56,680 research outputs found

    On-Orbit Validation of a Framework for Spacecraft-Initiated Communication Service Requests with NASA's SCaN Testbed

    Get PDF
    We design, analyze, and experimentally validate a framework for demand-based allocation of high-performance space communication service in which the user spacecraft itself initiates a request for service. Leveraging machine-to-machine communications, the automated process has potential to improve the responsiveness and efficiency of space network operations. We propose an augmented ground station architecture in which a hemispherical-pattern antenna allows for reception of service requests sent from any user spacecraft within view. A suite of ground-based automation software acts upon these direct-to-Earth requests and allocates access to high-performance service through a ground station or relay satellite in response to immediate user demand. A software-defined radio transceiver, optimized for reception of weak signals from the helical antenna, is presented. Design and testing of signal processing equipment and a software framework to handle service requests is discussed. Preliminary results from on-orbit demonstrations with a testbed onboard the International Space Station are presented to verify feasibility of the concept

    Post-Election Audits: Restoring Trust in Elections

    Get PDF
    With the intention of assisting legislators, election officials and the public to make sense of recent literature on post-election audits and convert it into realistic audit practices, the Brennan Center and the Samuelson Law, Technology and Public Policy Clinic at Boalt Hall School of Law (University of California Berkeley) convened a blue ribbon panel (the "Audit Panel") of statisticians, voting experts, computer scientists and several of the nation's leading election officials. Following a review of the literature and extensive consultation with the Audit Panel, the Brennan Center and the Samuelson Clinic make several practical recommendations for improving post-election audits, regardless of the audit method that a jurisdiction ultimately decides to adopt

    Optimization of Analytic Window Functions

    Full text link
    Analytic functions represent the state-of-the-art way of performing complex data analysis within a single SQL statement. In particular, an important class of analytic functions that has been frequently used in commercial systems to support OLAP and decision support applications is the class of window functions. A window function returns for each input tuple a value derived from applying a function over a window of neighboring tuples. However, existing window function evaluation approaches are based on a naive sorting scheme. In this paper, we study the problem of optimizing the evaluation of window functions. We propose several efficient techniques, and identify optimization opportunities that allow us to optimize the evaluation of a set of window functions. We have integrated our scheme into PostgreSQL. Our comprehensive experimental study on the TPC-DS datasets as well as synthetic datasets and queries demonstrate significant speedup over existing approaches.Comment: VLDB201

    New generation of electrochemical immunoassay based on polymeric nanoparticles for early detection of breast cancer

    Get PDF
    Screening and early diagnosis are the key factors for the reduction of mortality rate and treatment cost of cancer. Therefore, sensitive and selective methods that can reveal the low abundance of cancer biomarkers in a biological sample are always desired. Here, we report the development of a novel electrochemical biosensor for early detection of breast cancer by using bioconjugated self-assembled pH-responsive polymeric micelles. The micelles were loaded with ferrocene molecules as "tracers" to specifically target cell surface-associated epithelial mucin (MUC1), a biomarker for breast and other solid carcinoma. The synthesis of target-specific, ferrocene-loaded polymeric micelles was confirmed, and the resulting sensor was capable of detecting the presence of MUC1 in a sample containing about 10 cells/mL. Such a high sensitivity was achieved by maximizing the loading capacity of ferrocene inside the polymeric micelles. Every single event of binding between the antibody and antigen was represented by the signal of hundreds of thousands of ferrocene molecules that were released from the polymeric micelles. This resulted in a significant increase in the intensity of the ferrocene signal detected by cyclic voltammetry

    Geocoded data structures and their applications to Earth science investigations

    Get PDF
    A geocoded data structure is a means for digitally representing a geographically referenced map or image. The characteristics of representative cellular, linked, and hybrid geocoded data structures are reviewed. The data processing requirements of Earth science projects at the Goddard Space Flight Center and the basic tools of geographic data processing are described. Specific ways that new geocoded data structures can be used to adapt these tools to scientists' needs are presented. These include: expanding analysis and modeling capabilities; simplifying the merging of data sets from diverse sources; and saving computer storage space
    corecore