66 research outputs found

    Solving nonlinear problems by Ostrowski Chun type parametric families

    Full text link
    In this paper, by using a generalization of Ostrowski' and Chun's methods two bi-parametric families of predictor-corrector iterative schemes, with order of convergence four for solving system of nonlinear equations, are presented. The predictor of the first family is Newton's method, and the predictor of the second one is Steffensen's scheme. One of them is extended to the multidimensional case. Some numerical tests are performed to compare proposed methods with existing ones and to confirm the theoretical results. We check the obtained results by solving the molecular interaction problem.This research was supported by Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-02 and FONDOCYT, Republica Dominicana.Cordero Barbero, A.; Maimo, J.; Torregrosa Sánchez, JR.; Vassileva, M. (2015). Solving nonlinear problems by Ostrowski Chun type parametric families. Journal of Mathematical Chemistry. 53(1):430-449. https://doi.org/10.1007/s10910-014-0432-zS430449531M.S. Petkovic̀, B. Neta, L.D. Petkovic̀, J. Dz̆unic̀, Multipoint Methods for Solving Nonlinear Equations (Academic, New York, 2013)M. Mahalakshmi, G. Hariharan, K. Kannan, The wavelet methods to linear and nonlinear reaction–diffusion model arising in mathematical chemistry. J. Math. Chem. 51(9), 2361–2385 (2013)P.G. Logrado, J.D.M. Vianna, Partitioning technique procedure revisited: Formalism and first application to atomic problems. J. Math. Chem. 22, 107–116 (1997)C.G. Jesudason, I. Numerical nonlinear analysis: differential methods and optimization applied to chemical reaction rate determination. J. Math. Chem. 49, 1384–1415 (2011)K. Maleknejad, M. Alizadeh, An efficient numerical scheme for solving hammerstein integral equation arisen in chemical phenomenon. Procedia Comput. Sci. 3, 361–364 (2011)R.C. Rach, J.S. Duan, A.M. Wazwaz, Solving coupled Lane–Emden boundary value problems in catalytic diffusion reactions by the Adomian decomposition method. J. Math. Chem. 52, 255–267 (2014)J.F. Steffensen, Remarks on iteration. Skand. Aktuar Tidskr. 16, 64–72 (1933)J.M. Ortega, W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables (Academic, New York, 1970)H.T. Kung, J.F. Traub, Optimal order of one-point and multipoint iteration. J. ACM 21, 643–651 (1974)J.R. Sharma, R.K. Guha, R. Sharma, An efficient fourth order weighted-Newton method for systems of nonlinear equations. Numer. Algorithms 62, 307–323 (2013)J.R. Sharma, H. Arora, On efficient weighted-Newton methods for solving systems of nonlinear equations. Appl. Math. Comput. 222, 497–506 (2013)M. Abad, A. Cordero, J.R. Torregrosa, Fourth- and fifth-order methods for solving nonlinear systems of equations: an application to the Global positioning system. Abstr. Appl. Anal.(2013) Article ID:586708. doi: 10.1155/2013/586708F. Soleymani, T. Lotfi, P. Bakhtiari, A multi-step class of iterative methods for nonlinear systems. Optim. Lett. 8, 1001–1015 (2014)M.T. Darvishi, N. Darvishi, SOR-Steffensen-Newton method to solve systems of nonlinear equations. Appl. Math. 2(2), 21–27 (2012). doi: 10.5923/j.am.20120202.05F. Awawdeh, On new iterative method for solving systems of nonlinear equations. Numer. Algorithms 5(3), 395–409 (2010)D.K.R. Babajee, A. Cordero, F. Soleymani, J.R. Torregrosa, On a novel fourth-order algorithm for solving systems of nonlinear equations. J. Appl. Math. (2012) Article ID:165452. doi: 10.1155/2012/165452A. Cordero, J.R. Torregrosa, M.P. Vassileva, Pseudocomposition: a technique to design predictor–corrector methods for systems of nonlinear equations. Appl. Math. Comput. 218(23), 1496–1504 (2012)A. Cordero, J.R. Torregrosa, M.P. Vassileva, Increasing the order of convergence of iterative schemes for solving nonlinear systems. J. Comput. Appl. Math. 252, 86–94 (2013)A.M. Ostrowski, Solution of Equations and System of Equations (Academic, New York, 1966)C. Chun, Construction of Newton-like iterative methods for solving nonlinear equations. Numer. Math. 104, 297–315 (2006)R. King, A family of fourth order methods for nonlinear equations. SIAM J. Numer. Anal. 10, 876–879 (1973)A. Cordero, J.R. Torregrosa, Low-complexity root-finding iteration functions with no derivatives of any order of convergence. J. Comput. Appl. Math. (2014). doi: 10.1016/j.cam.2014.01.024A. Cordero, J.L. Hueso, E. Martínez, J.R. Torregrosa, A modified Newton Jarratts composition. Numer. Algorithms 55, 87–99 (2010)P. Jarratt, Some fourth order multipoint methods for solving equations. Math. Comput. 20, 434–437 (1966)A. Cordero, J.R. Torregrosa, Variants of Newtons method using fifth-order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007)Z. Liu, Q. Zheng, P. Zhao, A variant of Steffensens method of fourth-order convergence and its applications. Appl. Math. Comput. 216, 1978–1983 (2010)A. Cordero, J.R. Torregrosa, A class of Steffensen type methods with optimal order of convergence. Appl. Math. Comput. 217, 7653–7659 (2011)L.B. Rall, New York, Computational Solution of Nonlinear Operator Equations (Robert E. Krieger Publishing Company Inc, New York, 1969

    Widening basins of attraction of optimal iterative methods

    Full text link
    [EN] In this work, we analyze the dynamical behavior on quadratic polynomials of a class of derivative-free optimal parametric iterative methods, designed by Khattri and Steihaug. By using their parameter as an accelerator, we develop different methods with memory of orders three, six and twelve, without adding new functional evaluations. Then a dynamical approach is made, comparing each of the proposed methods with the original ones without memory, with the following empiric conclusion: Basins of attraction of iterative schemes with memory are wider and the behavior is more stable. This has been numerically checked by estimating the solution of a practical problem, as the friction factor of a pipe and also of other nonlinear academic problems.This research was supported by Islamic Azad University, Hamedan Branch, Ministerio de Economia y Competitividad MTM2014-52016-C02-2-P and Generalitat Valenciana PROMETEO/2016/089.Bakhtiari, P.; Cordero Barbero, A.; Lotfi, T.; Mahdiani, K.; Torregrosa Sánchez, JR. (2017). Widening basins of attraction of optimal iterative methods. Nonlinear Dynamics. 87(2):913-938. https://doi.org/10.1007/s11071-016-3089-2S913938872Amat, S., Busquier, S., Bermúdez, C., Plaza, S.: On two families of high order Newton type methods. Appl. Math. Lett. 25, 2209–2217 (2012)Amat, S., Busquier, S., Bermúdez, C., Magreñán, Á.A.: On the election of the damped parameter of a two-step relaxed Newton-type method. Nonlinear Dyn. 84(1), 9–18 (2016)Chun, C., Neta, B.: An analysis of a family of Maheshwari-based optimal eighth order methods. Appl. Math. Comput. 253, 294–307 (2015)Babajee, D.K.R., Cordero, A., Soleymani, F., Torregrosa, J.R.: On improved three-step schemes with high efficiency index and their dynamics. Numer. Algorithms 65(1), 153–169 (2014)Argyros, I.K., Magreñán, Á.A.: On the convergence of an optimal fourth-order family of methods and its dynamics. Appl. Math. Comput. 252, 336–346 (2015)Petković, M., Neta, B., Petković, L., Džunić, J.: Multipoint Methods for Solving Nonlinear Equations. Academic Press, London (2013)Ostrowski, A.M.: Solution of Equations and System of Equations. Prentice-Hall, Englewood Cliffs, NJ (1964)Kung, H.T., Traub, J.F.: Optimal order of one-point and multipoint iteration. J. ACM 21, 643–651 (1974)Khattri, S.K., Steihaug, T.: Algorithm for forming derivative-free optimal methods. Numer. Algorithms 65(4), 809–824 (2014)Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice Hall, New York (1964)Cordero, A., Soleymani, F., Torregrosa, J.R., Shateyi, S.: Basins of Attraction for Various Steffensen-Type Methods. J. Appl. Math. 2014, 1–17 (2014)Devaney, R.L.: The Mandelbrot Set, the Farey Tree and the Fibonacci sequence. Am. Math. Mon. 106(4), 289–302 (1999)McMullen, C.: Families of rational maps and iterative root-finding algorithms. Ann. Math. 125(3), 467–493 (1987)Chicharro, F., Cordero, A., Gutiérrez, J.M., Torregrosa, J.R.: Complex dynamics of derivative-free methods for nonlinear equations. Appl. Math. Comput. 219, 70237035 (2013)Magreñán, Á.A.: Different anomalies in a Jarratt family of iterative root-finding methods. Appl. Math. Comput. 233, 29–38 (2014)Neta, B., Chun, C., Scott, M.: Basins of attraction for optimal eighth order methods to find simple roots of nonlinear equations. Appl. Math. Comput. 227, 567–592 (2014)Lotfi, T., Magreñán, Á.A., Mahdiani, K., Rainer, J.J.: A variant of Steffensen–King’s type family with accelerated sixth-order convergence and high efficiency index: dynamic study and approach. Appl. Math. Comput. 252, 347–353 (2015)Chicharro, F.I., Cordero, A., Torregrosa, J.R.: Drawing dynamical and parameters planes of iterative families and methods. Sci. World J. 2013, 1–11 (2013)Cordero, A., Lotfi, T., Torregrosa, J.R., Assari, P., Mahdiani, K.: Some new bi-accelerator two-point methods for solving nonlinear equations. Comput. Appl. Math. 35(1), 251–267 (2016)Cordero, A., Lotfi, T., Bakhtiari, P., Torregrosa, J.R.: An efficient two-parametric family with memory for nonlinear equations. Numer. Algorithms 68(2), 323–335 (2015)Lotfi, T., Mahdiani, K., Bakhtiari, P., Soleymani, F.: Constructing two-step iterative methods with and without memory. Comput. Math. Math. Phys. 55(2), 183–193 (2015)Cordero, A., Maimó, J.G., Torregrosa, J.R., Vassileva, M.P.: Solving nonlinear problems by Ostrowski–Chun type parametric families. J. Math. Chem. 53, 430–449 (2015)Abad, M., Cordero, A., Torregrosa, J.R.: A family of seventh-order schemes for solving nonlinear systems. Bull. Math. Soc. Sci. Math. Roum. Tome 57(105), 133–145 (2014)Weerakoon, S., Fernando, T.G.I.: A variant of Newton’s method with accelerated third-order convergence. Appl. Math. Lett. 13, 87–93 (2000)White, F.: Fluid Mechanics. McGraw-Hill, Boston (2003)Zheng, Q., Li, J., Huang, F.: An optimal Steffensen-type family for solving nonlinear equations. Appl. Math. Comput. 217, 9592–9597 (2011)Soleymani, F., Babajee, D.K.R., Shateyi, S., Motsa, S.S.: Construction of optimal derivative-free techniques without memory. J. Appl. Math. (2012). doi: 10.1155/2012/49702

    An efficient two-parametric family with memory for nonlinear equations

    Full text link
    A new two-parametric family of derivative-free iterative methods for solving nonlinear equations is presented. First, a new biparametric family without memory of optimal order four is proposed. The improvement of the convergence rate of this family is obtained by using two self-accelerating parameters. These varying parameters are calculated in each iterative step employing only information from the current and the previous iteration. The corresponding R-order is 7 and the efficiency index 7(1/3) = 1.913. Numerical examples and comparison with some existing derivative-free optimal eighth-order schemes are included to confirm the theoretical results. In addition, the dynamical behavior of the designed method is analyzed and shows the stability of the scheme.The second author wishes to thank the Islamic Azad University, Hamedan Branch, where the paper was written as a part of the research plan, for financial support.Cordero Barbero, A.; Lotfi, T.; Bakhtiari, P.; Torregrosa Sánchez, JR. (2015). An efficient two-parametric family with memory for nonlinear equations. Numerical Algorithms. 68(2):323-335. doi:10.1007/s11075-014-9846-8S323335682Kung, H.T., Traub, J.F.: Optimal order of one-point and multi-point iteration. J. Assoc. Comput. Math. 21, 643–651 (1974)Cordero, A., Hueso, J.L., Martínez, E., Torregrosa, J.R.: A new technique to obtain derivative-free optimal iterative methods for solving nonlinear equation. J. Comput. Appl. Math. 252, 95–102 (2013)Cordero, A., Torregrosa, J.R., Vassileva, M.P.: Pseudocomposition: a technique to design predictor-corrector methods for systems of nonlinear equations. Appl. Math. Comput. 218, 11496–11508 (2012)Džunić, J.: On efficient two-parameter methods for solving nonlinear equations. Numer. Algorithms. 63(3), 549–569 (2013)Džunić, J., Petković, M.S.: On generalized multipoint root-solvers with memory. J. Comput. Appl. Math. 236, 2909–2920 (2012)Petković, M.S., Neta, B., Petković, L.D., Džunić, J. (ed.).: Multipoint methods for solving nonlinear equations. Elsevier (2013)Sharma, J.R., Sharma, R.: A new family of modified Ostrowski’s methods with accelerated eighth order convergence. Numer. Algorithms 54, 445–458 (2010)Soleymani, F., Shateyi, S.: Two optimal eighth-order derivative-free classes of iterative methods. Abstr. Appl. Anal. 2012(318165), 14 (2012). doi: 10.1155/2012/318165Soleymani, F., Sharma, R., Li, X., Tohidi, E.: An optimized derivative-free form of the Potra-Pták methods. Math. Comput. Model. 56, 97–104 (2012)Thukral, R.: Eighth-order iterative methods without derivatives for solving nonlinear equations. ISRN Appl. Math. 2011(693787), 12 (2011). doi: 10.5402/2011/693787Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice Hall, New York (1964)Wang, X., Džunić, J., Zhang, T.: On an efficient family of derivative free three-point methods for solving nonlinear equations. Appl. Math. Comput. 219, 1749–1760 (2012)Zheng, Q., Li, J., Huang, F.: An optimal Steffensen-type family for solving nonlinear equations. Appl. Math. Comput. 217, 9592–9597 (2011)Ortega, J.M., Rheinboldt, W.G. (ed.).: Iterative Solutions of Nonlinear Equations in Several Variables, Ed. Academic Press, New York (1970)Jay, I.O.: A note on Q-order of convergence. BIT Numer. Math. 41, 422–429 (2001)Blanchard, P.: Complex Analytic Dynamics on the Riemann Sphere. Bull. AMS 11(1), 85–141 (1984)Chicharro, F., Cordero, A., Torregrosa, J.R.: Drawing dynamical and parameters planes of iterative families and methods. arXiv: 1307.6705 [math.NA

    Choosing the optimal multi-point iterative method for the Colebrook flow friction equation

    Get PDF
    The Colebrook equation is implicitly given in respect to the unknown flow friction factor λ; λ=ζ(Re, ε∗, λ)which cannot be expressed explicitly in exact way without simplifications and use of approximate calculus. A common approach to solve it is through the Newton–Raphson iterative procedure or through the fixed-point iterative procedure. Both require in some cases, up to seven iterations. On the other hand, numerous more powerful iterative methods such as threeor two-point methods, etc. are available. The purpose is to choose optimal iterative method in order to solve the implicit Colebrook equation for flow friction accurately using the least possible number of iterations. The methods are thoroughly tested and those which require the least possible number of iterations to reach the accurate solution are identified. The most powerful three-point methods require, in the worst case, only two iterations to reach the final solution. The recommended representatives are Sharma–Guha–Gupta, Sharma–Sharma, Sharma–Arora, Džuni´c–Petkovi´c–Petkovi´c; Bi–Ren–Wu, Chun–Neta based on Kung–Traub, Neta, and the Jain method based on the Steffensen scheme. The recommended iterative methods can reach the final accurate solution with the least possible number of iterations. The approach is hybrid between the iterative procedure and one-step explicit approximations and can be used in engineering design for initial rough, but also for final fine calculations

    On developing an optimal Jarratt-like class for solving nonlinear equations

    Get PDF
    It is attempted to derive an optimal class of methods without memory from Ozban’s method [A. Y. Ozban, Some New Variants of Newton’s Method, Appl. Math. Lett. 17 (2004) 677-682]. To this end, we try to introduce a weight function in the second step of the method and to find some suitable conditions, so that the modified method is optimal in the sense of Kung and Traub’s conjecture. Also, convergence analysis along with numerical implementations are included to verify both theoretical and practical aspects of the proposed optimal class of methods without memory. © 2020 Forum-Editrice Universitaria Udinese SRL. All rights reserved

    A New High-Order Jacobian-Free Iterative Method with Memory for Solving Nonlinear Systems

    Full text link
    [EN] We used a Kurchatov-type accelerator to construct an iterative method with memory for solving nonlinear systems, with sixth-order convergence. It was developed from an initial scheme without memory, with order of convergence four. There exist few multidimensional schemes using more than one previous iterate in the very recent literature, mostly with low orders of convergence. The proposed scheme showed its efficiency and robustness in several numerical tests, where it was also compared with the existing procedures with high orders of convergence. These numerical tests included large nonlinear systems. In addition, we show that the proposed scheme has very stable qualitative behavior, by means of the analysis of an associated multidimensional, real rational function and also by means of a comparison of its basin of attraction with those of comparison methods.This research was supported by PGC2018-095896-B-C22 (MCIU/AEI/FEDER, UE).Behl, R.; Cordero Barbero, A.; Torregrosa Sánchez, JR.; Bhalla, S. (2021). A New High-Order Jacobian-Free Iterative Method with Memory for Solving Nonlinear Systems. Mathematics. 9(17):1-16. https://doi.org/10.3390/math9172122S11691

    A class of optimal eighth-order derivative-free methods for solving the Danchick-Gauss problem

    Full text link
    A derivative-free optimal eighth-order family of iterative methods for solving nonlinear equations is constructed using weight functions approach with divided first order differences. Its performance, along with several other derivative-free methods, is studied on the specific problem of Danchick's reformulation of Gauss' method of preliminary orbit determination. Numerical experiments show that such derivative-free, high-order methods offer significant advantages over both, the classical and Danchick's Newton approach. (C) 2014 Elsevier Inc. All rights reserved.This research was supported by Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-02.Andreu Estellés, C.; Cambil Teba, N.; Cordero Barbero, A.; Torregrosa Sánchez, JR. (2014). A class of optimal eighth-order derivative-free methods for solving the Danchick-Gauss problem. Applied Mathematics and Computation. 232:237-246. https://doi.org/10.1016/j.amc.2014.01.056S23724623

    On a New Efficient Steffensen-Like Iterative Class by Applying a Suitable Self-Accelerator Parameter

    Get PDF
    It is attempted to present an efficient and free derivative class of Steffensen-like methods for solving nonlinear equations. To this end, firstly, we construct an optimal eighth-order three-step uniparameter without memory of iterative methods. Then the self-accelerator parameter is estimated using Newton’s interpolation in such a way that it improves its convergence order from 8 to 12 without any extra function evaluation. Therefore, its efficiency index is increased from 81/4 to 121/4 which is the main feature of this class. To show applicability of the proposed methods, some numerical illustrations are presented

    On a Derivative-Free Variant of King’s Family with Memory

    Get PDF
    The aim of this paper is to construct a method with memory according to King’s family of methods without memory for nonlinear equations. It is proved that the proposed method possesses higher R-order of convergence using the same number of functional evaluations as King’s family. Numerical experiments are given to illustrate the performance of the constructed scheme
    corecore