17 research outputs found

    A scalable H-matrix approach for the solution of boundary integral equations on multi-GPU clusters

    Get PDF
    In this work, we consider the solution of boundary integral equations by means of a scalable hierarchical matrix approach on clusters equipped with graphics hardware, i.e. graphics processing units (GPUs). To this end, we extend our existing single-GPU hierarchical matrix library hmglib such that it is able to scale on many GPUs and such that it can be coupled to arbitrary application codes. Using a model GPU implementation of a boundary element method (BEM) solver, we are able to achieve more than 67 percent relative parallel speed-up going from 128 to 1024 GPUs for a model geometry test case with 1.5 million unknowns and a real-world geometry test case with almost 1.2 million unknowns. On 1024 GPUs of the cluster Titan, it takes less than 6 minutes to solve the 1.5 million unknowns problem, with 5.7 minutes for the setup phase and 20 seconds for the iterative solver. To the best of the authors' knowledge, we here discuss the first fully GPU-based distributed-memory parallel hierarchical matrix Open Source library using the traditional H-matrix format and adaptive cross approximation with an application to BEM problems

    Parallel accelerated cyclic reduction preconditioner for three-dimensional elliptic PDEs with variable coefficients

    Full text link
    We present a robust and scalable preconditioner for the solution of large-scale linear systems that arise from the discretization of elliptic PDEs amenable to rank compression. The preconditioner is based on hierarchical low-rank approximations and the cyclic reduction method. The setup and application phases of the preconditioner achieve log-linear complexity in memory footprint and number of operations, and numerical experiments exhibit good weak and strong scalability at large processor counts in a distributed memory environment. Numerical experiments with linear systems that feature symmetry and nonsymmetry, definiteness and indefiniteness, constant and variable coefficients demonstrate the preconditioner applicability and robustness. Furthermore, it is possible to control the number of iterations via the accuracy threshold of the hierarchical matrix approximations and their arithmetic operations, and the tuning of the admissibility condition parameter. Together, these parameters allow for optimization of the memory requirements and performance of the preconditioner.Comment: 24 pages, Elsevier Journal of Computational and Applied Mathematics, Dec 201
    corecore