42 research outputs found

    QoS-Aware 3D Coverage Deployment of UAVs for Internet of Vehicles in Intelligent Transportation

    Full text link
    It is a challenging problem to characterize the air-to-ground (A2G) channel and identify the best deployment location for 3D UAVs with the QoS awareness. To address this problem, we propose a QoS-aware UAV 3D coverage deployment algorithm, which simulates the three-dimensional urban road scenario, considers the UAV communication resource capacity and vehicle communication QoS requirements comprehensively, and then obtains the optimal UAV deployment position by improving the genetic algorithm. Specifically, the K-means clustering algorithm is used to cluster the vehicles, and the center locations of these clusters serve as the initial UAV positions to generate the initial population. Subsequently, we employ the K-means initialized grey wolf optimization (KIGWO) algorithm to achieve the UAV location with an optimal fitness value by performing an optimal search within the grey wolf population. To enhance the algorithm's diversity and global search capability, we randomly substitute this optimal location with one of the individual locations from the initial population. The fitness value is determined by the total number of vehicles covered by UAVs in the system, while the allocation scheme's feasibility is evaluated based on the corresponding QoS requirements. Competitive selection operations are conducted to retain individuals with higher fitness values, while crossover and mutation operations are employed to maintain the diversity of solutions. Finally, the individual with the highest fitness, which represents the UAV deployment position that covers the maximum number of vehicles in the entire system, is selected as the optimal solution. Extensive experimental results demonstrate that the proposed algorithm can effectively enhance the reliability and vehicle communication QoS

    Routing schemes in FANETs: a survey

    Get PDF
    Flying ad hoc network (FANET) is a self-organizing wireless network that enables inexpensive, flexible, and easy-to-deploy flying nodes, such as unmanned aerial vehicles (UAVs), to communicate among themselves in the absence of fixed network infrastructure. FANET is one of the emerging networks that has an extensive range of next-generation applications. Hence, FANET plays a significant role in achieving application-based goals. Routing enables the flying nodes to collaborate and coordinate among themselves and to establish routes to radio access infrastructure, particularly FANET base station (BS). With a longer route lifetime, the effects of link disconnections and network partitions reduce. Routing must cater to two main characteristics of FANETs that reduce the route lifetime. Firstly, the collaboration nature requires the flying nodes to exchange messages and to coordinate among themselves, causing high energy consumption. Secondly, the mobility pattern of the flying nodes is highly dynamic in a three-dimensional space and they may be spaced far apart, causing link disconnection. In this paper, we present a comprehensive survey of the limited research work of routing schemes in FANETs. Different aspects, including objectives, challenges, routing metrics, characteristics, and performance measures, are covered. Furthermore, we present open issues

    Machine learning and blockchain technologies for cybersecurity in connected vehicles

    Get PDF
    Future connected and autonomous vehicles (CAVs) must be secured againstcyberattacks for their everyday functions on the road so that safety of passengersand vehicles can be ensured. This article presents a holistic review of cybersecurityattacks on sensors and threats regardingmulti-modal sensor fusion. A compre-hensive review of cyberattacks on intra-vehicle and inter-vehicle communicationsis presented afterward. Besides the analysis of conventional cybersecurity threatsand countermeasures for CAV systems,a detailed review of modern machinelearning, federated learning, and blockchain approach is also conducted to safe-guard CAVs. Machine learning and data mining-aided intrusion detection systemsand other countermeasures dealing with these challenges are elaborated at theend of the related section. In the last section, research challenges and future direc-tions are identified

    From MANET to people-centric networking: Milestones and open research challenges

    Get PDF
    In this paper, we discuss the state of the art of (mobile) multi-hop ad hoc networking with the aim to present the current status of the research activities and identify the consolidated research areas, with limited research opportunities, and the hot and emerging research areas for which further research is required. We start by briefly discussing the MANET paradigm, and why the research on MANET protocols is now a cold research topic. Then we analyze the active research areas. Specifically, after discussing the wireless-network technologies, we analyze four successful ad hoc networking paradigms, mesh networks, opportunistic networks, vehicular networks, and sensor networks that emerged from the MANET world. We also present an emerging research direction in the multi-hop ad hoc networking field: people centric networking, triggered by the increasing penetration of the smartphones in everyday life, which is generating a people-centric revolution in computing and communications

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Performance evaluation of vertical handover in internet of vehicles

    Get PDF
    Internet of Vehicles (IoV) is developed by integrating the intelligent transportation system (ITS) and the Internet of Things (IoT). The goal of IoV is to allow vehicles to communicate with other vehicles, humans, pedestrians, roadside units, and other infrastructures. Two potential technologies of V2X communication are dedicated short-range communication (DSRC) and cellular network technologies. Each of these has its benefits and limitations. DSRC has low latency but it limits coverage area and lacks spectrum availability. Whereas 4G LTE offers high bandwidth, wider cell coverage range, but the drawback is its high transmission time intervals. 5G offers enormous benefits to the present wireless communication technology by providing higher data rates and very low latencies for transmissions but is prone to blockages because of its inability to penetrate through the objects. Hence, considering the above issues, single technology will not fully accommodate the V2X requirements which subsequently jeopardize the effectiveness of safety applications. Therefore, for efficient V2X communication, it is required to interwork with DSRC and cellular network technologies. One open research challenge that has gained the attention of the research community over the past few years is the appropriate selection of networks for handover in a heterogeneous IoV environment. Existing solutions have addressed the issues related to handover and network selection but they have failed to address the need for handover while selecting the network. Previous studies have only mentioned that the network is being selected directly for handover or it was connected to the available radio access. Due to this, the occurrence of handover had to take place frequently. Hence, in this research, the integration of DSRC, LTE, and mmWave 5G is incorporated with handover decision, network selection, and routing algorithms. The handover decision is to ensure whether there is a need for vertical handover by using a dynamic Q-learning algorithm. Then, the network selection is based on a fuzzy-convolution neural network that creates fuzzy rules from signal strength, distance, vehicle density, data type, and line of sight. V2V chain routing is proposed to select V2V pairs using a jellyfish optimization algorithm that takes into account the channel, vehicle characteristics, and transmission metrics. This system is developed in an OMNeT++ simulator and the performances are evaluated in terms of mean handover, handover failure, mean throughput, delay, and packet loss

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: vehicular ad-hoc networks, security and caching, TCP in ad-hoc networks and emerging applications. It is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    A Taxonomy on Misbehaving Nodes in Delay Tolerant Networks

    Get PDF
    Delay Tolerant Networks (DTNs) are type of Intermittently Connected Networks (ICNs) featured by long delay, intermittent connectivity, asymmetric data rates and high error rates. DTNs have been primarily developed for InterPlanetary Networks (IPNs), however, have shown promising potential in challenged networks i.e. DakNet, ZebraNet, KioskNet and WiderNet. Due to unique nature of intermittent connectivity and long delay, DTNs face challenges in routing, key management, privacy, fragmentation and misbehaving nodes. Here, misbehaving nodes i.e. malicious and selfish nodes launch various attacks including flood, packet drop and fake packets attack, inevitably overuse scarce resources (e.g., buffer and bandwidth) in DTNs. The focus of this survey is on a review of misbehaving node attacks, and detection algorithms. We firstly classify various of attacks depending on the type of misbehaving nodes. Then, detection algorithms for these misbehaving nodes are categorized depending on preventive and detective based features. The panoramic view on misbehaving nodes and detection algorithms are further analyzed, evaluated mathematically through a number of performance metrics. Future directions guiding this topic are also presented
    corecore