2,255 research outputs found

    AnonyControl: Control Cloud Data Anonymously with Multi-Authority Attribute-Based Encryption

    Full text link
    Cloud computing is a revolutionary computing paradigm which enables flexible, on-demand and low-cost usage of computing resources. However, those advantages, ironically, are the causes of security and privacy problems, which emerge because the data owned by different users are stored in some cloud servers instead of under their own control. To deal with security problems, various schemes based on the Attribute- Based Encryption (ABE) have been proposed recently. However, the privacy problem of cloud computing is yet to be solved. This paper presents an anonymous privilege control scheme AnonyControl to address the user and data privacy problem in a cloud. By using multiple authorities in cloud computing system, our proposed scheme achieves anonymous cloud data access, finegrained privilege control, and more importantly, tolerance to up to (N -2) authority compromise. Our security and performance analysis show that AnonyControl is both secure and efficient for cloud computing environment.Comment: 9 pages, 6 figures, 3 tables, conference, IEEE INFOCOM 201

    ESPOON: Enforcing Encrypted Security Policies in Outsourced Environments

    Get PDF
    The enforcement of security policies in outsourced environments is still an open challenge for policy-based systems. On the one hand, taking the appropriate security decision requires access to the policies. However, if such access is allowed in an untrusted environment then confidential information might be leaked by the policies. Current solutions are based on cryptographic operations that embed security policies with the security mechanism. Therefore, the enforcement of such policies is performed by allowing the authorised parties to access the appropriate keys. We believe that such solutions are far too rigid because they strictly intertwine authorisation policies with the enforcing mechanism. In this paper, we want to address the issue of enforcing security policies in an untrusted environment while protecting the policy confidentiality. Our solution ESPOON is aiming at providing a clear separation between security policies and the enforcement mechanism. However, the enforcement mechanism should learn as less as possible about both the policies and the requester attributes.Comment: The final version of this paper has been published at ARES 201

    An efficient PHR service system supporting fuzzy keyword search and fine-grained access control

    Get PDF
    Outsourcing of personal health record (PHR) has attracted considerable interest recently. It can not only bring much convenience to patients, it also allows efficient sharing of medical information among researchers. As the medical data in PHR is sensitive, it has to be encrypted before outsourcing. To achieve fine-grained access control over the encrypted PHR data becomes a challenging problem. In this paper, we provide an affirmative solution to this problem. We propose a novel PHR service system which supports efficient searching and fine-grained access control for PHR data in a hybrid cloud environment, where a private cloud is used to assist the user to interact with the public cloud for processing PHR data. In our proposed solution, we make use of attribute-based encryption (ABE) technique to obtain fine-grained access control for PHR data. In order to protect the privacy of PHR owners, our ABE is anonymous. That is, it can hide the access policy information in ciphertexts. Meanwhile, our solution can also allow efficient fuzzy search over PHR data, which can greatly improve the system usability. We also provide security analysis to show that the proposed solution is secure and privacy-preserving. The experimental results demonstrate the efficiency of the proposed scheme.Peer ReviewedPostprint (author's final draft

    Using Attribute-Based Access Control, Efficient Data Access in the Cloud with Authorized Search

    Get PDF
    The security and privacy issues regarding outsourcing data have risen significantly as cloud computing has grown in demand. Consequently, since data management has been delegated to an untrusted cloud server in the data outsourcing phase, data access control has been identified as a major problem in cloud storage systems. To overcome this problem, in this paper, the access control of cloud storage using an Attribute-Based Access Control (ABAC) approach is utilized. First, the data must be stored in the cloud and security must be strong for the user to access the data. This model takes into consideration some of the attributes of the cloud data stored in the authentication process that the database uses to maintain data around the recorded collections with the user\u27s saved keys. The clusters have registry message permission codes, usernames, and group names, each with its own set of benefits. In advance, the data should be encrypted and transferred to the service provider as it establishes that the data is still secure. But in some cases, the supplier\u27s security measures are disrupting. This result analysis the various parameters such as encryption time, decryption time, key generation time, and also time consumption. In cloud storage, the access control may verify the various existing method such as Ciphertext Policy Attribute-Based Encryption (CP-ABE) and Nth Truncated Ring Units (NTRU). The encryption time is 15% decreased by NTRU and 31% reduced by CP-ABE. The decryption time of the proposed method is 7.64% and 14% reduced by the existing method

    Ciphertext-Policy Attribute Based Encryption with Selectively-Hidden Access Policy

    Get PDF
    In conventional Ciphertext-Policy Attribute-Based Encryption (CP-ABE), the access policy appears in plaintext form that might reveal confidential user information and violate user privacy. CP-ABE with hidden access policies hides all attributes, but the computational burden increases due to the attribute hiding. In this paper, we present a Linear Secret Sharing Scheme (LSSS) access structure CP-ABE scheme that hides only sensitive attributes, rather than all attributes, in the access policy. We also provide an attribute selection method to choose these sensitive attributes and use an Attribute Bloom Filter (ABF) to hide them. Compared with the existing major CP-ABE schemes with hidden access policies, our proposed scheme is flexible in selecting attributes to hide. This scheme enhances the efficiency of policy hiding while still protecting policy privacy. Test results show that our approach is reasonable and feasible
    corecore