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It is attempted to present an efficient and free derivative class of Steffensen-like methods for solving nonlinear equations. To this
end, firstly, we construct an optimal eighth-order three-step uniparameter without memory of iterative methods. Then the self-
accelerator parameter is estimated using Newton’s interpolation in such a way that it improves its convergence order from 8 to 12
without any extra function evaluation. Therefore, its efficiency index is increased from 8'/* to 12'/* which is the main feature of this
class. To show applicability of the proposed methods, some numerical illustrations are presented.

1. Introduction

Kung and Traub are pioneers in constructing optimal gen-
eral multistep methods without memory. They devised two
general n-step methods based on interpolation. Moreover,
they conjectured any n-step methods without memory using
n + 1 function evaluations may reach the convergence
order at most 2" [1]. Accordingly, many authors during the
last years, specially the four past years, are attempted to
construct iterative methods without memory which support
this conjecture with optimal order [1-22].

Although construction of optimal methods without
memory is still an active field, however, much attention has
not been paid for developing methods with memory. Based
on our best knowledge, Traub in his book introduces the first
method with memory. The main feature of these methods
is that they improve convergence order as well as efficiency
index without any new function evaluations. Indeed, Traub
changed Steffensen’s method slightly as follows (see [18, pp.
185-1871]):

X Wy, Y, are given suitably,

S
" ]

0#y,€R, n=0,1,2,...,

n+l

Nl (x) = f(xn) + (x - xn)f [xn’ wn] >

Yne1 = _N{ (xn)>

Wy = Xpt1 + Yn+1f(xn+l) .

)

The parameter y, is called self-accelerator and method (1)
has convergence order 2.41. It is still possible to increase
the convergence order using better self-accelerator parameter
based on better Newton interpolation. Free-derivative can be
considered as another virtue of (1).

In this work, motivated by Traub’s work (1), we construct
a new class of methods with memory. To this end, we first
try to devise a new optimal free-derivative three-step without
memory of iterative methods with eight order of convergence
and using merely four function evaluations per step. In other
words, our first step is the same as Traubs method (1).
The second and third steps use combination Steffensen-like
methods and weight function idea so that we achieve an
optimal class of methods without memory. Finally, we apply a
self-accelerator parameter to extend it to with memory case.
We remember two main properties of this work: increasing
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efficiency index without any new functional evaluations and
nonusing derivatives of a given function.

We use the symbols —, O, and ~ according to the
following conventions [18]: if lim, _, ., g(x,) = C, we write
glx,) —» Corg — C. Iflim, _, g(x) = C, we write
glx) - Corg — C.If f/|g — C, where C is a nonzero
constant, we write f = O(g) or f ~ Cg. Let f(x) be a
function defined on an interval I, where I is the smallest
interval containing k + 1 distinct nodes x;, x,, ..., x;. The
divided difference f[x,,x,,...,x;] with kth-order is defined
as follows: f[x,] = f(x,)

_ f[xl] _f[xo]

flx0] = PR

f x5 x5

veeos %0 Xp0 e o5 xp]

(2)
>xk] _f[xO’xl""xkfl]
Xk — Xo .

Moreover, we recall the definition of efficiency index (EI) as
E = p'/", where p is the order of convergence and # is the
total number of function evaluations per iteration.

This work is organized as follows: Section2 present
construction and error analysis of optimal three-step class of
without memory class. Section 3 is devoted to with memory
extension. Numerical results are demonstrated in Section 5.
We sum up this work in Section 5.

2. Derivative-Free Three-Point Method

This section concerns construction a new class of three-
step free-derivative methods without memory for solving
nonlinear equations. In the next section, it is extended to its
with memory cases. To this end, let us first start with the
following three-step Steffensen-type [23] initiative:

o f(x)
In = Xy

f [xn’ wn] ’

0#y,€R, n=0,1,2,...,

f () (3)

wn = xn + ynf (xn) 4

S e w]’
G
AT e w,]

This scheme is not optimal in the sense of Kung and Traub
[1] as it is of fourth-order convergence using four functions
evaluations per iteration. In other words, its error equation
has the form

ens = (14 flay)’det +0(el). )

Therefore, some modifications based on applying weight
function ideas must be considered in such a way that the
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scheme (3) changes into an optimal method. Accordingly, we
put forward the following iterative plan:

f (%)

T e w]
Zy :yn_H(tn’un) %) (5)
f(2,)

Xn+1 = % — G (tw Sn) w (Vn’ Sn)

>

f (20 w,]

where t, = f(y)/f(x,),u, =
F@I f ) v = f(z,)] f(x,).

The main contribution of this section lies in the following
Theorem which provides sufficient conditions for drawing
optimal three-step iterations without memory class.

F@)/flx)s s, =

Theorem 1. Let H(t,,u,), G(t,,s,), and W(v,,s,) be differ-
entiable two-variable functions that satisfy the conditions

H (0,0) = H; 4, (0,0) = 1,
H,; (0,0) = Hy, (0,0) = Hy; (0,0) = Hy ; (0,0)
=H,,(0,0) = H,,(0,0) = H,, (0,0) =0,

G(0,0) = G, (0,0) = Gy, (0,0) = 1,

Gy (0,0) = 0, (©

G,,(0,0) =2,

6

Gs,(0,0) = Hy 3 (0,0) =6 — —————,
3)0( ) 3,0( ) 1+y}’lf [xn’wn]

W (0,0) =1, W,;,(0,0) = W, (0,0) = 0.

If the initial approximation x, is sufficiently close to the zero «
of a function f, then the convergence order of the family (5) is
eight.

Proof. Lete, = x, —a,e, =y, -~ e, =z, e, =

e, +y,f(x,),and ¢, = f™ (a)/n!f'(@), n = 1,2,.... Using
Taylor’s expansion and taking into account f(«) = 0, we have

f(x,)=f («) [en + czefl + c3efl + c4efl + csefl

+cﬁef, + ‘37‘3:1 +0 (ei)] ,
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I [xp w,]
=@ [1+6 2+ (@)e,
+( Gy @ +e(3+yf @ (B +yf @)))e

+---+O(e8)].

n

(7)

Substituting these into the first step of (5) gives

_ f (%)

T e,
=¢(1+ypf (@)
+ (e (1+pf @) (2+yf @)
-Z 2+ @24y @))€
+ (e (1+pf @) B+yf @ (3+yf ())
+6 (4+9f (@ (5+vf (@ (3+yf (@)))
— 66 (7+pf @ (10 + /" (@)

X (7 + 2yf' (oc))))) 62

(8)
Set t, = f(yn)/f(xn), u, = fw,)/f(x,),and H;; =
OH(t,,u,)/0t,0u), and expanding H(t,,u,) about (0,0),
yields

H(t,u,) = Hy + Hyt, + Hy 1y,
1
+ > (HZ,Oti +2H, t,u, + Ho)zui) 9)
+ cee

Substituting (9) into (5), we can assert that

f ()

€, = yn_H(tn’un) . 1
. f [ w,]

10
= k& + kye) + ket + kse) + kged (10)

+kyel +0 (ez) ,

where
k= (o (1+ 7/ @)
1 6 (2 Yn

x (=6 + 6Hyg + 3Hy,(1+ 1,1 @)’
(11)

+ Hya(1+ 7,1 (@)
+6(Hyy + Hyyyf' (“)))) ;
k, = (_2(;22 +26 =26y, f (@) + 36y, f (@)
~oNf @ + ey f (@)
- %cf (1+y.f (@)
x (2Hy, (v, f' @)+ Hy(yf @)
+2(Hyp + Hygy,f' (@)
9 (@) (249, (@)
x (2Hy, + (14,1 @)
x (2Hy, + Hys + Hy 3y, f' (“))))
(=& (14 9 f' (@) (24 1o f (@)
6 (3+21f @ (2+ 7.1 @)))
x (6Hyo + (1 + 1,/ (@)

X (6H0,1 + (1 + y,,f' (oc))

AN =

X (3H0,2 +Hyz + H0)3ynf' (oc))))) ef,.
(12)
To achieve the fourth-order methods in the first two steps of

(5), we attempt to vanish the coefficients of ¢, €’ in (10). For
this purpose, it suffices to set

Ho,o = H1,0 =1 H0,1 =13 = Ho,z = H1,1 = H1,2 =0.

(13)

Define s, = f(z)/f(yu)s v = f(2)/f(x,), G
oG(t,,s,)/ot,0s), and W, = (OW (v,,,5,))/(0v,,05]), i, ] =
1,2,.... Taylor’s series for G(t,, s,), W(v,,s,) about (0,0) are

G (t,»s,) = Gog + Gyt + Gy 5,
1 2 2
+ E (Gz)otn +2Gy i t,8, + GO)ZSH) +oe,
(14)
W (v,58,) = Woo + Wigv, + Wyss,

1
+ 3 (Wwvfl +2Wy s, + Wo,zsfl) +oeee



Under the conditions stated above (13) and substituting these
Taylor’s series into the third step of (5), we obtain

f(z.)

e =2 Glins) Wons) F 0y

= R4ei + Rsez + R6efl + R7ezl +0 (efl) ,
where

) 2
R, = 54 (=1 + Go W) (1 +1nf' (oc))

X (2% + "22 (Hz,o + Ynf, (o) Hy

(16)
2
+ Hz,l(l +¥af (06))
-2 (3 + ynf' (oc))) .
Fix Gyy = Wy, = 1; then R, = 0.
Assuming these conditions, (15) alters
1 2 ! 3
Ry = Ecz (-1+ GI,O) (1 +Yuf (0‘))
x (263 to (Hz,o + 9 (@) Hyg 1)

2
+ Hz,l(l + Ynf, (0‘))
—2(3+y.f @))),
and to get Ry = 0, it is sufficient to put G, ; = 1.
In the same manner, we can see that the coefficient of efl
is
Rg
1 ’ 3
- -zl nf @)
2 '
X (2C3 TG (Hz,o +9.f (@) Hyg+ Hy
X (1 + ynf'(oc)2 -2 (3 + ynf’ (oc))))
x (26, (-1 + Gy, + W)
+ (:22 (6 + (=6 +Hyo + Hy ) Wy,
+ 27, (@) = Gy (1 + 7,/ @)))
+ Ynf, ((X) WO,I
X (—2 +H,, + H,, (2 + ynf' (oc))) + Gy,
2
x (Hz,o + Ynf’ (o) Hyo + H2,1(1 + Ynfl (‘X))

(s @))).
(18)
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To vanish the coefficient of e, set Gy, = 1, W, = H,, =
H,, = G, = 0, and we conclude similarly that

R = 28(1 43S @) (-6 + & (34 1 @)
X (=6c; (-2 + Gyp + W)
+¢ (~24 +18Gy, + Gy — Hy,
+18W, + ynf' ()

X (—6 + 6G1’1 + G3)0 - H3,0 + 6W1,0))) :
(19)

As in the above cases, choosing G, | =2, W, ; = 0,and G;, =
H;o—6-6/(1+7y,flx,,w,]) gives R, = 0.
On account of the above conditions, we see that

€+l
= _éfz(l f @)’
[ (- +¢ (3+nf @)
x (=66,¢4 + 365 (-2 + Gy, + Wiy,))
-36¢ (=22 +6Gy, + Gy,
+6Wy, +y,f (@)
X (=6 + 2Gy, + Gy, +2W,,))
+6 ( ~Hyo(1+ 3, f @)
+3Gy, (1+,f (@) 3+ 7.f (@)
+3Go,(3+ yf @)
+3(Woa (347 @)

~2(134 9, @ (7+ 3.1 @))))]
xe2+O[eZ]. 20)
20
O

Some simple but efficient weight functions satisfying the
conditions of Theorem 1 are

H, (t,u,)=1+t,,

3+t 2t
bty - i ),

" (-2/9)t2 +3
(21
G, (tpsy) =1+t,+s,+2t,5,+(-1—¢,) tf,,
1/(1+¢,) (1+t,+s,+2t,s,) + tfl
1/(1+¢,)+1t ’
where ¢, = 1/(1 + y, f[x,, w,]).

GZ (tn’ sn) =
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Consider
2 2
Wl (Sn’ Vn) =1+ sn + Vn’

§2 (22)
W, (s, v,) = 1+ =2

>
vi+1

In the next section we introduce a new three-step method
with memory. The efficiency index of the optimal class (5) is
E = 8% we extent proposed class (5) to its with memory
version, using an accelerator parameter, which improves the

efficiency index to 1274,

3. A New Method with Memory

Looking at the error equation (20) of the class (5) reveals
that we can increase the convergence order of this class if
the crucial element 1 + y, f'(«) vanishes. This can be done
if y, = —1/f'(a). Although this is true theoretically, it
is not possible practically since « is unknown. Fortunately,
during the iterative process (5), finer approximations to « are
generated by the sequence {x,,}, and therefor we try to obtain
a good approximate for f'(«). Each iteration, x,,, Wy, ¥, Z,»
and x,,,,, are accessible, except at the initial step. Hence, we
can interpolate f'(«) using these nodes. It is natural that we
estimate the best interpolator, and as a result we consider
Newton interpolating polynomial as follows:

d
Nf; (xn) = [ENél (t; Xp-1> W15 yn—l’zn—hxn)

t=x,

d
= [E(f(xn) + f [0 2,00] (= x,)

+ f % 20t Y] (= %) (E = 2,00)
+ f (% 2t Yoot %] (£ %)

x(t—z,.,)(t
+ f %

x (t=2,.) (¢

- yn—l)

> Zn-1> Yn-1> Xn-1> wn—l] (t - xn)

- ynfl) (t - xnfl))

t=x,,

= f ['xn’zn—l] + f [xn’zn—l’yn—l] (xn - zn—l)

+ f (% Znets Vit X1 ] (% = 20m1) (%0 = Y1)
+ f (%0 Zuet> Yut> Xne1> Wt
X (%6, = Zp1) (% = Y1) (60 = x00) -
(23)
In the next theorem we prove that if y, = —1/N,(x,),

then convergence order of the proposed class in Theorem 1
improves to 12.

Theorem 2. Suppose that x, is an approximation to a simple
zero « of f, then the R-order of convergence of the three-point
method (5) is at least 12.

Proof. Suppose that an iterative method generates a sequence
{x,} approximating a zero a of f and C, tends to the
asymptotic error constant D, whenn — 00, so

1 ~ Dyers e, =X, — . (24)

n n

Assume that the iterative sequences {w,}, {y,}, and {z,}
have the R-order p, g, and s, respectively; that is,

ew~Ane£_A(Dnlenl) ADﬁl:Ll’
e y NBneZ n(Dn len 1) B Dq len 1’

(25)
ez~Cne C(Dnlenl) CDnlnl’

e+1~Dn(Dn len 1) _DDn le

n-1°

On the other hand, based on error analysis of the Theorem 1,
we have

€y, ~ (1 + ynf' (oc)) e,
e, ~¢ (1 + ynf' (oc)) efl
' 2 4 (26)
€, ~ ak,4(1 + )}nf (0()) €n
4
eunn ~ As(1+ 7.1 (@) ¢,
where a,, = —(1/2)6,(2¢5 + ¢ (Hy (1 + p,f (@) + Hy (1 +
ynf'(oc))2 -3+ ynf'((x)))) and a,, 4 are explicit from (20) and
depend on iteration index since y; is recalculated in each step.

By (23) and the order of interpolatory iteration function,
see Section 4.2 in [18], we can also conclude that

N, (x,) = f' () (1 + 5,1y, €, €t ) .27

. !
Since y, = =1/N,(x,,), then
1+Ynf (o) ~ C5n-1€w, %y, %z, - (28)
Combining (26) with (28), we infer that
ewn ~ Csenflewn—l eyn—l ezn—l en
r+p+q+s+1
~ CSAn— Bn lcn an 1 n—1 >
e, ~ Ce e e e 62
n SEN=1 W,y "Y1 e
2r+p+q+s+1
~GZC5 nlCnanlnl >
(29)
- 2 2 4
ezn an’4csenflewn—l Yn-1 anlen
4r+2p+2q+25+2
~a4c5A B C Dnlnl

44 4 4 4 8
€nt1 an,8 eyt ewn,l V-1 Zp-1 N

8r+4p+4q+4s+4
n-1€n-1

~a865A B C D
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6
Equating powers on right-hand-side of relations (25) and o (VA +¢,) (L, +s,+2t,s,) + t,
(29), correspondingly, we form the following system of Tt = Zn 1/(1+¢,)+t2

equations:

rq—-r—-s—-p-q-1=0,

rp-2r-s—-p-q-1=0,

rs—4r—2s-2p -

r’ —8r—4s—4p -

2g-2=0,

49-4=0.

2\ f(z)
X(” vz+1>f[zn,wn]’

-1

(30) Yn+1 = Ni (Xn)’

Wy = Xpt1 + Yn+1f (xn+1) .

Nontrivial solution of this system isq = 2, p = 3, s = 6, and
r = 12. Therefore, the R-order of the methods with memory
(5) under assumptions of Theorem 1, when y,, = 1/N, i (x,),1s

at least 12.

Concrete method 3

Remark 3. If we use lower Newton interpolation, we achieve
lower R-order.

Xo, Wy, Y, are given suitably, #n=0,1,2,...,

S (%)

4. Numerical Results In =T e w ]

In this section, we test our proposed methods and compare n 2t ()

their results with some other methods of the same order Z, =Y, — "~ +sin ”2 o,
t, (=2/982+3 ) f[ypw,]

of convergence. First, we introduce some concrete methods
based on the proposed class in this work.

Considering weight functions (21)-(22), we have

Concrete method 1

X¢» Wp» Y, are given suitably,
f (%)
Vp=%X,———F—, n=0,12,...,
" " f[xn’wn]

Xy = 2, — (1 +t,+s,+2t,s,+(-1-¢,) tf,)

f ()

anyn_(1+tn)—’

[V w,]

X (1 +st + vi) ACT (z,)

flzww,]’

1

Y1 = —ms

Wyt = Xpt1 + Yn+1f (xn+1) .

Concrete method 2

In

X Wp» Y, are given suitably,

f (%)

T few)

Zn:yn_(l+tn)'

n=0,1,2,...,

()

fww,]’

)

(32)

2
N ( 1/(1+¢,) (1+t,+s,+2t,s,) +tn) (33)

1/(1+¢,) +1;
2 o f(z)
X (1 +s,+ vn) —f [Zn’wn]’
1

Yn+1 = _Ni (xn)’

Wyl = Xpt1 + Yn+1f (xn+1) .

(31)
Concrete method 4
X, Wy, Y, are given suitably,

f (xn)

y, =%, - , n=0,1,2,...,
T flxew)

) _(3+tn+, 21, ()
ST\ Ty T e a3 ) Flew,]

Xpp) = 2y — (1 +t,+s,+2t,s, + (-1 —¢n)t,31)

" (1 i 1) f{(u))]

L
N; (x,)

Wi = Xpt1 + yn+1f (xn+1) .

Yo+1 = —

>

(34)
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TABLE L: f(x) = exp(x2 — 3x) sin(x) + log(x2 +1), x,=035a=0,y=1.
Methods [x, —«l [x, — «al |5 — COC (39)
New Method (31) 0.61569 (-3) 0.23067 (-21) 0.91264 (-169) 7.999
New Method (32) 0.56124 (-3) 0.32323 (-21) 0.38634 (-167) 8.000
New Method (33) 0.55232 (-3) 0.28429 (-21) 0.13833 (-167) 8.000
New Method (34) 0.62453 (-3) 0.25853 (-21) 0.22480 (-168) 7.999
Method (35) 0.19676 (~4) 0.44197 (~33) 0.28657 (~262) 8.000
Method (36) 0.85597 (—4) 0.28686 (~29) 0.45644 (=233) 8.000
Method (37) 0.17236 (—4) 0.32121 (=35) 0.46744 (—281) 8.000
Method (38) 0.34824 (-4) 0.36172 (=33) 0.48972 (=265) 8.000
TABLE 2: f(x) = exp(x* + x cos(x) — 1) sin(zx) + x log(x sin(x) + 1), x, = 0.6, = 0,y=-L
Methods |x, —«af [x, — «f [x; — o] COC (39)
New Method (31) 0.57578 (~=3) 0.71057 (=29) 0.38797 (=236) 7999
New Method (32) 0.45807 (~3) 0.5295 (=31) 0.35165 (~254) 7,999
New Method (33) 0.46574 (-3) 0.65400 (—31) 0.10135 (—253) 7.999
New Method (34) 0.56806 (—3) 0.63795 (-29) 0.16377 (—236) 7.999
Method (35) 0.48202 (-3) 0.27805 (-30) 0.34404 (—248) 7.999
Method (36) 0.31009 (-3) 0.26712 (-31) 0.841965 (—256) 7.999
Method (37) 0.23448 (-3) 0.10417 (-32) 0.15929 (~267) 7.999
Method (38) 0.46334 (-3) 0.23577 (=30) 0.10713 (—248) 7999
For comparison purposes, we consider the following I I ) f (W) = %0+ f (%) / f [%024])
. 1~ -
methods: e [f ) = £ (2)] [f (w,) = £ (2,)]
Three-point by Sh t al. [20]:
ree-point by Sharma et al. [20] . ()
Xo» Wy, Yo are given suitably, flywza)
f(x,) !
=x,-—, n=0,12,..., Yol =~ v
P F ] " TN ()
Zy = Yo — 1+ Un M, Wy = Xppr T Yn-f-lf (xn+1) .
1-v, f [wn’xn] (36)
Xn+1 = Zn — f (zn)
Three-point by Zh t al. [21]:
< (f lew ]+ £ o ) (20 ) ree-point by Zheng etl. 21
-1 . .
+f [Zn’ Y xn’wn] (zn - yn) (zn - xn)) > Xo> Wp> Yo are grven Sultably’
1 f(x,)
Yurl = T 7oV =x,-———, n=0,1,2,...,
TN () P F e w]
Wy = Xy Yn+lf (xn+1) > 2, =y, - f (yn)
(35) " ! f [yn’ wn] + f [yn’ Xn> wn] (yn - xn) '
where U, = f(yn)/f(xn)’ and Vu = f(yn)/f(wn) Xp+1 = %y — f (Zn) (37)

z =

Three-point by Kung and Traub [1]:

X Wp» Y, are given suitably,

b L)
T )

. f ) f (wy)
" " [f(wn)_f(yn)]f[xn’yn]’

n=0,1,2,...,

k=0,1,...,

x (f [Zn’ yn] + f [Zn, Yo xn] (Zn - yn)

-1
+f [er Y xn’wn] (Zn - yn) (Zn - xn)) >
R
Yn+1 = Nzi (xn)’

Wy = X1 t+ Yn+1f (xn+1) .
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TABLE 3: f(x) = exp(x2 — 3x) sin(x) + log(x2 +1), x, =0.35a=0,y, =0.01.
Methods [x, —al [x, — «al |25 — COC (39)
New Method (31) 0.91937 (-4) 0.18790 (—44) 0.11705 (-532) 11.998
New Method (32) 0.11053 (-3) 0.77050 (—44) 0.31600 (—525) 11.988
New Method (33) 0.11306 (-3) 0.99434 (—44) 0.67431 (-524) 11.987
New Method (34) 0.89413 (-4) 0.13787 (—44) 0.28524 (—534) 11.998
Method (35) 0.14850 (~5) 0.17577 (~61) 0.48167 (~738) 12.097
Method (36) 0.84533 (—4) 0.39381 (—45) 0.10032 (~540) 11.991
Method (37) 0.30874 (~6) 0.17978 (~67) 0.12617 (~812) 12.169
Method (38) 0.16768 (—4) 0.15361 (-56) 0.21643 (-680) 11.988
TABLE 4: f(x) = exp(x® + x cos(x) — 1) sin(rrx) + x log(x sin(x) + 1), x, = 0.6, = 0, Yo = —0.1.
Methods [x; — o] [x, — ol |5 — «f COC (39)
New Method (31) 0.71066 (—4) 0.20396 (—49) 0.49715 (~596) 12.002
New Method (32) 0.80715 (-4) 0.15495 (~49) 0.65738 (=595) 11.929
New Method (33) 0.78950 (—4) 0.14520 (—49) 0.30139 (-596) 11.931
New Method (34) 0.72833 (—4) 0.22472 (-49) 0.15905 (-595) 12.000
Method (35) 0.64946 (—4) 0.48258 (—50) 0.11725 (-600) 11.936
Method (36) 0.60478 (—4) 0.17480 (—48) 0.27838 (—582) 11.985
Method (37) 0.65693 (—4) 0.27775 (=50) 0.42521 (—607) 11.993
Method (38) 0.86612 (—4) 0.81112 (~64) 0.23877 (~765) 12.089

Three-point by Soleymani et al. [22]:

X Wp» Y, are given suitably,

)
yn - ! f[wn’xﬂ]

, n=0,1,2,...,
2y = Y= f ()
< (f [ %] + S (Wi X0 ] (90 = %)
(= %) O = w,)
X1 = 2, — f (2)
X (f [% 2a] + (f [ X0 Y] = f [0 X 2]
—f Do X 20]) (% = 2,)

(20— %) (20 = w,) (2, = y0))

1

Yn+1 = _Ni (xn)’
Wy = Xpt1 + Yn+1f ('xn+1) .
(38)

By |x, — a| we denote approximations to the zero «,
b(—a) stands for b x 107, and the computational order of
convergence (COC). Here, COC is defined by [16]:

In (|x,,1 — o] /|x, — )

In(|x, —of /|,y —a])

COC = (39)

Also the following functions are used:

f(x) =exp (x2 - 3x) sin (x)

+log(x*+1), x,=035 a=0,
(40)

f(x)=exp (x2 + x cos (x) — 1) sin (71x)

+ xlog(xsin(x)+1), x,=0.6.

Tables 1 and 2 show numerical results for various optimal
without memory methods (31)-(38). It is clear that all these
methods behave very well practically and confirm their
relevant theories.

Tables 3 and 4 present numerical results for various
with memory methods (31)-(38). It is also clear that all
these methods behave very well practically and confirm their
relevant theories. They all provide 12th-order of convergence
asymptotically without any new function evaluations.

5. Conclusions

In this work we proposed a new optimal class of methods
without and with memory for computing simple root of a
nonlinear equation. Its without and with memory methods
attain 8 and 12 orders of convergence, respectively, using only
four function evaluations per iterations. This class is free-
derivative which can be considered as another virtue for it. All
together, we managed to increase efficiency index of methods
without memory from 8/ to 12'/* using a very suitable self-
accelerator parameter based on Newton interpolation.
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