53,999 research outputs found

    Data compression techniques applied to high resolution high frame rate video technology

    Get PDF
    An investigation is presented of video data compression applied to microgravity space experiments using High Resolution High Frame Rate Video Technology (HHVT). An extensive survey of methods of video data compression, described in the open literature, was conducted. The survey examines compression methods employing digital computing. The results of the survey are presented. They include a description of each method and assessment of image degradation and video data parameters. An assessment is made of present and near term future technology for implementation of video data compression in high speed imaging system. Results of the assessment are discussed and summarized. The results of a study of a baseline HHVT video system, and approaches for implementation of video data compression, are presented. Case studies of three microgravity experiments are presented and specific compression techniques and implementations are recommended

    Efficient non-malleable codes and key derivation for poly-size tampering circuits

    Get PDF
    Non-malleable codes, defined by Dziembowski, Pietrzak, and Wichs (ICS '10), provide roughly the following guarantee: if a codeword c encoding some message x is tampered to c' = f(c) such that c' ≠ c , then the tampered message x' contained in c' reveals no information about x. The non-malleable codes have applications to immunizing cryptosystems against tampering attacks and related-key attacks. One cannot have an efficient non-malleable code that protects against all efficient tampering functions f. However, in this paper we show 'the next best thing': for any polynomial bound s given a-priori, there is an efficient non-malleable code that protects against all tampering functions f computable by a circuit of size s. More generally, for any family of tampering functions F of size F ≤ 2s , there is an efficient non-malleable code that protects against all f in F . The rate of our codes, defined as the ratio of message to codeword size, approaches 1. Our results are information-theoretic and our main proof technique relies on a careful probabilistic method argument using limited independence. As a result, we get an efficiently samplable family of efficient codes, such that a random member of the family is non-malleable with overwhelming probability. Alternatively, we can view the result as providing an efficient non-malleable code in the 'common reference string' model. We also introduce a new notion of non-malleable key derivation, which uses randomness x to derive a secret key y = h(x) in such a way that, even if x is tampered to a different value x' = f(x) , the derived key y' = h(x') does not reveal any information about y. Our results for non-malleable key derivation are analogous to those for non-malleable codes. As a useful tool in our analysis, we rely on the notion of 'leakage-resilient storage' of Davì, Dziembowski, and Venturi (SCN '10), and, as a result of independent interest, we also significantly improve on the parameters of such schemes

    A Replica Inference Approach to Unsupervised Multi-Scale Image Segmentation

    Full text link
    We apply a replica inference based Potts model method to unsupervised image segmentation on multiple scales. This approach was inspired by the statistical mechanics problem of "community detection" and its phase diagram. Specifically, the problem is cast as identifying tightly bound clusters ("communities" or "solutes") against a background or "solvent". Within our multiresolution approach, we compute information theory based correlations among multiple solutions ("replicas") of the same graph over a range of resolutions. Significant multiresolution structures are identified by replica correlations as manifest in information theory overlaps. With the aid of these correlations as well as thermodynamic measures, the phase diagram of the corresponding Potts model is analyzed both at zero and finite temperatures. Optimal parameters corresponding to a sensible unsupervised segmentation correspond to the "easy phase" of the Potts model. Our algorithm is fast and shown to be at least as accurate as the best algorithms to date and to be especially suited to the detection of camouflaged images.Comment: 26 pages, 22 figure

    High-ISO long-exposure image denoising based on quantitative blob characterization

    Get PDF
    Blob detection and image denoising are fundamental, sometimes related tasks in computer vision. In this paper, we present a computational method to quantitatively measure blob characteristics using normalized unilateral second-order Gaussian kernels. This method suppresses non-blob structures while yielding a quantitative measurement of the position, prominence and scale of blobs, which can facilitate the tasks of blob reconstruction and blob reduction. Subsequently, we propose a denoising scheme to address high-ISO long-exposure noise, which sometimes spatially shows a blob appearance, employing a blob reduction procedure as a cheap preprocessing for conventional denoising methods. We apply the proposed denoising methods to real-world noisy images as well as standard images that are corrupted by real noise. The experimental results demonstrate the superiority of the proposed methods over state-of-the-art denoising methods

    Survey of Object Detection Methods in Camouflaged Image

    Get PDF
    Camouflage is an attempt to conceal the signature of a target object into the background image. Camouflage detection methods or Decamouflaging method is basically used to detect foreground object hidden in the background image. In this research paper authors presented survey of camouflage detection methods for different applications and areas
    • …
    corecore