60 research outputs found

    A survey of RFID readers anticollision protocols

    Get PDF
    International audienceWhile RFID technology is gaining increased attention from industrial community deploying different RFID-based applications, it still suffers from reading collisions. As such, many proposals were made by the scientific community to try and alleviate that issue using different techniques either centralized or distributed, monochannel or multichannels, TDMA or CSMA. However, the wide range of solutions and their diversity make it hard to have a clear and fair overview of the different works. This paper surveys the most relevant and recent known state-of-the-art anti-collision for RFID protocols. It provides a classification and performance evaluation taking into consideration different criteria as well as a guide to choose the best protocol for given applications depending on their constraints or requirements but also in regard to their deployment environments

    Distributed Efficient & Fair Anticollision for RFID Protocol

    Get PDF
    International audienceRFID technology suffers from a recurring issue: the reader-to-reader collision. Numerous protocols have been proposed to attempt to reduce them, but, remaining reading errors still heavily impact the performances and fairness of dense RFID deployments. This paper introduces a new Distributed Efficient & Fair Anticollision for RFID (DEFAR) protocol. It reduces both monochannel and multichannel collisions as well as interference by a factor of almost 90% in comparison with the best state of the art protocols. The fairness of the medium access among the readers is improved to a 99% level. Such improvements are achieved applying a TDMA-based "server-less" approach and assigning different priorities to readers depending on their behavior over precedent rounds. A distributed reservation phase is organized between readers with at least one winning reader afterwards. Then, multiple reading phases occur within a single frame in order to obtain fast coverage and high throughput. The use of different reader priorities based on reading behaviors of previous frames also contributes to improve both fairness and efficiency. Simulation results show the robustness of the proposed solution in terms of different metrics such collision avoidance, fairness and coverage and in comparison with a centralized literature solution

    RAC-Multi: Reader Anti-Collision Algorithm for Multichannel Mobile RFID Networks

    Get PDF
    At present, RFID is installed on mobile devices such as mobile phones or PDAs and provides a means to obtain information about objects equipped with an RFID tag over a multi-channeled telecommunication networks. To use mobile RFIDs, reader collision problems should be addressed given that readers are continuously moving. Moreover, in a multichannel environment for mobile RFIDs, interference between adjacent channels should be considered. This work first defines a new concept of a reader collision problem between adjacent channels and then suggests a novel reader anti-collision algorithm for RFID readers that use multiple channels. To avoid interference with adjacent channels, the suggested algorithm separates data channels into odd and even numbered channels and allocates odd-numbered channels first to readers. It also sets an unused channel between the control channel and data channels to ensure that control messages and the signal of the adjacent channel experience no interference. Experimental results show that suggested algorithm shows throughput improvements ranging from 29% to 46% for tag identifications compared to the GENTLE reader anti-collision algorithm for multichannel RFID networks

    Data Gathering Solutions for Dense RFID Deployments

    Get PDF
    International audienceThe advent of RFID (Radio Frequency Identification) has allowed the development of numerous applications. Indeed, solutions such as tracking of goods in large areas or sensing in smart cities are now made possible. However, such solutions encounter two main issues, first is inherent to the technology itself which is readers collisions, the second one being the gathering of read data up to a base station, potentially in a multihop fashion. While the first one has been a main research subject in the late years, the next one has not been investigated for the sole purpose of RFID, but rather for wireless adhoc networks. This multihop tag information collection must be done in regards of the application requirements but it should also care for the deployment strategy of readers to take advantage of their relative positions, coverage, reading activity and deployment density to avoid interfering between tag reading and data forwarding. To the best of our knowledge, the issue for a joint scheduling between tag reading and forwarding has never been investigated so far in the literature, although important.In this paper, we propose two new distributed, crosslayer solutions meant for the reduction of collisions and better efficiency of the RFID system but also serve as a routing solution towards a base station. Simulations show high levels of throughput while not lowering on the fairness on medium access staying above 85% in the highest deployment density with up to 500 readers, also providing a 90% data rate

    RFID Anticollision in Dense Mobile Environments

    Get PDF
    International audienceThe popularization of RFID systems has conducted to large deployments of RFID solutions in various areas under different criteria. However, such deployments, specially in dense environments, can be subject to RFID collisions which in turn affect the quality of readings.In this paper we propose two distributed and efficient solutions for dense mobile deployments of RFID systems. mDEFAR is an adaptation of a previous work highly performing in terms of collisions reduction, efficiency and fairness in dense static deployments. CORA is more of a locally mutual solution where each reader relies on its neighborhood to enable itself or not. Using a beaconing mechanism, each reader is able to identify potential (non-)colliding neighbors in a running frame and as such chooses to read or not. Performance evaluation shows high performance in terms of coverage delay for both proposals quickly achieving 100% coverage depending on the considered use case while always maintaining consistent efficiency levels above 70%. Compared to GDRA, our solutions proved to be better suited for highly dense and mobile environments, offering both higher throughput and efficiency. The results reveal that depending on the application considered, choosing either mDEFAR or CORA helps improve efficiency and coverage delay

    RFID Anticollision in Dense Mobile Environments

    Get PDF
    International audienceThe popularization of RFID systems has conducted to large deployments of RFID solutions in various areas under different criteria. However, such deployments, specially in dense environments, can be subject to RFID collisions which in turn affect the quality of readings.In this paper we propose two distributed and efficient solutions for dense mobile deployments of RFID systems. mDEFAR is an adaptation of a previous work highly performing in terms of collisions reduction, efficiency and fairness in dense static deployments. CORA is more of a locally mutual solution where each reader relies on its neighborhood to enable itself or not. Using a beaconing mechanism, each reader is able to identify potential (non-)colliding neighbors in a running frame and as such chooses to read or not. Performance evaluation shows high performance in terms of coverage delay for both proposals quickly achieving 100% coverage depending on the considered use case while always maintaining consistent efficiency levels above 70%. Compared to GDRA, our solutions proved to be better suited for highly dense and mobile environments, offering both higher throughput and efficiency. The results reveal that depending on the application considered, choosing either mDEFAR or CORA helps improve efficiency and coverage delay

    How to improve CSMA-based MAC protocol for dense RFID reader-to-reader Networks?

    Get PDF
    International audienceDue to the dedicated short range communication feature of passive radio frequency identification (RFID) and the closest proximity operation of both tags and readers in a large-scale dynamic RFID system, when nearby readers simultaneously try to communicate with tags located within their interrogation range, serious interference problems may occur. Such interferences may cause signal collisions that lead to the reading throughput barrier and degrade the system performance. Although many efforts have been done to maximize the throughput by proposing protocols such as NFRA or more recently GDRA, which is compliant with the EPCglobal and ETSI EN 302 208 standards. However, the above protocols are based on unrealistic assumptions or require additional components with more control packet and perform worse in terms of collisions and latency, etc. In this paper, we explore the use of some well-known Carrier Sense Multiple Access (CSMA) backoff algorithms to improve the existing CSMA-based reader-to-reader anti-collision protocol in dense RFID networks. Moreover, the proposals are compliant with the existing standards. We conduct extensive simulations and compare their performance with the well-known state-of-the-art protocols to show their performance under various criteria. We find that the proposals improvement are highly suitable for maximizing the throughput, efficiency and for minimizing both the collisions and coverage latency in dense RFID Systems

    From M-ary Query to Bit Query: a new strategy for efficient large-scale RFID identification

    Get PDF
    The tag collision avoidance has been viewed as one of the most important research problems in RFID communications and bit tracking technology has been widely embedded in query tree (QT) based algorithms to tackle such challenge. Existing solutions show further opportunity to greatly improve the reading performance because collision queries and empty queries are not fully explored. In this paper, a bit query (BQ) strategy based Mary query tree protocol (BQMT) is presented, which can not only eliminate idle queries but also separate collided tags into many small subsets and make full use of the collided bits. To further optimize the reading performance, a modified dual prefixes matching (MDPM) mechanism is presented to allow multiple tags to respond in the same slot and thus significantly reduce the number of queries. Theoretical analysis and simulations are supplemented to validate the effectiveness of the proposed BQMT and MDPM, which outperform the existing QT-based algorithms. Also, the BQMT and MDPM can be combined to BQMDPM to improve the reading performance in system efficiency, total identification time, communication complexity and average energy cost

    Reliable Communication in Wireless Networks

    Get PDF
    Wireless communication systems are increasingly being used in industries and infrastructures since they offer significant advantages such as cost effectiveness and scalability with respect to wired communication system. However, the broadcast feature and the unreliable links in the wireless communication system may cause more communication collisions and redundant transmissions. Consequently, guaranteeing reliable and efficient transmission in wireless communication systems has become a big challenging issue. In particular, analysis and evaluation of reliable transmission protocols in wireless sensor networks (WSNs) and radio frequency identification system (RFID) are strongly required. This thesis proposes to model, analyze and evaluate self-configuration algorithms in wireless communication systems. The objective is to propose innovative solutions for communication protocols in WSNs and RFID systems, aiming at optimizing the performance of the algorithms in terms of throughput, reliability and power consumption. The first activity focuses on communication protocols in WSNs, which have been investigated, evaluated and optimized, in order to ensure fast and reliable data transmission between sensor nodes. The second research topic addresses the interference problem in RFID systems. The target is to evaluate and develop precise models for accurately describing the interference among readers. Based on these models, new solutions for reducing collision in RFID systems have been investigated
    • …
    corecore