986 research outputs found

    Segment Routing: a Comprehensive Survey of Research Activities, Standardization Efforts and Implementation Results

    Full text link
    Fixed and mobile telecom operators, enterprise network operators and cloud providers strive to face the challenging demands coming from the evolution of IP networks (e.g. huge bandwidth requirements, integration of billions of devices and millions of services in the cloud). Proposed in the early 2010s, Segment Routing (SR) architecture helps face these challenging demands, and it is currently being adopted and deployed. SR architecture is based on the concept of source routing and has interesting scalability properties, as it dramatically reduces the amount of state information to be configured in the core nodes to support complex services. SR architecture was first implemented with the MPLS dataplane and then, quite recently, with the IPv6 dataplane (SRv6). IPv6 SR architecture (SRv6) has been extended from the simple steering of packets across nodes to a general network programming approach, making it very suitable for use cases such as Service Function Chaining and Network Function Virtualization. In this paper we present a tutorial and a comprehensive survey on SR technology, analyzing standardization efforts, patents, research activities and implementation results. We start with an introduction on the motivations for Segment Routing and an overview of its evolution and standardization. Then, we provide a tutorial on Segment Routing technology, with a focus on the novel SRv6 solution. We discuss the standardization efforts and the patents providing details on the most important documents and mentioning other ongoing activities. We then thoroughly analyze research activities according to a taxonomy. We have identified 8 main categories during our analysis of the current state of play: Monitoring, Traffic Engineering, Failure Recovery, Centrally Controlled Architectures, Path Encoding, Network Programming, Performance Evaluation and Miscellaneous...Comment: SUBMITTED TO IEEE COMMUNICATIONS SURVEYS & TUTORIAL

    Review of Path Selection Algorithms with Link Quality and Critical Switch Aware for Heterogeneous Traffic in SDN

    Get PDF
    Software Defined Networking (SDN) introduced network management flexibility that eludes traditional network architecture. Nevertheless, the pervasive demand for various cloud computing services with different levels of Quality of Service requirements in our contemporary world made network service provisioning challenging. One of these challenges is path selection (PS) for routing heterogeneous traffic with end-to-end quality of service support specific to each traffic class. The challenge had gotten the research community\u27s attention to the extent that many PSAs were proposed. However, a gap still exists that calls for further study. This paper reviews the existing PSA and the Baseline Shortest Path Algorithms (BSPA) upon which many relevant PSA(s) are built to help identify these gaps. The paper categorizes the PSAs into four, based on their path selection criteria, (1) PSAs that use static or dynamic link quality to guide PSD, (2) PSAs that consider the criticality of switch in terms of an update operation, FlowTable limitation or port capacity to guide PSD, (3) PSAs that consider flow variabilities to guide PSD and (4) The PSAs that use ML optimization in their PSD. We then reviewed and compared the techniques\u27 design in each category against the identified SDN PSA design objectives, solution approach, BSPA, and validation approaches. Finally, the paper recommends directions for further research

    Software Defined Networks based Smart Grid Communication: A Comprehensive Survey

    Get PDF
    The current power grid is no longer a feasible solution due to ever-increasing user demand of electricity, old infrastructure, and reliability issues and thus require transformation to a better grid a.k.a., smart grid (SG). The key features that distinguish SG from the conventional electrical power grid are its capability to perform two-way communication, demand side management, and real time pricing. Despite all these advantages that SG will bring, there are certain issues which are specific to SG communication system. For instance, network management of current SG systems is complex, time consuming, and done manually. Moreover, SG communication (SGC) system is built on different vendor specific devices and protocols. Therefore, the current SG systems are not protocol independent, thus leading to interoperability issue. Software defined network (SDN) has been proposed to monitor and manage the communication networks globally. This article serves as a comprehensive survey on SDN-based SGC. In this article, we first discuss taxonomy of advantages of SDNbased SGC.We then discuss SDN-based SGC architectures, along with case studies. Our article provides an in-depth discussion on routing schemes for SDN-based SGC. We also provide detailed survey of security and privacy schemes applied to SDN-based SGC. We furthermore present challenges, open issues, and future research directions related to SDN-based SGC.Comment: Accepte

    Traffic-aware adaptive server load balancing for software defined networks

    Get PDF
    Servers in data center networks handle heterogenous bulk loads. Load balancing, therefore, plays an important role in optimizing network bandwidth and minimizing response time. A complete knowledge of the current network status is needed to provide a stable load in the network. The process of network status catalog in a traditional network needs additional processing which increases complexity, whereas, in software defined networking, the control plane monitors the overall working of the network continuously. Hence it is decided to propose an efficient load balancing algorithm that adapts SDN. This paper proposes an efficient algorithm TA-ASLB-traffic-aware adaptive server load balancing to balance the flows to the servers in a data center network. It works based on two parameters, residual bandwidth, and server capacity. It detects the elephant flows and forwards them towards the optimal server where it can be processed quickly. It has been tested with the Mininet simulator and gave considerably better results compared to the existing server load balancing algorithms in the floodlight controller. After experimentation and analysis, it is understood that the method provides comparatively better results than the existing load balancing algorithms

    PLAN: Joint policy- and network-aware VM management for cloud data centers

    Get PDF
    Policies play an important role in network configuration and therefore in offering secure and high performance services especially over multi-tenant Cloud Data Center (DC) environments. At the same time, elastic resource provisioning through virtualization often disregards policy requirements, assuming that the policy implementation is handled by the underlying network infrastructure. This can result in policy violations, performance degradation and security vulnerabilities. In this paper, we define PLAN, a PoLicy-Aware and Network-aware VM management scheme to jointly consider DC communication cost reduction through Virtual Machine (VM) migration while meeting network policy requirements. We show that the problem is NP-hard and derive an efficient approximate algorithm to reduce communication cost while adhering to policy constraints. Through extensive evaluation, we show that PLAN can reduce topology-wide communication cost by 38 percent over diverse aggregate traffic and configuration policies
    corecore