refinement costs. The refinement costs in GPU implementation is significantly lower than

the OpenMP method. GPU-Grid-Join+ shows the minimum refinement cost due to batch

memory allocation and elimination of improper usage of pinned memory.

5.6 Conclusion and Future Work

This chapter provides an example of spatial join problem in pattern colocation mining.

We studied recently proposed GPU-based cell-aggregate-based upper bound filter that less

sensitive to data clumpiness compared with the existing multi-resolution filter. We profiled
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the code and diagnosed the bottleneck of current GPU implementation. Then, we proposed

further GPU optimization based on identified memory bottleneck. Results on synthetic

data on various parameter settings showed that proposed optimized version (GPU-join+)

significantly improves the speedups.

The idea of CMBR filter can be applied in this spatial join problem as well. For k > 2,

instead of applying refinement phase after each filter phase, for any two instances that

already passed the filter in previous phase (k = 2), we calculate their CMBR and for k = 3

we consider filter operation applied to this CMBR and new layer instances. We can perform

this filtering by recursively calculating CMBRs of previous iteration and apply it to the next

phase.
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Chapter 6

A PRIORI RESOURCE-AWARE LOAD BALANCING ALGORITHM FOR

SPATIAL BIG DATA OVER HETEROGENEOUS SYSTEMS

Given two large datasets of spatial vector data representing spatial location of features

and boundaries, medical images, traffic, electronic circuit etc, finding cross layer objects

satisfying a join predicate such as edge intersect, overlay, point in polygon, etc., is called

spatial join operation. While this class of spatial operations is significantly important in many

applications including but not limited to Geographic Information System (GIS), Weather

forecasting systems, Biology, VLSI and Social sciences [1, 2], building efficient processing

systems for it is not a trivial task and any system needs to address some serious challenges.

The ever increasing volume of these spatial data stored in text formats such as Well-Known

Text (WKT) or in spatial databases such as PostgreSQL with PostGIS and Neo4j-spatial [89,

90] on the one hand and the crucial need to their real-time processing make it necessary

to exploit full-fledged High Performance Computing (HPC) in such domains that efficiently

addresses all the processing aspects from disk IO to filter and refinement handling. To address

these challenges, researchers proposed several parallel and distributed solutions to make HPC

computing available for spatial processing including cloud-based systems [5, 6], Message

Passing Interface (MPI) systems [7], and map-reduce systems [8] most of which use powerful

and relatively expensive computing clusters to break down the computations over several

compute nodes. While these works have mainly focused on the multicore architecture system

design to achieve acceptable speedups, even with such parallelism, employing only CPUs in

modern heterogeneous architectures, typically equipped also with Graphic Processing Units

(GPU), one to two orders of speedup remains unharnessed [9]. In particular, GPU computing

has become more available by emerging powerful yet low-cost many-core architectures, e.g.

Tesla, Pascal, Volta GPUs from NVIDIA. As a results, recently some embarrassingly parallel
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techniques suitable to these architectures are introduced [51, 52] to efficiently reduce search

space and decrease computing time without using additional computing resources.

Maintaining spatial locality is another challenge encountered while processing spatial

data. Reading the huge amount of data by sequential IO techniques is inefficient. Thus,

it is common to apply parallel IO approaches such as MPI-IO for fetching the data off the

disk. For instance, MPI-IO library uses a set of parallel processes, each reading a continuous

chunk of a large file by performing some collective read operations [91]. All the read requests

from different processes are sent to the parallel file system at once by the library. While

using these techniques significantly reduces the IO time [91, 92], it has one limitation when

it applies to spatial data domains; It cannot guarantee spatial locality in the chunks read

by one process. This is because neighboring spatial objects are not necessarily stored closed

to each other on the disk. Figure 6.1 illustrates the problem. As shown, after applying a

uniform grid partitioning, each chunk read by each process is partially mapped to different

grid cells, not necessarily neighboring cells, and objects belonging to a given cell may be

distributed between different processes. Therefore, after performing IO, the processes must

exchange data between to gather all the objects in a cell. Typically, this is performed

after data partitioning. There are several approaches to partition data into spatially related

clusters. Griding techniques such as uniform grid [40] is one class in which the space is

partitioned into same-size cells and objects belong to each cell are categorized as one group.

If one object belongs to more than one cell, it will appear in all the cells that makes data

duplication is unavoidable. After data partitioning, the objects within a cell will be sent to

the corresponding process. Regardless of the applied partitioning technique, there are some

challenges that come from the nature of spatial data listed as follows:

• Cell sizes are arbitrary different and this rises load imbalance problem. This is because

real data are usually non-uniform.

• Communication between processes to exchange data can take considerable time espe-

cially in clusters with low-speed network infrustructres.
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• Processes may have different computing capacity and in order to minimize the to-

tal processing time, load balancing algorithm should take system heterogeneity into

account.

Figure (6.1) An example of distributed computing. Four processes (P1, P2, P3 and P4) read
continuous parts of a big files (s1, s2, s3 and s4) using a parallel IO technique such as MPI-
IO. Then, each process maps its data into a spatial grid and finally, the local grids merge
into one global grid.

In this chapter, we address some of the above challenges by proposing an Integer Linear

Programming (ILP) model that formulates load balancing and processing of spatial data and

then, rigorously approximating the model by an intuitive heuristic load balancing algorithm.

The contributions of this chapter are as follows:

• We formulate the spatial data load balancing and processing over distributed clusters

equipped with heterogeneous compute nodes as a general ILP.

• We propose two resource-aware heuristic algorithms to approximate the ILP based on

information available of compute nodes. 1) Proportional-cell algorithm (PC), and, 2)

Proportional-load (PL) algorithm that assign cells to processes proportional to their

compute power. We compare these algorithms with round-robin (RR) algorithm and

show the efficiency of PL load-balancer in processing non-uniform datasets.
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• Finally, we develop MPI-cuda-GIS, a distributed system that effectively integrates

CPU and GPU to accelerate spatial computing based on MPI and CUDA programming

languages. We also perform an extensive set of experiments over OpenStreetMap real

datasets to demonstrate the efficiency of our system.

The remainder of this chapter is organized as follows. In the next section, we summarize

load balancing techniques in the literature. Section 6.2 formulates the load balancing and

processing of spatial data as an ILP. Then, we propose two heuristics in Section 6.3 to

approximate the proposed ILP. The experiments, dataset and system setup are explained in

Section 6.5. Finally, we conclude the chapter in the last section.

6.1 Related Work

The load balancing problem in different field of computer science including network and

HPC has been long established. Researchers have tried to look at this problem from different

angels from practical and experimental perspectives to theoretical aspects. In this section,

we summarized some of the most significant theoretical load balancing works. We pointed

out their pros and cons and their limitations compared to our proposed framework.

A general static load balancing model for job scheduling over a distributed computer

network to minimize the mean response time of a job is proposed in [68]. They formu-

lated the load balancing task as a nonlinear optimization problem with n(n+ 1)/2 variables

where n is the number of nodes. Optimal solution is presented using a Lagrange multi-

plier approach. They also provided two efficient algorithms that determine optimal load

for each host. parametric-study algorithm that generates optimal solution as a function of

communication time and single-point algorithm that gives optimal solution for given system

parameters including communication time. The framework has some limiting assumptions.

First, they did not consider the problem of partitioning a big job into small task. In fact,

they assumed all nodes have the same processing capabilities and a job may be processed

completely at any node in the system. However, considering the big data era and jobs pro-

cessing huge volume of data, this is an impractical assumption. Second, the model assumed
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the communication between different nodes is one way that is if node A transfers a job to

node B, no job can be sent to node A from B. Third, as name implies, the framework is

static and decision to transfer a job from one node to another does not depend on the state

of the system.

[69] proposed a framework for load balancing iterative computations in clusters with

heterogeneous computing nodes. The model assumes that application data is already par-

titioned between the processing nodes forming a virtual ring. In each iteration, the com-

putation involves independent calculations carried out in parallel in each node followed by

exchanging the partial results between neighboring nodes in the virtual ring. The goal is

to select a subset of processing nodes from all nodes and balance the load between them

such that it minimizes execution time while these nodes are not fully connected and pairs

may share physical communication links due resource limitations. The model considered two

scenarios, 1) SharedRing that there may exist several messages sharing a link, 2) SliceRing

that dedicated links are used for communications. Some heuristic algorithms is provided in

this work to solve these optimization problems. The main limitation of this model is that it

is suitable only for application iterative computations with local partial results exchange in

each step. In fact, it is limited to ring topologies. Moreover, the problem of big data IO and

initial partitioning of data between nodes is not addressed.

Dynamic load balancing on message passing multiprocessor has been studied in [70]

as diffusion schemes. They provided converging conditions as well as convergence rate for

arbitrary topologies. Hypercube network analysis is provided as a case example and they

showed that diffusion approach to load balancing on a hypercube topology of multiprocessors

is inferior to dimension exchange method. This well-presented model has several limitations.

First, they quantified work in terms of tasks and assume all tasks require an equal amount of

computational time and nonuniform task partitioning of heterogeneous data is not addressed.

Second, although the model is designed for any topology it did not consider spatially related

tasks that means it is not suitable for load balancing applications that need to maintain

locality.
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In [71] and [72] two data migration-based load balancing models are provided. In [71]

a load balancing framework called Ursa is proposed for large scale cloud storage services.

It formulates an Integer Linear Programming (ILP) optimization problem that chooses a

subsets of objects from heavy-loaded nodes called hot-spots and performs topology-aware

migration to minimize latency and bandwidth. Ursa is designed to identify cost-optimal

source-destination node pairs for dynamic and scalable load reconfiguration by applying 1)

a workload-driven ILP optimization approach to eliminate hot-spot nodes while minimiz-

ing reconfiguration costs, and 2) a divide and conquer technique to break down expensive

computations to provide scalability. While this work provides a practical framework for

load balancing in cloud storage services, because it is designed at a storage layer it is not

application-aware and does not consider data locality or other application-specific require-

ments for distributing the work load between nodes. Furthermore, it assumes that archi-

tecture is organized as a spanning tree topology that makes unsuitable for other network

architectures. In [72] SWAT ,a load balancing algorithm, is proposed to address the problem

of performance isolation of multi-tenant databases in cloud systems that caused by resource

sharing among co-located tenants. Similar to [71], the general idea is to select tenant pairs

for load-swap in a highly resource and time efficient manner. SWAT initially tries to elimi-

nates all the hotspots and balance the load among all the nodes by load leveling. If it is not

possible to balance the load, then, it eliminates the hotspots through hotspot elimination

process. Finally, in case both load balancing and hotspot elimination fail, SWAT tries to

minimize the overload rather than eliminating it by hotspot migration. Partitioning problem

and maintaining locality while swapping workload have not been addressed in this work.

6.2 ILP Problem Formulation

In this section, first, we state the definitions and notations used for the rest of this

paper. Then, we formulate our load balancing scheme as an ILP. Table 6.1 has summarized

the notations.

Load balancing problem can be stated as follow. There are N distributed processes each
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Table (6.1) List of primitive symbols.

Symbol Description

N The number of processes

K The number of cell partitions of the whole area

si , 1 ≤ i ≤ N The size of data chunk initially read by process i

mi , 1 ≤ i ≤ N The maximum memory capacity of process i for processing data

pi , 1 ≤ i ≤ N Process i compute rate

wi , 1 ≤ i ≤ N Assigned workload to process i after load balancing

lj , 1 ≤ j ≤ K The workload of cell j

aij , 1 ≤ j ≤ K, 1 ≤ i ≤ N The partial size of cellj owned by process i

bij ∈ {0, 1}, 1 ≤ j ≤ K, 1 ≤ i ≤ N Boolean variable determining if cellj is assigned to process i

0 ≤ cij ≤ 1, 1 ≤ j ≤ K, 1 ≤ i ≤ N The network transfer bandwidth from process i to j

owned part (of size si ) of a large file with a total file size of S. Let aij determines the size

of cellj in process i. Therefore:

si =
K∑
j=1

aij 1 ≤ i ≤ N (6.1)

We also assume the data is divided into K partitions of different sizes (lj) such that K � N

and 0 < lj ≤ S. Typically, lj is distributed over various processes such that:

lj =
N∑
i=1

aij 1 ≤ j ≤ K (6.2)

For generality, we assume that the system is heterogeneous and each process may have

a different compute capability. Let mi be the maximum data size that process i can handle

at rate pi while it keeps all the data in its global memory. Also, let P = {i, 1 ≤ i ≤ N} be

set of processes and L = {lj, 1 ≤ i ≤ K} be the set of partitioned data( cells). Then, the
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load balancing algorithm is a surjection (onto) from L to P , f : L → P , formulated as the

following:

wi =
K∑
j=1

bijlj , 1 ≤ i ≤ N (6.3)

bij ∈ {0, 1} (6.4)

N∑
i=1

bij = 1 , 1 ≤ j ≤ K (6.5)

wi ≤ mi (6.6)

where wi is the workload assigned to process i by load balancing algorithm and bij is a binary

decision variable determining if lj has been assigned to process i. The Equation 6.6 is the

constraint that makes sure that each cell is allocated to exactly one process.

The load balancing algorithm has apriori knowledge of partitionings (aij are known to

the algorithm). We also assume that the compute and memory parameters of each process

(pi and mi) are given (resource-aware algorithm). Then, the goal of load balancing algorithm

is to find matrix B = [bij] such that it distributes the workload among all the processes in a

way that total processing time stated in Equation 6.8 is minimized.

The processing time of process i as shown in Equation 6.7 includes two components: 1)

the time required to collect data of assigned cells from other processes, and 2) the time to

process those cells.

ti = pi.wi +
K∑
j=1

(bij(
N∑

l=1,l 6=i

cli.alj)) (6.7)

where Cn×n = [cij] is the network bandwidth matrix and cij presents transfer rate from

process i to j. For the most of networks C is symmetric. Later on, we will see that in

modern clusters data exchange time is negligible compared to processing time. Finally, the
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running time of algorithm can be defined as:

T = max
1≤i≤N

(ti) (6.8)

The objective function of the load balancing algorithm in our model is to find matrix

B = [bij] such that it minimizes T as follows.

Objective = min
BN×K

max
1≤i≤N

(ti) (6.9)

Lemma 6.2.1. Apriori Resource-Aware Load Balance formulation is a NP-hard problem.

Proof. Since the problem is formulated as ILP, the proof is trivial.

6.3 Approximation algorithms

Since our model is NP-hard and the number of variables are too much, we cannot solve

the ILP by available softwares such as IBM CPLEX. Instead, we try to approximate the

model heuristically. In the following subsections, we explain three heuristics.

6.3.1 Round robin load-balancer (RR)

In our model, cells are the smallest allocatable unit of workload; However, by applying

different griding techniques or changing the hyperparameters such as cell sizes, we can control

the size and the number of cells. This heuristic simply assigns non-empty (active) cells to

processes in a round robin fashion as shown in Algorithm 6. A cell is active if and only if

it contains at least one object from each layer. The algorithm counts the number of active

cells using nzCounter variable and in line 7 it applies the modulus function to assign current

active cell to the next process (round robin fashion).

While this linear heuristic is straightforward to implement it has some drawbacks as

follows:

1. If the dataset is not uniformly distributed, the cell sizes could potentially vary in a
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Algorithm 6 Round robin load-balancer

Input: N , K.
Output: bij , 0 ≤ i < N and 0 ≤ j < K.

1: procedure Round robin load-balancer
2: nzCounter = 0
3: for each cellj 0 ≤ j < K do
4: if cellj is not active then
5: continue
6: end if
7: i = (nzCounter mod N)
8: bij = 1
9: nzCounter = nzCounter + 1

10: end for
11: end procedure

wide range. This makes the algorithm load-imbalance. Later on, we will see RR is not

suitable for real datasets that are typically non-uniform.

2. Even if the data is uniform (cells are evenly-loaded), evenly distributing the load be-

tween different processes is inefficient in a heterogeneous cluster where nodes have

different compute power.

3. RR is inefficient in managing the available memory and is the least scalable scheme.

Because it does not consider the fact that the available memory is different in various

processes and assigns the same number of cells to all processes. As a result, processes

are bounded by the one whose memory is the least. Thus, the total workload is bounded

by N ×min(mi) , 0 ≤ i < N

6.3.2 Heuristic 1: Proportional-Cell load-balancer (PC)

RR can be improved by considering the compute and memory limitations of processes

when assigning the cells. The idea is still based on modified round robin. In each round,

PC algorithm might assign more than one cell to the corresponding process, proportional to

its compute capability while keeping track of available memory of the process. Algorithm 7

describes proportional round robin algorithm.
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Algorithm 7 Resource-aware round robin load-balancer

Input: N , K, mi, pi: 0 ≤ i < N , lj : 0 ≤ j < K.
Output: bij , 0 ≤ i < N and 0 ≤ j < K.

1: procedure Resource-aware round robin load-balancer
2: Set activeCellList
3: Set availableProcessList
4: while ( NOT activeCellList.empty() ) do
5: i = GetNextAvailableProcess()
6: cellCounter = 0
7: roundCellLimit = L1(si)
8: while NOT activeCellList.empty()
9: AND cellCounter ¡ roundCellLimit

10: AND totalWorkloadi ≤ memLimit i do
11: j = GetNextActiveCell()
12: bij = 1
13: cellCounter = cellCounter + 1
14: totalWorkload i = totalWorkloadi + lj
15: activeCellList().remove(cellj)
16: end while
17: end while
18: end procedure

Because of two nested while loops Algorithm 7 may seem quadratic time, but it is still

linear. The loops iterate through all the active cells with a shared loop variable (j) and the

conditions of two while loops is the same. The outer loop selects the next available process

in a round robin fashion and then the inner loop allocates some cells to it proportional to its

compute power while making sure the process does not reach to its memory limit. Therefore,

the sum of the iterations over the two while loops is K. Extracting the next object from

activeCellList and availableProcessList (GetNextAvailableProcess() and GetNextActiveCell()

functions) or removal a processed object from them can have constant running time com-

plexity using proper data structures such as doubly link list and keeping track of the current

position.

Although, Algorithm 7 addresses issue 2 in Section 6.3.1, it still has scalability and

load-imbalance problems with non-uniform datasets.
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6.3.3 Heuristic 2: Proportional-Load load-balancer (PL)

PL is similar to PC algorithm while it is more scalable and performs a better load

balancing over data with irregular distributions. The basic idea is to assign heavy-loaded

cells to the processes with high compute capability, e.g. GPUs, and lightly-loaded cells to

those with lower compute power, e.g. single core CPUs. As such, we assign a compute factor

to each process such that it represents its compute capability relative to other processes.

To do so, we can set the single core CPU compute power to 1 and use available speedup

information, e.g. those that are partially provided in Chapter 3 and 4, to estimate the

compute factor of other nodes. This calculation does not need to be exact and may be

dynamically tuned by real dataset experiments. Given compute factor information and

applying a threshold, PL algorithm splits the processes into two categories: 1) low-compute,

and, 2) high-compute nodes. It also needs to keep track of the current assigned workload to

each process. On the other hand, the algorithm must be able to estimate the workload of

each cell. As used in Algorithm 7, the total number of objects in each cell is an appropriate

indicator for the workload of that cell.

The Algorithm 8 describes PL load-balancer. The key data structure in this algorithm

is based on min-heap data structure. There are some parallel implementations of min-heap

or priority queue data structures[93, 94, 95, 96] over many-core architectures in the literature

that can be efficiently exploited in this algorithm, however, the experimental results show

good performance with our sequential implementation since the number of active cells is

reasonably small.

First, Algorithm 8 sorts the cells by their workload (O(K. logK)). It also builds a min-

heap of process objects by their current scaled assigned workload as the key, initially set to

zero (N logN). To scale the workload of process i, the algorithm divides the workload by its

compute factor. The intuition behind this scaling is that the higher the compute capability

the more workload can be handled in a given fixed time. On the other hand, load balancer

goal is to distribute the cells such that processing time of all processes is as close to each

other as possible. Therefore, the algorithm pick the process whose current processing time
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Algorithm 8 Resource-aware priority-based load-balancer

Input: N , K, mi, pi: 0 ≤ i < N , lj : 0 ≤ j < K.
Output: bij , 0 ≤ i < N and 0 ≤ j < K.

1: procedure Resource-aware priority-based load-balancer
2: Sort activeCellV ector by workload
3: p = 0
4: q = activeCellV ector.size() - 1
5: Split processes into High and Low compute classes
6: Make Min-heap(processList)
7: while ( p ≤ q ) do
8: proc = Min-heap.extract-min()
9: i = proc.index

10: if proc.isHighCompute() then
11: cell = activeCellV ector[q]
12: j = cell.index
13: q = q - 1
14: else
15: cell = activeCellV ector[p]
16: j = cell.index
17: p = p + 1
18: end if
19: bij = 1
20: proc.scaledWorkload += li

proc.computeFactor
21: end while
22: end procedure

is minimum. In other words, the scaled workload estimates the current processing time.

After the extraction of the process with the smallest workload (O(1)), only if it has high

compute power, PL heuristic allocates a heavy-loaded cell to prevent making bottleneck at

low-compute nodes by assigning them large cells. Finally, at the end of while loop, the

current assigned workload to the process is updated and the algorithm pushes it back to the

min-heap (O(logN)). The variables p and q keep track of small and large cells respectively

and once they pass each other (p > q) all the cells are processed. Since the loop iterates

through each cell once, K times in total and each min-heap update takes O(logN) then,

the total loop complexity is O(K logN). As a result, the running time complexity of PL

heuristic algorithm is O(N logN +K logK +K logN).
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6.4 MPI-cuda-GIS system

In this section, we propose MPI-cuda-GIS, a HPC system based on our ILP model,

that is designed based on MPI to integrate CPU and GPU computing power to gain as high

speedup as possible. We use GCMF system presented in [51] for GPU computing. We also

develope plane-sweep based libraries for CPU computing. The overall system workflow is

shown in Figure 6.2. The following is the series of communications/operations in MPI-cuda-

GIS.

1. Parallel-IO: First, each process calculates the size and the offset of data to read.

The chunk size is almost the same across all the processes approximately equal to

fileSize/N where N is the number of processes. The chunks read by processes are

overlapping to prevent the objects located in the boundaries of each chunk from scatter-

ing between processes. If an object belongs to several processes, eventually only one of

them will own it the rest will not store the object. MPI-IO library (MPI File read at all

function) is used for performing parallel IO. At the end of this step, the data will be

parsed to be ready for later usage.

2. Data partitioning: Each process locally applies a uniform grid technique to its data.

Process i calculates row i of matrix AN×K where aij is size of data mapped to cellj

and held by process i.

3. Cell information gathering: The master collects all the information of matrix A

from other processes (one row from each) using MPI gather operation.

4. Load balancing: Master performs load balancing using one of the algorithms pre-

sented in Section 6.3. The outputs of load balancing algorithm are process-cell mapping

matrix BN×K (bij is 1 if and only if cellj is mapped to process i) and vector L1:K (lj

represents the total workload of cellj). Master broadcasts these information to all the

processes using MPI Bcast function.
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Figure (6.2) MPI-cuda-GIS system workflow.

5. Data exchange: After receiving matrix B, process i1 sends ai1j to process i2 if and

only if bi2j == 1. This phase potentially needs all-to-all communication. Since data

sizes in each cell owned by each process is variant and to optimize the data exchange,

we use asynchronous buffered MPI functions for communications in this phase. The

protocol is as follows: first, using all-to-all MPI Allgather processes exchange size of

their data whose belong to other processes calculated from A and B matrices. Then,

each process can preassign the separate buffers to receive data from others. Finally,

the actual data are exchanged by asynchronous send and receive functions (MPI Isend

and MPI Irecv).

6. Data processing: Each process depends on whether it is a GPU or CPU compute

node handles its assigned cells differently using either GCMF GPU-based system or

the plane-sweep-based CPU library.

6.5 Performance Evaluation

In this section, we describe the real datasets and cluster setup used in our experiments

in the first two subsections. Then, we explain the results and comparison of proposed load
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balancing algorithms and MPI-cuda-GIS system.

6.5.1 Datasets

We use new version of OpenStreetMap real vector dataset provided by SpatialHadoop

community [97] for our experiments. This dataset contains various files with different sizes

each representing some features such as road networks, all the buildings, boundaries of sports

areas, etc. for the whole world. Table 6.2 summarizes the layers used in our experiments.

Table (6.2) OpenStreetMap real dataset representing features of the whole world used in our experiments.

Label Description # of objects File size

Lakes Boundaries of all water areas in the world 8.4 Million 9 GB

Parks Boundaries of all parks or green areas in the world 10 Million 9.3 GB

6.5.2 Experimental setup

We perform our experiments on Cheetah, a heterogeneous Linux cluster with several

compute nodes each equipped with a multicore CPU and up to four GPUs. Each compute

node has a multicore CPU of either Intel Xeon or AMD Opteron (various number of cores)

and 64GB of main memory. Nodes are connected through high-speed InfiniBand and gigabit

Ethernet switches. Table 6.3 describes the four compute nodes used in our setup.

Table (6.3) System information of Cheetah cluster used in our experiments.

Node CPU GPU
1 16-core Intel Xeon, 2.1GHz 4 × GTX 770, 2GB

2 16-core Intel Xeon, 2.1GHz 4 × Tesla K20, 4.5GB

3 16-core Intel Xeon, 2.1GHz 1 × GTX Titan, 12GB

4 16-core Intel Xeon, 2.1GHz 1 × GTX Titan, 6GB

As summarized in Table 6.3, the setup contains heterogeneous compute nodes including

10 GPUs with different computational and memory capabilities as well as 64 cpu-cores. We
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use 64 MPI ranks (rank 0 to 63) including 10 GPU-based processes (ranks 0-3, 16-19, 32 and

48) and 54 CPU-based processes (other ranks).

6.5.3 Results

To evaluate our heuristics, we use two parameters as follows:

1. The total processing time of MPI-cuda-GIS explained in Equation 6.8.

2. We also consider the variance of running time of all the processes (stated in Equa-

tion 6.10). While processing time, cannot distinguish between the quality of two load

balancing algorithms whose maximum running times are equal, the variance measures

how far the processing times are from average. The smaller variance the more even

workload distribution.

σ2(ti) =

∑N
i=1(ti − tavg)2

N
(6.10)

6.5.3.1 Data partitioning We apply uniform grid technique over the whole world

data with more than 65, 000 equal-size cells for the initial data partitioning within each

process. This technique performs the best when the data is uniformly distributed over the

whole space. However, real datasets do not guarantee uniformity. The Figure 6.3 illustrates

this problem by showing the histogram of active cells in various ranges multiple of 10. The

plot shows that more than 80% of the cells are not active cells in Lake-Park dataset pair

and only less than 11, 000 cells need further processing. As shown, the number of objects

within active cells ranges from 1 to 1000, 000 that verifies uneven distribution of objects in

cells.

6.5.3.2 Evaluation of load-balancing heuristics To compare the performance

of two proposed load balancing algorithms as well as Round robin technique (RR),

Proportional-Cell algorithm (PC) and Proportional-Load algorithm (PL), we incorporate

them into MPI-cuda-GIS system to process Lake-Park.

Round-robin heuristic (RR)
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Figure (6.3) Histogram of load of the cells in ranges multiple of 10 for Lake-Park dataset pair. The load ranges from 1 to a
1, 000, 000 that shows non-uniformity of dataset in the whole space.

Figure 6.4 shows the running time for processing the load distributed by the simplest

heuristic. Although cells are evenly distributed, the processing times are variant from less

than a second to more than 40 seconds because 1) compute nodes have different compute

capabilities, and, 2) cells are not evenly-loaded.

Figure (6.4) The processing time of 64 heterogeneous (CPU/GPU) processes by applying round-robin (RR) load balancing
technique over Lake-Park dataset pair.

Proportional-Cell heuristic (PC)

As shown in Figure 6.5, by applying PC technique the processing time of ranks ranges

from less than a second to more than 37 seconds. While the plot shows a better distribution

of the load rather than round robin technique, because of existence of outliers, the total
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running time (maximum time) is still high. This is certainly because non-uniformity of

objects over different cells that is shown in Figure 6.3.

Figure (6.5) The processing time of 64 heterogeneous (CPU/GPU) processes by applying proportional-cell (PC) load
balancing technique over Lake-Park dataset pair.

Proportional-Load heuristic (PL)

By applying PL, the processing times change in a narrow range of less than a second to

3 seconds as shown in Figure 6.6. This heuristic takes heterogeneity of compute nodes and

non-uniformity of objects distributed over the space.

RR, PC and PL comparison

Finally, to compare all the three approaches, we plot them together in Figure 6.7. PL

algorithm significantly outperforms the other two techniques.

Table 6.4 provides more statistics for comparison. The total processing time of the

system is equal to maximum time of all the ranks. PL is remarkably faster than the other

two algorithms. Although both RR and PC have large running times, the variance of PC is

less than the half of RR that shows PC does a much better job in distributing the load.

6.5.3.3 System running time analysis Table 6.5 shows the running time of the

key components in MPI-cuda-GIS system over Lake-Park dataset. As shown, load balanc-
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Figure (6.6) The processing time of 64 heterogeneous (CPU/GPU) processes by applying proportional-load (PL) load
balancing technique over Lake-Park dataset pair.

Table (6.4) Average and maximum processing time , range and variance of time of ranks in MPI-cuda-GIS system by applying
three different heuristics.

Heuristic
Processing time

Avgerage Maximum Range Variance

RR 7 sec 41 sec 41.7 sec 66.7

PC 2.9 sec 37.8 sec 37.3 sec 31.2

PL 1.2 sec 3.1 sec 2.5 sec 0.2

ing techniques have a small overhead and no matter what algorithm is used, the exchange

time is in the almost the same. In the era of high-speed network technologies the communi-

cation over the networks is no longer the main bottleneck for extensive computations. This

is the reason why we did not consider the communication overhead in our heuristic algo-

rithms. Finally, while the results verify the efficiency of parallel MPI-IO library, the data

read by it is in text format and needs to be converted to proper data type. e.g. float, for

further processing. The parsing phase mostly involves this conversion and has a significant

overhead.
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Figure (6.7) The processing time of 64 heterogeneous (CPU/GPU) processes by applying three different heuristics (H1, H2,
H3) over Lake-Park dataset pair.

Table (6.5) The running time (seconds) of key components in MPI-cuda-GIS system.

Heuristic IO Parsing Partitioning Gathering in master Load balancing Exchange Main processing Total
RR 1.5 12.3 0.1 0.3 0.1 0.5 41 55.8

PC 1.5 12.3 0.1 0.3 0.1 0.5 37.8 52.6

PL 1.5 12.3 0.1 0.3 0.1 0.5 3.1 17.9

6.6 Conclusion

In this chapter, we formulate the load balancing and processing of spatial data over

heterogeneous computing clusters equipped with CPUs and GPUs as a general ILP prob-

lem. Then, we provided two heuristic, Proportional-Cell (PC) and Proportional-Load (PL)

algorithms to effectively approximate the ILP model. We showed that both algorithms

distribute the load more evenly rather than Round-Robin (RR) technique for unevenly dis-

tributed datasets. The experimental results revealed that PL significantly outperforms PC

and RR in load balancing by reducing the workload processing time from more than 40 sec-

onds to 3 seconds. Finally, we proposed MPI-cuda-GIS system, a heterogeneous distributed

framework built upon MPI and cuda languages to integrate CPU and GPU computing to

achieve faster and more scalable HPC system compared to big cluster of computing nodes

equipped with multicore CPUs.
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Chapter 7

CONCLUSION AND FUTURE WORK

In this chapter, first we summarize our research and then, point out the aspects that

we did not cover or explored a little. We categorize these directions as the future work for

our next steps.

7.1 Summary

Generally speaking, this dissertation addressed two general classes of problems applica-

ble to spatial domains such as GIS involved with spatial join processing as follows: 1)Theo-

retical and algorithmic aspects of spatial join problem, and, 2) HPC system design. In the

following subsections, we summarize each part.

7.1.1 Theoretical and algorithmic aspects

The main contribution of this part were 1) developing intuitive space reduction linear

filters (CMF, CMF-Grid) suitable to many-core computing such as GPU architectures for

spatial join processing, and, 2) proposing load balancing algorithms (PC, PL) for spatial

data processing.

First, we introduced CMF, a linear filter that effectively eliminates workload of re-

finement phase by at least an order of magnitude. We provided mathematical analysis to

prove correctness of all the algorithms. Then, we extended CMF to CMF-Grid , a new

non-uniform grid technique that is designed with consideration of many-core GPU architec-

tures. We provided comprehensive experimental results based on real datasets to analyze

the impact of grid-cell properties such as grid-cell size and grid-cell shape on workload and

running time. We showed that to achieve the highest running time we need a grid scheme

with 4 to 6 times larger grid-cells than a workload-optimized scheme. Finally, we presented
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an example of spatial join problem in colocation mining. Our proposed GPU optimizations

showed a significant improvement over recently introduced grid-based algorithm.

Second, we proposed an ILP formulation for heterogeneous computing model. The

objective of ILP was to optimize load balancing scheme such that it minimizes the total pro-

cessing time. We provided two heuristics to approximate ILP: 1) Proportional-Cell algorithm

(PC), and, 2) Proportional-Load algorithm (PL). Our experiments over OpenStreetMap real

datasets showed a great approximation by PL algorithm even for unevenly distributed data.

7.1.2 HPC system design

In this part, first, we proposed GCMF, an end-to-end spatial join system (ST intersect

operation) for non-indexed polygonal data over a single GPU platform. The system included

4 subsystems: two filtering components as well as point-in-polygon test and edge-intersection

test subsystems. We proposed sort-based MBR filtering algorithm for GPU with linear

average time complexity. The experiments over real data yielded up to 39-fold speedup over

optimized sequential GEOS library and Postgres with PostGIS spatial database system. We

also showed that replacing CMF by CMF-Grid in GCMF system, its running time improves

225% by reducing the workload by more than two orders of magnitude factor.

Second, we developed MPI-cuda-GIS, a HPC computing system for distributed pro-

cessing of spatial data using heterogeneous compute nodes (CPU + GPU). We designed a

distributed framework using MPI language. We integrated GCMF system into the system

to take advantage of GPU as well as CPU computing.

7.2 Future Work

While two aspects spatial data processing (theory and HPC system design) are well

studied in this research and we made remarkable contribution to the domain by exploring

linear search space reduction filters and developing distributed heterogeneous (CPU+GPU)

computing systems, there are still many unexplored tracks in this field. In the last part of

this manuscript, we list some of these challenges as our future works. We hope readers find
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those challenges interesting and try to propose efficient methods to address them.

• Scalability: Our model with PL load balancing algorithm shows a very good scalability.

However, in order to process large spatial data (> 100GB), we should have appropriate

heterogeneous cluster equipped with enough the CPU-GPU resources. Also, it is im-

portant to have access to the sate of art GPUs since there are significant improvements

in their computational power as well as their memory limitations. for instance, nvidia

P100GPU with Pascal architecture has 16GB of memory that is almost the same as

using all four K20 GPUs with Kepler architecture yet not considering the faster Tesla

architecture.

• CMBR-based filters: the CMBR-based filter can be generalized to many spatial search

problem including the one discussed in Chapter 5 regarding colocation mining problem.

• More spatial join operations: In this research, we did not our libraries to handle all

the spatial join operations. There are still some important operations such as overlay

that need to be addressed in terms of heterogeneous computing.

• Spatiotemporal join problem: One significantly important aspect of spatial data pro-

cessing is adding the time series to the problem. Problem formulations and data

structures are fundamentally different and more complex in spatiotemporal domains

yet they are applicable to more applications and domains.
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[15] Y. J. Garćıa, M. A. Lopez, and S. T. Leutenegger, “On optimal node splitting for r-

trees,” in Proceedings of the 24rd International Conference on Very Large Data Bases.

Morgan Kaufmann Publishers Inc., 1998, pp. 334–344.

[16] J. Zhang and S. You, “Cudagis: report on the design and realization of a massive data

parallel gis on gpus,” in Proceedings of the Third ACM SIGSPATIAL International

Workshop on GeoStreaming. ACM, 2012, pp. 101–108.

[17] M. Schneider, “Spatial data types for database systems(finite resolution geometry for

geographic information systems),” Lecture notes in computer science, 1997.



121

[18] ——, “Spatial plateau algebra for implementing fuzzy spatial objects in databases and

gis: Spatial plateau data types and operations,” Applied Soft Computing, vol. 16, pp.

148–170, 2014.

[19] G. S. Taylor, J. Ousterhout, G. Hamachi, R. Mayo, and W. Scott, “Magic: A vlsi layout

system,” in Proceedings of the 21th Design Automation Conference, 1984, pp. 152–159.

[20] S. Shekhar, S. Chawla, S. Ravada, A. Fetterer, X. Liu, and C.-t. Lu, “Spatial databases-

accomplishments and research needs,” IEEE transactions on knowledge and data engi-

neering, vol. 11, no. 1, pp. 45–55, 1999.

[21] H. Samet, Foundations of multidimensional and metric data structures. Morgan Kauf-

mann, 2006.

[22] H. Zhu, J. Su, and O. H. Ibarra, “On multi-way spatial joins with direction predicates,”

in International Symposium on Spatial and Temporal Databases. Springer, 2001, pp.

217–235.

[23] H. Samet, “Applications of spatial data structures,” 1990.

[24] S. Berchtold, D. Keim, and H. Kriegel, “An index structure for high-dimensional data,”

Readings in multimedia computing and networking, vol. 451, 2001.

[25] N. Roussopoulos and D. Leifker, “Direct spatial search on pictorial databases using

packed r-trees,” in ACM Sigmod Record, vol. 14, no. 4. ACM, 1985, pp. 17–31.

[26] J. T. Robinson, “The kdb-tree: a search structure for large multidimensional dynamic

indexes,” in Proceedings of the 1981 ACM SIGMOD international conference on Man-

agement of data. ACM, 1981, pp. 10–18.

[27] W. G. Aref and H. Samet, “Efficient processing of window queries in the pyramid data

structure,” in Proceedings of the ninth ACM SIGACT-SIGMOD-SIGART symposium

on Principles of database systems. ACM, 1990, pp. 265–272.



122

[28] H. Samet and R. E. Webber, “Storing a collection of polygons using quadtrees,” ACM

Transactions on Graphics (TOG), vol. 4, no. 3, pp. 182–222, 1985.

[29] A. Guttman, R-trees: a dynamic index structure for spatial searching. ACM, 1984,

vol. 14, no. 2.

[30] D. Comer, “Ubiquitous b-tree,” ACM Computing Surveys (CSUR), vol. 11, no. 2, pp.

121–137, 1979.

[31] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The r*-tree: an efficient and

robust access method for points and rectangles,” in Acm Sigmod Record, vol. 19, no. 2.

Acm, 1990, pp. 322–331.

[32] T. Sellis, N. Roussopoulos, and C. Faloutsos, “The r+-tree: A dynamic index for multi-

dimensional objects.” Tech. Rep., 1987.

[33] H. Samet, “The quadtree and related hierarchical data structures,” ACM Computing

Surveys (CSUR), vol. 16, no. 2, pp. 187–260, 1984.

[34] R. A. Finkel and J. L. Bentley, “Quad trees a data structure for retrieval on composite

keys,” Acta informatica, vol. 4, no. 1, pp. 1–9, 1974.

[35] R. K. V. Kothuri, S. Ravada, and D. Abugov, “Quadtree and r-tree indexes in ora-

cle spatial: a comparison using gis data,” in Proceedings of the 2002 ACM SIGMOD

international conference on Management of data. ACM, 2002, pp. 546–557.

[36] W. R. Franklin, Combinatorics of hidden surface algorithms. Center for Research in

Computing Techn., Aiken Computation Laboratory, Univ., 1978.

[37] A. Appel, F. J. Rohlf, and A. J. Stein, The haloed line effect for hidden line elimination.

ACM, 1979, vol. 13, no. 2.

[38] W. R. Franklin, “Efficient polyhedron intersection and union,” in Proc. Graphics Inter-

face, vol. 82, 1982, pp. 73–80.



123

[39] W. R. Franklin and P. Y. Wu, “A polygon overlay system in prolog,” in Proceedings,

AutoCarto, vol. 8, 1987, pp. 97–106.

[40] W. R. Franklin, C. Narayanaswami, M. Kankanhalli, D. Sun, M.-C. Zhou, and P. Y. Wu,

“Uniform grids: A technique for intersection detection on serial and parallel machines,”

in Proceedings of Auto Carto, vol. 9. Citeseer, 1989, pp. 100–109.

[41] W. R. Franklin, N. Chandrasekhar, M. Kankanhalli, M. Seshan, and V. Akman, “Ef-

ficiency of uniform grids for intersection detection on serial and parallel machines,” in

New Trends in Computer Graphics. Springer, 1988, pp. 288–297.

[42] C. B. Walton, A. G. Dale, and R. M. Jenevein, “A taxonomy and performance model

of data skew effects in parallel joins.” in VLDB, vol. 91, 1991, pp. 537–548.

[43] J. M. Patel and D. J. DeWitt, “Partition based spatial-merge join,” in ACM SIGMOD

Record, vol. 25, no. 2. ACM, 1996, pp. 259–270.

[44] S. Audet, C. Albertsson, M. Murase, and A. Asahara, “Robust and efficient polygon

overlay on parallel stream processors,” in Proceedings of the 21st ACM SIGSPATIAL

International Conference on Advances in Geographic Information Systems. ACM, 2013,

pp. 304–313.

[45] W. R. Franklin, V. Sivaswami, D. Sun, M. Kankanhalli, and C. Narayanaswami, “Cal-

culating the area of overlaid polygons without constructing the overlay,” Cartography

and Geographic Information Systems, vol. 21, no. 2, pp. 81–89, 1994.

[46] L. Arge, O. Procopiuc, S. Ramaswamy, T. Suel, and J. S. Vitter, “Scalable sweeping-

based spatial join,” in VLDB, vol. 98. Citeseer, 1998, pp. 570–581.

[47] S. T. Leutenegger, M. Lopez, J. Edgington et al., “Str: A simple and efficient algo-

rithm for r-tree packing,” in Data Engineering, 1997. Proceedings. 13th International

Conference on. IEEE, 1997, pp. 497–506.



124

[48] M. Pavlovic, F. Tauheed, T. Heinis, and A. Ailamakit, “Gipsy: joining spatial datasets

with contrasting density,” in Proceedings of the 25th International Conference on Sci-

entific and Statistical Database Management. ACM, 2013, p. 11.

[49] X. Zhou, D. J. Abel, and D. Truffet, “Data partitioning for parallel spatial join process-

ing,” Geoinformatica, vol. 2, no. 2, pp. 175–204, 1998.

[50] S. You, J. Zhang, and L. Gruenwald, “Parallel spatial query processing on gpus us-

ing r-trees,” in Proceedings of the 2nd ACM SIGSPATIAL International Workshop on

Analytics for Big Geospatial Data. ACM, 2013, pp. 23–31.

[51] D. Aghajarian, S. Puri, and S. K. Prasad, “GCMF: An efficient end-to-end spatial join

system over large polygonal datasets on gpgpu platform,” SIGSPATIAL, 2016.

[52] D. Aghajarian and S. K. Prasad, “A spatial join algorithm based on a non-uniform grid

technique over gpgpu,” in Proceedings of the 25th ACM SIGSPATIAL International

Conference on Advances in Geographic Information Systems. ACM, 2017, p. 56.

[53] T. Yampaka and P. Chongstitvatana, “Spatial join with r-tree on graphics processing

units,” KMUTNB: International Journal of Applied Science and Technology, vol. 5,

no. 3, pp. 1–7, 2013.

[54] L. Luo, M. D. Wong, and L. Leong, “Parallel implementation of r-trees on the gpu,” in

Design Automation Conference (ASP-DAC), 2012 17th Asia and South Pacific. IEEE,

2012, pp. 353–358.

[55] S. Puri and S. K. Prasad, “MPI-GIS: New parallel overlay algorithm and system pro-

totype,” 2014.

[56] S. Puri, “Efficient parallel and distributed algorithms for gis polygon overlay process-

ing,” 2015.

[57] S. Puri, D. Agarwal, and S. K. Prasad, “Polygonal overlay computation on cloud,

hadoop, and mpi,” Encyclopedia of GIS, pp. 1–9, 2015.



125

[58] A. Eldawy and M. F. Mokbel, “Spatialhadoop: A mapreduce framework for spatial

data,” in Data Engineering (ICDE), 2015 IEEE 31st International Conference on.

IEEE, 2015, pp. 1352–1363.

[59] F. Baig, M. Mehrotra, H. Vo, F. Wang, J. Saltz, and T. Kurc, “Sparkgis: Efficient

comparison and evaluation of algorithm results in tissue image analysis studies,” in

Biomedical Data Management and Graph Online Querying. Springer, 2015, pp. 134–

146.

[60] F. Baig, H. Vo, T. Kurc, J. Saltz, and F. Wang, “Sparkgis: Resource aware efficient

in-memory spatial query processing,” in Proceedings of the 25th ACM SIGSPATIAL

International Conference on Advances in Geographic Information Systems. ACM,

2017, p. 28.

[61] D. Agarwal, S. Puri, X. He, S. K. Prasad, and X. Shi, “Crayons-a cloud based parallel

framework for gis overlay operations,” Distributed & Mobile Systems Lab, 2011.

[62] D. Agarwal, S. Puri, X. He, and S. K. Prasad, “A system for gis polygonal overlay

computation on linux cluster-an experience and performance report,” in Parallel and

Distributed Processing Symposium Workshops & PhD Forum (IPDPSW), 2012 IEEE

26th International. IEEE, 2012, pp. 1433–1439.

[63] D. Agarwal, S. Puri, and S. K. Prasad, “Crayons: Empowering cybergis by employing

cloud infrastructure,” in CyberGIS for Geospatial Discovery and Innovation. Springer,

2019, pp. 115–141.

[64] M. Stonebraker, J. Frew, K. Gardels, and J. Meredith, “The sequoia 2000 storage

benchmark,” in ACM SIGMOD Record, vol. 22, no. 2. ACM, 1993, pp. 2–11.

[65] B. Simion, S. Ray, and A. D. Brown, “Speeding up spatial database query execution

using gpus,” Procedia Computer Science, vol. 9, pp. 1870–1879, 2012.



126

[66] J. Zhang, S. You, and L. Gruenwald, “High-performance spatial query processing on big

taxi trip data using gpgpus,” in Big Data (BigData Congress), 2014 IEEE International

Congress on. IEEE, 2014, pp. 72–79.

[67] S. You, J. Zhang, and L. Gruenwald, “Scalable and efficient spatial data management

on multi-core cpu and gpu clusters: A preliminary implementation based on impala,”

in Data Engineering Workshops (ICDEW), 2015 31st IEEE International Conference

on. IEEE, 2015, pp. 143–148.

[68] A. N. Tantawi and D. Towsley, “Optimal static load balancing in distributed computer

systems,” Journal of the ACM (JACM), vol. 32, no. 2, pp. 445–465, 1985.

[69] A. Legrand, H. Renard, Y. Robert, and F. Vivien, “Mapping and load-balancing iter-

ative computations,” IEEE Transactions on Parallel and Distributed Systems, vol. 15,

no. 6, pp. 546–558, 2004.

[70] G. Cybenko, “Dynamic load balancing for distributed memory multiprocessors,” Jour-

nal of parallel and distributed computing, vol. 7, no. 2, pp. 279–301, 1989.

[71] G.-w. You, S.-w. Hwang, and N. Jain, “Scalable load balancing in cluster storage sys-

tems,” in Proceedings of the 12th International Middleware Conference. International

Federation for Information Processing, 2011, pp. 100–119.
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