6 research outputs found

    Security threats in network coding-enabled mobile small cells

    Get PDF
    The recent explosive growth of mobile data traffic, the continuously growing demand for higher data rates, and the steadily increasing pressure for higher mobility have led to the fifth-generation mobile networks. To this end, network-coding (NC)-enabled mobile small cells are considered as a promising 5G technology to cover the urban landscape by being set up on-demand at any place, and at any time on any device. In particular, this emerging paradigm has the potential to provide significant benefits to mobile networks as it can decrease packet transmission in wireless multicast, provide network capacity improvement, and achieve robustness to packet losses with low energy consumption. However, despite these significant advantages, NC-enabled mobile small cells are vulnerable to various types of attacks due to the inherent vulnerabilities of NC. Therefore, in this paper, we provide a categorization of potential security attacks in NC-enabled mobile small cells. Particularly, our focus is on the identification and categorization of the main potential security attacks on a scenario architecture of the ongoing EU funded H2020-MSCA project “SECRET” being focused on secure network coding-enabled mobile small cells

    Fortified End-to-End Location Privacy and Anonymity in Wireless Sensor Networks: a Modular Approach

    Get PDF
    Wireless sensor network (WSN) consists of many hosts called sensors. These sensors can sense a phenomenon (motion, temperature, humidity, average, max, min, etc.) and represent what they sense in a form of data. There are many applications for WSNs; including object tracking and monitoring where in most of the cases these objects need protection. In these applications, data privacy itself might not be as important as the privacy of source location. In addition to the source location privacy, sink location privacy should also be provided. Providing an efficient end-to-end privacy solution would be a challenging task to achieve due to the open nature of the WSN. The key schemes needed for end-to-end location privacy are anonymity, observability, capture likelihood, and safety period. We extend this work to allow for countermeasures against multi-local and global adversaries. We present a network model that is protected against a sophisticated threat model: passive /active and local/multi-local/global attacks. This work provides a solution for end-to-end anonymity and location privacy as well. We will introduce a framework called fortified anonymous communication (FAC) protocol for WSN

    Network Coding based Information Security in Multi-hop Wireless Networks

    Get PDF
    Multi-hop Wireless Networks (MWNs) represent a class of networks where messages are forwarded through multiple hops of wireless transmission. Applications of this newly emerging communication paradigm include asset monitoring wireless sensor networks (WSNs), command communication mobile ad hoc networks (MANETs), community- or campus-wide wireless mesh networks (WMNs), etc. Information security is one of the major barriers to the wide-scale deployment of MWNs but has received little attention so far. On the one hand, due to the open wireless channels and multi-hop wireless transmissions, MWNs are vulnerable to various information security threats such as eavesdropping, data injection/modification, node compromising, traffic analysis, and flow tracing. On the other hand, the characteristics of MWNs including the vulnerability of intermediate network nodes, multi-path packet forwarding, and limited computing capability and storage capacity make the existing information security schemes designed for the conventional wired networks or single-hop wireless networks unsuitable for MWNs. Therefore, newly designed schemes are highly desired to meet the stringent security and performance requirements for the information security of MWNs. In this research, we focus on three fundamental information security issues in MWNs: efficient privacy preservation for source anonymity, which is critical to the information security of MWNs; the traffic explosion issue, which targets at preventing denial of service (DoS) and enhancing system availability; and the cooperative peer-to-peer information exchange issue, which is critical to quickly achieve maximum data availability if the base station is temporarily unavailable or the service of the base station is intermittent. We have made the following three major contributions. Firstly, we identify the severe threats of traffic analysis/flow tracing attacks to the information security in network coding enabled MWNs. To prevent these attacks and achieve source anonymity in MWNs, we propose a network coding based privacy-preserving scheme. The unique “mixing” feature of network coding is exploited in the proposed scheme to confuse adversaries from conducting advanced privacy attacks, such as time correlation, size correlation, and message content correlation. With homomorphic encryption functions, the proposed scheme can achieve both privacy preservation and data confidentiality, which are two critical information security requirements. Secondly, to prevent traffic explosion and at the same time achieve source unobservability in MWNs, we propose a network coding based privacy-preserving scheme, called SUNC (Source Unobservability using Network Coding). Network coding is utilized in the scheme to automatically absorb dummy messages at intermediate network nodes, and thus, traffic explosion induced denial of service (DoS) can be naturally prevented to ensure the system availability. In addition to ensuring system availability and achieving source unobservability, SUNC can also thwart internal adversaries. Thirdly, to enhance the data availability when a base station is temporarily unavailable or the service of the base station is intermittent, we propose a cooperative peer-to-peer information exchange scheme based on network coding. The proposed scheme can quickly accomplish optimal information exchange in terms of throughput and transmission delay. For each research issue, detailed simulation results in terms of computational overhead, transmission efficiency, and communication overhead, are given to demonstrate the efficacy and efficiency of the proposed solutions

    Encaminhamento confiável e energeticamente eficiente para redes ad hoc

    Get PDF
    Doutoramento em InformáticaIn Mobile Ad hoc NETworks (MANETs), where cooperative behaviour is mandatory, there is a high probability for some nodes to become overloaded with packet forwarding operations in order to support neighbor data exchange. This altruistic behaviour leads to an unbalanced load in the network in terms of traffic and energy consumption. In such scenarios, mobile nodes can benefit from the use of energy efficient and traffic fitting routing protocol that better suits the limited battery capacity and throughput limitation of the network. This PhD work focuses on proposing energy efficient and load balanced routing protocols for ad hoc networks. Where most of the existing routing protocols simply consider the path length metric when choosing the best route between a source and a destination node, in our proposed mechanism, nodes are able to find several routes for each pair of source and destination nodes and select the best route according to energy and traffic parameters, effectively extending the lifespan of the network. Our results show that by applying this novel mechanism, current flat ad hoc routing protocols can achieve higher energy efficiency and load balancing. Also, due to the broadcast nature of the wireless channels in ad hoc networks, other technique such as Network Coding (NC) looks promising for energy efficiency. NC can reduce the number of transmissions, number of re-transmissions, and increase the data transfer rate that directly translates to energy efficiency. However, due to the need to access foreign nodes for coding and forwarding packets, NC needs a mitigation technique against unauthorized accesses and packet corruption. Therefore, we proposed different mechanisms for handling these security attacks by, in particular by serially concatenating codes to support reliability in ad hoc network. As a solution to this problem, we explored a new security framework that proposes an additional degree of protection against eavesdropping attackers based on using concatenated encoding. Therefore, malicious intermediate nodes will find it computationally intractable to decode the transitive packets. We also adopted another code that uses Luby Transform (LT) as a pre-coding code for NC. Primarily being designed for security applications, this code enables the sink nodes to recover corrupted packets even in the presence of byzantine attacks.Nas redes móveis ad hoc (MANETs), onde o comportamento cooperativo é obrigatório, existe uma elevada probabilidade de alguns nós ficarem sobrecarregados nas operações de encaminhamento de pacotes no apoio à troca de dados com nós vizinhos. Este comportamento altruísta leva a uma sobrecarga desequilibrada em termos de tráfego e de consumo de energia. Nestes cenários, os nós móveis poderão beneficiar do uso da eficiência energética e de protocolo de encaminhamento de tráfego que melhor se adapte à sua capacidade limitada da bateria e velocidade de processamento. Este trabalho de doutoramento centra-se em propor um uso eficiente da energia e protocolos de encaminhamento para balanceamento de carga nas redes ad hoc. Actualmente a maioria dos protocolos de encaminhamento existentes considera simplesmente a métrica da extensão do caminho, ou seja o número de nós, para a escolha da melhor rota entre fonte (S) e um nó de destino (D); no mecanismo aqui proposto os nós são capazes de encontrar várias rotas por cada par de nós de origem e destino e seleccionar o melhor caminho segundo a energia e parâmetros de tráfego, aumentando o tempo de vida útil da rede. Os nossos resultados mostram que pela aplicação deste novo mecanismo, os protocolos de encaminhamento ad hoc actuais podem alcançar uma maior eficiência energética e balanceamento de carga. Para além disso, devido à natureza de difusão dos canais sem fio em redes ad-hoc, outras técnicas, tais como a Codificação de Rede (NC), parecem ser também promissoras para a eficiência energética. NC pode reduzir o número de transmissões, e número de retransmissões e aumentar a taxa de transferência de dados traduzindo-se directamente na melhoria da eficiência energética. No entanto, devido ao acesso dos nós intermediários aos pacotes em trânsito e sua codificação, NC necessita de uma técnica que limite as acessos não autorizados e a corrupção dos pacotes. Explorou-se o mecanismo de forma a oferecer um novo método de segurança que propõe um grau adicional de protecção contra ataques e invasões. Por conseguinte, os nós intermediários mal-intencionados irão encontrar pacotes em trânsito computacionalmente intratáveis em termos de descodificação. Adoptou-se também outro código que usa Luby Transform (LT) como um código de précodificação no NC. Projectado inicialmente para aplicações de segurança, este código permite que os nós de destino recuperem pacotes corrompidos mesmo em presença de ataques bizantinos

    Source location privacy in wireless sensor networks under practical scenarios : routing protocols, parameterisations and trade-offs

    Get PDF
    As wireless sensor networks (WSNs) have been applied across a spectrum of application domains, source location privacy (SLP) has emerged as a significant issue, particularly in security-critical situations. In seminal work on SLP, several protocols were proposed as viable approaches to address the issue of SLP. However, most state-of-the-art approaches work under specific network assumptions. For example, phantom routing, one of the most popular routing protocols for SLP, assumes a single source. On the other hand, in practical scenarios for SLP, this assumption is not realistic, as there will be multiple data sources. Other issues of practical interest include network configurations. Thus, thesis addresses the impact of these practical considerations on SLP. The first step is the evaluation of phantom routing under various configurations, e.g., multiple sources and network configurations. The results show that phantom routing does not scale to handle multiple sources while providing high SLP at the expense of low messages yield. Thus, an important issue arises as a result of this observation that the need for a routing protocol that can handle multiple sources. As such, a novel parametric routing protocol is proposed, called phantom walkabouts, for SLP for multi-source WSNs. A large-scale experiments are conducted to evaluate the efficiency of phantom walkabouts. The main observation is that phantom walkabouts can provide high level of SLP at the expense of energy and/or data yield. To deal with these trade-offs, a framework that allows reasoning about trade-offs needs to develop. Thus, a decision theoretic methodology is proposed that allows reasoning about these trade-offs. The results showcase the viability of this methodology via several case studies

    Near optimal routing protocols for source location privacy in wireless sensor networks: modelling, design and evaluation

    Get PDF
    Wireless Sensor Networks (WSNs) are collections of small computing devices that are used to monitor valuable assets such as endangered animals. As WSNs communicate wirelessly they leak information to malicious eavesdroppers. When monitoring assets it is important to provide Source Location Privacy (SLP), where the location of the message source must be kept hidden. Many SLP protocols have been developed by designing a protocol using intuition before evaluating its performance. However, this does not provide insight into how to develop optimal approaches. This thesis will present an alternate approach where the SLP problem is modelled using different techniques to give an optimal output. However, as this optimal output is typically for a restricted scenario, algorithms that trade optimality for generality are subsequently designed. Four main contributions are presented. First, an analysis is performed based on entropy and divergence to gain insight into how to reduce the information an attacker gains via the use of competing paths, and ways to compare the information loss of arbitrary routing protocols. Secondly, the SLP problem is modelled using Integer Linear Programming. The model result guides the design of a generic protocol called ILPRouting that groups messages together to reduce the moves an attacker makes. Thirdly, a timing analysis of when events occur is used to dynamically determine fake source parameters for the Dynamic and DynamicSPR algorithms. These fake sources lure the attacker to their location instead of the real source. Finally, the first SLP-aware duty cycle is investigated, and implemented for DynamicSPR to make it more energy efficient. These techniques are evaluated through simulations and deployments on WSN testbeds to demonstrate their effectiveness
    corecore