26 research outputs found

    A hybrid network/host mobility management scheme for next generation networks

    Get PDF
    Includes bibliographical references.The author proposes a hybrid network/host interworking scheme to allow the MN to transition smoothly between different access networks supporting two distinct mobility approaches

    Distributed IP mobility management for hosts and networks

    Get PDF
    Includes bibliographical references.The Internet was originally designed for stationary nodes. With the advancement of mobile nodes (such as smartphones and tablets) that have wireless Internet access capability, the original design of the Internet is no longer sufficient. These mobile nodes are capable of communicating while moving and changing their point of attachment in the Internet. To maintain communication session(s) continuity for these mobile nodes, the Internet needs mobility management mechanisms. The main mobility management protocols standardised by the Internet Engineering Task Force (IETF) are mobile IP (MIPv6 and MIPv4) and their numerous extensions and variants, including proxy MIP (PMIPv6 and PMIPv4). The architectural structures of these protocols employ a centralized mobility anchor to manage the mobility of the mobile nodes in the control and data planes. The mobility anchor manages the mobility binding information and the forwarding of data packets for all mobile nodes registered in the network. However, in the context of the rapid growth in the number of mobile users and the data traffic volume, as well as the trend towards a flat architecture in mobile networks, the centralized mobility management approach provides insufficient mobility support to the mobile nodes. For example, to manage the demand for increased mobile users, a huge amount of data traffic will be pushed to the centralized mobility anchor. Yet, routing huge volumes of traffic via the centralized mobility anchor can be non-optimal in terms of routing efficiency. Thus, the centralised mobility anchor can be a potential bottleneck, and a single point of failure. Consequently, failure of the mobility anchor may lead to a service outage for a large number of mobile nodes. Ultimately, the centralized mobility management approach does not scale well with the increase in number of mobile users and the data traffic volume. These problems are also costly to resolve within the centralized mobility management approach and its related centralized network architecture. Distributed mobility management (DMM) is one recent approach that can efficiently address the shortcomings of centralized mobility management. It provides an alternative paradigm for developing IP mobility management – without employing centralized mobility anchors. In this paradigm, either the mobility anchors, or their mobility management functions, are distributed to different networks/elements. The mobility anchors, or the mobility management functions, are brought to the edge of the networks, which is closer to the mobile nodes. Distributed mobility management also offers dynamic mobility features that allow a mobile node to anchor traffic at different mobility anchors. However, to date, mobility management schemes that have been developed based on the DMM approach are still in the preliminary stages, and there is no current standard in place. These developed DMM schemes are still experiencing problems, such as long routing paths, especially for long-lasting data traffic, a lack of route optimization for ongoing communication, and a lack of synchronization of the mobile nodes‟ location in different networks. Moreover, the majority of these proposed schemes still need to be analysed, in order to quantify their feasibility. The thesis proposes three novel network-based distributed mobility management schemes, which are based on the DMM approach. The schemes enhance PMIPv6 to work in a distributed manner, in order to address the problems of centralized mobility management. Furthermore, the schemes address the following issues: (1) the lack of route optimization for ongoing communication; (2) the lack of synchronization of the mobile nodes‟ location in different networks; and (3) the long end-to-end packet delivery delay problems in recently proposed DMM schemes. The first scheme, called the network-based distributed mobility management scheme with routing management function at the gateways (DM-RMG), decomposes the logical mobility management functions of the Local Mobility Anchor (LMA) in PMIPv6 into internetwork location management (LM), routing management (RM), and home network prefix allocation (HNP) functions. After the decomposition, the RM function is collocated at the gateways of different networks. In this way, the data-plane routing function of the respective mobile nodes is served by the corresponding local RM function at the network gateway. The DM-RMG scheme offers distributed mobility management for individual mobile nodes (i.e., mobile hosts) during mobility events. DM-RMG also implements a mechanism to optimize the handover delay. The results obtained from analytical modelling and simulation show that the DM-RMG scheme outperforms the centralized mobility management schemes, as well as currently proposed distributed mobility management schemes in terms of the end-to-end packet delivery delay under different network load conditions. The optimized handover performance of the DM-RMG scheme, investigated under different traffic patterns and mobile node speeds, shows that the scheme also mitigates the internetwork handover delay and packet loss. The second proposed scheme, called network-based distributed mobility management for the network mobility (NDM-RMG), uses a similar approach to DM-RMG. However, it proposes a network-based DMM scheme for Network Mobility (NEMO). The main goal of the NDMRMG scheme is to address the problems of centralized mobility management protocols for NEMO, including the pinball routing problem in nested NEMO. NDM-RMG is compared with centralized mobility management schemes for NEMO, and recently proposed distributed IP mobility management schemes for NEMO by means of analytical modelling and simulation evaluations. NDM-RMG shows better performance in terms of reducing the packet delivery latency, the size of the packet header, and the packet overhead experienced over the wireless link. The third proposed scheme, called network-based distributed mobility management scheme with RM and HNP allocation functions distributed to the access routers (DM-RMA), distributes the RM and the HNP allocation functions at the access routers with the mobility client function. This brings the mobility-related functions closer to the mobile nodes, that is, to the edge of the network. An analytical model is developed to investigate the mobility cost performance of the scheme, due to signalling, packet delivery, and tunnelling. The analytical results indicate that DM-RMA performs better than the previous DMM schemes in terms of packet delivery, tunnelling and total costs. Network simulator-2 (ns-2) is used to model the DM-RMA scheme. The simulated scenarios confirm that DM-RMA performs better than other proposed DMM schemes in terms of reducing the location update latency at the location managers, end-to-end packet delivery delay, handover delay, and packet loss. In addition to the three proposed DMM schemes, this thesis proposes a routing optimization scheme for PMIPv6. The main goal of this scheme is to enable PMIPv6 to offer route optimization to mobile nodes in a PMIPv6 domain. The scheme reduces the route optimization-establishment latency, the packet delivery latency, and the packet loss. Using ns-2 simulations and considering different simulated scenarios, the results show that the scheme reduces route optimization-establishment latency and delayed packets during the route optimization operation, as compared to previously proposed PMIPv6 route optimization schemes. The results also show that the scheme reduces packet loss when a mobile node undergoes handover in the PMIPv6 domain

    Survey on PMIPv6-based Mobility Management Architectures for Software-Defined Networking

    Get PDF
    Software-Defined Networking (SDN) has changed the network landscape. Meanwhile, IP-based mobility management still evolves, and SDN affects it dramatically. Integrating Proxy Mobile IPv6 (PMIPv6) – a network-based mobility management protocol – with the SDN paradigm has created several promising approaches. This paper will present an extensive survey on the joint research area of PMIPv6 and SDN mobility management by detailing the available SDN-integrated network-based techniques and architectures that intend to accelerate handover and mitigate service disruption of mobility events in softwareized telecommunication networks. The article also provides an overview of where PMIPv6 can be used and how SDN may help reach those ways

    Location Management in IP-based Future LEO Satellite Networks: A Review

    Full text link
    Future integrated terrestrial, aerial, and space networks will involve thousands of Low Earth Orbit (LEO) satellites forming a network of mega-constellations, which will play a significant role in providing communication and Internet services everywhere, at any time, and for everything. Due to its very large scale and highly dynamic nature, future LEO satellite networks (SatNets) management is a very complicated and crucial process, especially the mobility management aspect and its two components location management and handover management. In this article, we present a comprehensive and critical review of the state-of-the-art research in LEO SatNets location management. First, we give an overview of the Internet Engineering Task Force (IETF) mobility management standards (e.g., Mobile IPv6 and Proxy Mobile IPv6) and discuss their location management techniques limitations in the environment of future LEO SatNets. We highlight future LEO SatNets mobility characteristics and their challenging features and describe two unprecedented future location management scenarios. A taxonomy of the available location management solutions for LEO SatNets is presented, where the solutions are classified into three approaches. The "Issues to consider" section draws attention to critical points related to each of the reviewed approaches that should be considered in future LEO SatNets location management. To identify the gaps, the current state of LEO SatNets location management is summarized. Noteworthy future research directions are recommended. This article is providing a road map for researchers and industry to shape the future of LEO SatNets location management.Comment: Submitted to the Proceedings of the IEE

    Host mobility management with identifier-locator split protocols in hierarchical and flat networks

    Get PDF
    Includes abstractIncludes bibliographical references.As the Internet increasingly becomes more mobile focused and overloaded with mobile hosts, mobile users are bound to roam freely and attach to a variety of networks. These different networks converge over an IP-based core to enable ubiquitous network access, anytime and anywhere, to support the provision of services, that is, any service, to mobile users. Therefore, in this thesis, the researcher proposed network-based mobility solutions at different layers to securely support seamless handovers between heterogeneous networks in hierarchical and flat network architectures

    Descentralização da gestão da mobilidade IP nas redes do futuro

    Get PDF
    Doutoramento em Engenharia ElectrotécnicaThe massive adoption of sophisticated mobile devices and applications led to the increase of mobile data in the last decade, which it is expected to continue. This increase of mobile data negatively impacts the network planning and dimension, since core networks are heavy centralized. Mobile operators are investigating atten network architectures that distribute the responsibility of providing connectivity and mobility, in order to improve the network scalability and performance. Moreover, service providers are moving the content servers closer to the user, in order to ensure high availability and performance of content delivery. Besides the e orts to overcome the explosion of mobile data, current mobility management models are heavy centralized to ensure reachability and session continuity to the users connected to the network. Nowadays, deployed architectures have a small number of centralized mobility anchors managing the mobile data and the mobility context of millions of users, which introduces issues related to performance and scalability that require costly network mechanisms. The mobility management needs to be rethought out-of-the box to cope with atten network architectures and distributed content servers closer to the user, which is the purpose of the work developed in this Thesis. The Thesis starts with a characterization of mobility management into well-de ned functional blocks, their interaction and potential grouping. The decentralized mobility management is studied through analytical models and simulations, in which di erent mobility approaches distinctly distribute the mobility management functionalities through the network. The outcome of this study showed that decentralized mobility management brings advantages. Hence, it was proposed a novel distributed and dynamic mobility management approach, which is exhaustively evaluated through analytical models, simulations and testbed experiments. The proposed approach is also integrated with seamless horizontal handover mechanisms, as well as evaluated in vehicular environments. The mobility mechanisms are also speci ed for multihomed scenarios, in order to provide data o oading with IP mobility from cellular to other access networks. In the pursuing of the optimized mobile routing path, a novel network-based strategy for localized mobility is addressed, in which a replication binding system is deployed in the mobility anchors distributed through the access routers and gateways. Finally, we go further in the mobility anchoring subject, presenting a context-aware adaptive IP mobility anchoring model that dynamically assigns the mobility anchors that provide the optimized routing path to a session, based on the user and network context. The integration of dynamic and distributed concepts in the mobility management, such as context-aware adaptive mobility anchoring and dynamic mobility support, allow the optimization of network resources and the improvement of user experience. The overall outcome demonstrates that decentralized mobility management is a promising direction, hence, its ideas should be taken into account by mobile operators in the deployment of future networks.Na última década verificou-se uma massificação dos dispositivos móveis e das suas aplicações, o que tem vindo a aumentar o consumo de dados móveis. Este aumento dificulta o planeamento e dimensionamento das redes devido principalmente aos modelos extremamente centralizados adoptados por estas. Os operadores móveis têm vindo a estudar modelos mais até para as redes, os quais distribuem a responsabilidade de fornecer conectividade e mobilidade, no sentido de melhorar a escalabilidade e desempenho da rede. Além disso, de forma a garantir um desempenho elevado na entrega dos conteúdos, os fornecedores de serviço têm vindo a mover os servidores de conteúdos para locais mais próximos do utilizador. Apesar do esforço na procura de soluções para o crescente consumo de dados móveis, os modelos atuais de gestão de mobilidade são demasiado centralizados para conseguir assegurar a continuidade de sessão aos utilizadores conectados à rede. As arquiteturas implementadas têm um número muito reduzido de âncoras móveis centralizadas que gerem todos os dados móveis e a informação de contexto da mobilidade, o que leva a uma diminuição de desempenho e escalabilidade, solucionadas através de mecanismos de rede dispendiosos. A gestão da mobilidade precisa de ser repensada de forma a poder lidar com arquiteturas de rede até com a distribuição dos servidores de conteúdos para nós mais próximos dos utilizadores, que é o objectivo principal da Tese apresentada. Primeiro, é apresentada a caracterização da gestão de mobilidade em blocos funcionais, a interação entre eles e potenciais agrupamentos dos mesmos. A gestão da mobilidade descentralizada é estudada através de modelos analíticos e simulações, em que diferentes abordagens distribuem as funcionalidades da mobilidade pela rede. Como resultado deste estudo verificou-se que a descentralização da mobilidade traz vantagens claras. Com base nestes resultados foi proposta uma nova abordagem de gestão de mobilidade distribuída e dinâmica, que é exaustivamente avaliada através de modelos analíticos, simulações e experiências numa bancada de testes. A abordagem proposta é também integrada com mecanismos de handovers horizontais transparentes, assim como é avaliada em ambientes veiculares. Os mecanismos de mobilidade da abordagem proposta são também especificados para cenários de multihoming, de forma a proporcionar o offloading de dados com suporte de mobilidade das redes celulares para outras redes de acesso. Com o objectivo de optimizar o encaminhamento de dados móveis, foi criada uma nova estratégia para o suporte da mobilidade localizada, em que um sistema de replicação de bindings é integrado nas âncoras de mobilidade distribuídas através dos routers de acesso e dos gateways. Finalmente apresenta-se um modelo de ancoramento adaptativo para a mobilidade com base em contexto, o qual dinamicamente determina as âncoras de mobilidade que oferecem a melhor rota para uma dada sessão, baseado na informação do utilizador e da rede. A integração de conceitos de dinamismo e de distribuição na gestão da mobilidade, como o ancoramento adaptativo e o suporte dinâmico da mobilidade, permitem a optimização dos recursos da rede e uma melhor experiência por parte do utilizador. Os resultados demonstram, de uma forma geral, que a gestão descentralizada da mobilidade é um caminho promissor, logo este deve ser tomado em consideração pelas operadoras móveis aquando do desenvolvimento das redes do futuro

    A network-based coordination design for seamless handover between heterogeneous wireless networks

    Get PDF
    Includes bibliographical references (leaves 136-144).The rapid growth of mobile and wireless communication over the last few years has spawned many different wireless networks. These heterogeneous wireless networks are envisioned to interwork over an IP-based infrastructure to realize ubiquitous network service provisioning for mobile users. Moreover, the availability of multiple-interface mobile nodes (MNs) will make it possible to communicate through any of these wireless access networks. This wireless network heterogeneity combined with the availability of multiple-interface MNs creates an environment where handovers between the different wireless access technologies become topical during mobility events. Therefore, operators with multiple interworking heterogeneous wireless networks will need to facilitate seamless vertical handovers among their multiple systems. Seamless vertical handovers ensure ubiquitous continuity to active connections hence satisfy the quality of experience of the mobile users
    corecore