16 research outputs found

    A DWT-BCH code based Video Steganography by employing Variable bit length Algorithm

    Full text link
    Due to the high speed of Internet we can easily transfer video data over the Internet, but people are worried about their data being hacked by unauthorized users. Inside the host medium (text, audio, image and video) we can embed the secret message in Steganography. Video Steganography is a significant method for data hiding. In this work, a variable bit length Video Steganography algorithm is proposed. To immune the secret data, it is first encoded using BCH codes, where the message bits of length k will be converted to a codeword of length n. Depending on the wavelet coefficient values of DWT(Discrete wavelet transform), secret data are embedded into the middle and high frequencies. The results demonstrate better results than in [1]

    An Efficient Video Steganography Algorithm Based on BCH Codes

    Get PDF
    © ASEE 2015In this paper, in order to improve the security and efficiency of the steganography algorithm, we propose an efficient video steganography algorithm based on the binary BCH codes. First the pixels’ positions of the video frames’ components are randomly permuted by using a private key. Moreover, the bits’ positions of the secret message are also permuted using the same private key. Then, the secret message is encoded by applying BCH codes (n, k, t), and XORed with random numbers before the embedding process in order to protect the message from being read. The selected embedding area in each Y, U, and V frame components is randomly chosen, and will differ from frame to frame. The embedding process is achieved by hiding each of the encoded blocks into the 3-2-2 least significant bit (LSB) of the selected YUV pixels. Experimental results have demonstrated that the proposed algorithm have a high embedding efficiency, high embedding payload, and resistant against hackers

    The Implementation of Hamming Code Using Video Steganography

    Get PDF
    As time goes on, the internet world grows larger and larger. The massive number of people involved in the internet means that there are more data flying around in cyberspace waiting for someone to receive it; that is where the need for steganography emerges. The role of steganography is to ensure that the necessary transmitted data does not fall in the hands of the wrong person. It hides the vital data inside an image or video without noticeable changes, where only a key provided by the sender allows the receiver to crack open the cover and see the original data. Steganography is often mistaken as a method of cryptography. In fact, they are two different methods, but they can be used together. In cryptography, the observer can detect that there is a hidden message but he doesn’t have the required tools to crack it. Hamming code is a type of cryptography and it’s use in my paper will strengthen the security of this implementation and make it even harder to decipher

    A Highly Secure Video Steganography using Hamming Code (7, 4)

    Get PDF
    Due to the high speed of internet and advances in technology, people are becoming more worried about information being hacked by attackers. Recently, many algorithms of steganography and data hiding have been proposed. Steganography is a process of embedding the secret information inside the host medium (text, audio, image and video). Concurrently, many of the powerful steganographic analysis software programs have been provided to unauthorized users to retrieve the valuable secret information that was embedded in the carrier files. Some steganography algorithms can be easily detected by steganalytical detectors because of the lack of security and embedding efficiency. In this paper, we propose a secure video steganography algorithm based on the principle of linear block code. Nine uncompressed video sequences are used as cover data and a binary image logo as a secret message. The pixels’ positions of both cover videos and a secret message are randomly reordered by using a private key to improve the system’s security. Then the secret message is encoded by applying Hamming code (7, 4) before the embedding process to make the message even more secure. The result of the encoded message will be added to random generated values by using XOR function. After these steps that make the message secure enough, it will be ready to be embedded into the cover video frames. In addition, the embedding area in each frame is randomly selected and it will be different from other frames to improve the steganography scheme’s robustness. Furthermore, the algorithm has high embedding efficiency as demonstrated by the experimental results that we have obtained. Regarding the system’s quality, the Pick Signal to Noise Ratio (PSNR) of stego videos are above 51 dB, which is close to the original video quality. The embedding payload is also acceptable, where in each video frame we can embed 16 Kbits and it can go up to 90 Kbits without noticeable degrading of the stego video’s quality

    Efficient and Robust Video Steganography Algorithms for Secure Data Communication

    Get PDF
    Over the last two decades, the science of secretly embedding and communicating data has gained tremendous significance due to the technological advancement in communication and digital content. Steganography is the art of concealing secret data in a particular interactive media transporter such as text, audio, image, and video data in order to build a covert communication between authorized parties. Nowadays, video steganography techniques are important in many video-sharing and social networking applications such as Livestreaming, YouTube, Twitter, and Facebook because of noteworthy developments in advanced video over the Internet. The performance of any steganography method, ultimately, relies on the imperceptibility, hiding capacity, and robustness against attacks. Although many video steganography methods exist, several of them lack the preprocessing stages. In addition, less security, low embedding capacity, less imperceptibility, and less robustness against attacks are other issues that affect these algorithms. This dissertation investigates and analyzes cutting edge video steganography techniques in both compressed and raw domains. Moreover, it provides solutions for the aforementioned problems by proposing new and effective methods for digital video steganography. The key objectives of this research are to develop: 1) a highly secure video steganography algorithm based on error correcting codes (ECC); 2) an increased payload video steganography algorithm in the discrete wavelet domain based on ECC; 3) a novel video steganography algorithm based on Kanade-Lucas-Tomasi (KLT) tracking and ECC; 4) a robust video steganography algorithm in the wavelet domain based on KLT tracking and ECC; 5) a new video steganography algorithm based on the multiple object tracking (MOT) and ECC; and 6) a robust and secure video steganography algorithm in the discrete wavelet and discrete cosine transformations based on MOT and ECC. The experimental results from our research demonstrate that our proposed algorithms achieve higher embedding capacity as well as better imperceptibility of stego videos. Furthermore, the preprocessing stages increase the security and robustness of the proposed algorithms against attacks when compared to state-of-the-art steganographic methods

    A Video Steganography Method based on Transform Block Decision for H.265/HEVC

    Get PDF
    High definition video application has drawn a lot of interest both from academy and industry. The relevant latest video coding technology, H.265/HEVC has been a promising area for video steganography. In this paper, we present a novel and efficient video steganography method based on transform block decision for H.265. In order to improve the visual quality of carrier video, we analyze the embedding error of data hiding with modifying partitioning parameters of CB, PB and TB, and modify the transform block decision to embed secret message and update corresponding residuals synchronously. In order to limit embedding error, we utilize an efficient embedding mapping rule which can embed N (N>1) bits message and at most modify one bit transform partitioning flag. Our experimental results show that the proposed method can achieve better visual quality, larger embedding capacity and less bit-rate increase than state-of-the-art researches

    Robust digital image watermarking algorithms for copyright protection

    Get PDF
    Digital watermarking has been proposed as a solution to the problem of resolving copyright ownership of multimedia data (image, audio, video). The work presented in this thesis is concerned with the design of robust digital image watermarking algorithms for copyright protection. Firstly, an overview of the watermarking system, applications of watermarks as well as the survey of current watermarking algorithms and attacks, are given. Further, the implementation of feature point detectors in the field of watermarking is introduced. A new class of scale invariant feature point detectors is investigated and it is showed that they have excellent performances required for watermarking. The robustness of the watermark on geometrical distortions is very important issue in watermarking. In order to detect the parameters of undergone affine transformation, we propose an image registration technique which is based on use of the scale invariant feature point detector. Another proposed technique for watermark synchronization is also based on use of scale invariant feature point detector. This technique does not use the original image to determine the parameters of affine transformation which include rotation and scaling. It is experimentally confirmed that this technique gives excellent results under tested geometrical distortions. In the thesis, two different watermarking algorithms are proposed in the wavelet domain. The first algorithm belongs to the class of additive watermarking algorithms which requires the presence of original image for watermark detection. Using this algorithm the influence of different error correction codes on the watermark robustness is investigated. The second algorithm does not require the original image for watermark detection. The robustness of this algorithm is tested on various filtering and compression attacks. This algorithm is successfully combined with the aforementioned synchronization technique in order to achieve the robustness on geometrical attacks. The last watermarking algorithm presented in the thesis is developed in complex wavelet domain. The complex wavelet transform is described and its advantages over the conventional discrete wavelet transform are highlighted. The robustness of the proposed algorithm was tested on different class of attacks. Finally, in the thesis the conclusion is given and the main future research directions are suggested

    Side-Information For Steganography Design And Detection

    Get PDF
    Today, the most secure steganographic schemes for digital images embed secret messages while minimizing a distortion function that describes the local complexity of the content. Distortion functions are heuristically designed to predict the modeling error, or in other words, how difficult it would be to detect a single change to the original image in any given area. This dissertation investigates how both the design and detection of such content-adaptive schemes can be improved with the use of side-information. We distinguish two types of side-information, public and private: Public side-information is available to the sender and at least in part also to anybody else who can observe the communication. Content complexity is a typical example of public side-information. While it is commonly used for steganography, it can also be used for detection. In this work, we propose a modification to the rich-model style feature sets in both spatial and JPEG domain to inform such feature sets of the content complexity. Private side-information is available only to the sender. The previous use of private side-information in steganography was very successful but limited to steganography in JPEG images. Also, the constructions were based on heuristic with little theoretical foundations. This work tries to remedy this deficiency by introducing a scheme that generalizes the previous approach to an arbitrary domain. We also put forward a theoretical investigation of how to incorporate side-information based on a model of images. Third, we propose to use a novel type of side-information in the form of multiple exposures for JPEG steganography

    Privacy and Security Assessment of Biometric Template Protection

    Full text link
    corecore