5,034 research outputs found

    HVSTO: Efficient Privacy Preserving Hybrid Storage in Cloud Data Center

    Full text link
    In cloud data center, shared storage with good management is a main structure used for the storage of virtual machines (VM). In this paper, we proposed Hybrid VM storage (HVSTO), a privacy preserving shared storage system designed for the virtual machine storage in large-scale cloud data center. Unlike traditional shared storage, HVSTO adopts a distributed structure to preserve privacy of virtual machines, which are a threat in traditional centralized structure. To improve the performance of I/O latency in this distributed structure, we use a hybrid system to combine solid state disk and distributed storage. From the evaluation of our demonstration system, HVSTO provides a scalable and sufficient throughput for the platform as a service infrastructure.Comment: 7 pages, 8 figures, in proceeding of The Second International Workshop on Security and Privacy in Big Data (BigSecurity 2014

    A 2D based Partition Strategy for Solving Ranking under Team Context (RTP)

    Full text link
    In this paper, we propose a 2D based partition method for solving the problem of Ranking under Team Context(RTC) on datasets without a priori. We first map the data into 2D space using its minimum and maximum value among all dimensions. Then we construct window queries with consideration of current team context. Besides, during the query mapping procedure, we can pre-prune some tuples which are not top ranked ones. This pre-classified step will defer processing those tuples and can save cost while providing solutions for the problem. Experiments show that our algorithm performs well especially on large datasets with correctness

    Benchmarking and improving point cloud data management in MonetDB

    Get PDF
    The popularity, availability and sizes of point cloud data sets are increasing, thus raising interesting data management and processing challenges. Various software solutions are available for the management of point cloud data. A benchmark for point cloud data management systems was defined and it was executed for several solutions. In this paper we focus on the solutions based on the column-store MonetDB, the generic out-of-the-box approach is compared with two alternative approaches that exploit the spatial coherence of the data to improve the data access and to minimize the storage requirement

    A Heterogeneous High Performance Computing Framework For Ill-Structured Spatial Join Processing

    Get PDF
    The frequently employed spatial join processing over two large layers of polygonal datasets to detect cross-layer polygon pairs (CPP) satisfying a join-predicate faces challenges common to ill-structured sparse problems, namely, that of identifying the few intersecting cross-layer edges out of the quadratic universe. The algorithmic engineering challenge is compounded by GPGPU SIMT architecture. Spatial join involves lightweight filter phase typically using overlap test over minimum bounding rectangles (MBRs) to discard majority of CPPs, followed by refinement phase to rigorously test the join predicate over the edges of the surviving CPPs. In this dissertation, we develop new techniques - algorithms, data structure, i/o, load balancing and system implementation - to accelerate the two-phase spatial-join processing. We present a new filtering technique, called Common MBR Filter (CMF), which changes the overall characteristic of the spatial join algorithms wherein the refinement phase is no longer the computational bottleneck. CMF is designed based on the insight that intersecting cross-layer edges must lie within the rectangular intersection of the MBRs of CPPs, their common MBRs (CMBR). We also address a key limitation of CMF for class of spatial datasets with either large or dense active CMBRs by extended CMF, called CMF-grid, that effectively employs both CMBR and grid techniques by embedding a uniform grid over CMBR of each CPP, but of suitably engineered sizes for different CPPs. To show efficiency of CMF-based filters, extensive mathematical and experimental analysis is provided. Then, two GPU-based spatial join systems are proposed based on two CMF versions including four components: 1) sort-based MBR filter, 2) CMF/CMF-grid, 3) point-in-polygon test, and, 4) edge-intersection test. The systems show two orders of magnitude speedup over the optimized sequential GEOS C++ library. Furthermore, we present a distributed system of heterogeneous compute nodes to exploit GPU-CPU computing in order to scale up the computation. A load balancing model based on Integer Linear Programming (ILP) is formulated for this system. We also provide three heuristic algorithms to approximate the ILP. Finally, we develop MPI-cuda-GIS system based on this heterogeneous computing model by integrating our CUDA-based GPU system into a newly designed distributed framework designed based on Message Passing Interface (MPI). Experimental results show good scalability and performance of MPI-cuda-GIS system

    EAGLE—A Scalable Query Processing Engine for Linked Sensor Data

    Get PDF
    Recently, many approaches have been proposed to manage sensor data using semantic web technologies for effective heterogeneous data integration. However, our empirical observations revealed that these solutions primarily focused on semantic relationships and unfortunately paid less attention to spatio–temporal correlations. Most semantic approaches do not have spatio–temporal support. Some of them have attempted to provide full spatio–temporal support, but have poor performance for complex spatio–temporal aggregate queries. In addition, while the volume of sensor data is rapidly growing, the challenge of querying and managing the massive volumes of data generated by sensing devices still remains unsolved. In this article, we introduce EAGLE, a spatio–temporal query engine for querying sensor data based on the linked data model. The ultimate goal of EAGLE is to provide an elastic and scalable system which allows fast searching and analysis with respect to the relationships of space, time and semantics in sensor data. We also extend SPARQL with a set of new query operators in order to support spatio–temporal computing in the linked sensor data context.EC/H2020/732679/EU/ACTivating InnoVative IoT smart living environments for AGEing well/ACTIVAGEEC/H2020/661180/EU/A Scalable and Elastic Platform for Near-Realtime Analytics for The Graph of Everything/SMARTE

    An intelligent real time 3D vision system for robotic welding tasks

    Get PDF
    MARWIN is a top-level robot control system that has been designed for automatic robot welding tasks. It extracts welding parameters and calculates robot trajectories directly from CAD models which are then verified by real-time 3D scanning and registration. MARWIN's 3D computer vision provides a user-centred robot environment in which a task is specified by the user by simply confirming and/or adjusting suggested parameters and welding sequences. The focus of this paper is on describing a mathematical formulation for fast 3D reconstruction using structured light together with the mechanical design and testing of the 3D vision system and show how such technologies can be exploited in robot welding tasks
    • …
    corecore