127 research outputs found

    Online self-repair of FIR filters

    Get PDF
    Chip-level failure detection has been a target of research for some time, but today's very deep-submicron technology is forcing such research to move beyond detection. Repair, especially self-repair, has become very important for containing the susceptibility of today's chips. This article introduces a self-repair-solution for the digital FIR filter, one of the key blocks used in DSPs

    Software Accelerated Functional Fault Simulation for Data-Path Architectures

    Get PDF

    Reliable Hardware Architectures of CORDIC Algorithm with Fixed Angle of Rotations

    Get PDF
    Fixed-angle rotation operation of vectors is widely used in signal processing, graphics, and robotics. Various optimized coordinate rotation digital computer (CORDIC) designs have been proposed for uniform rotation of vectors through known and specified angles. Nevertheless, in the presence of faults, such hardware architectures are potentially vulnerable. In this thesis, we propose efficient error detection schemes for two fixed-angle rotation designs, i.e., the Interleaved Scaling and Cascaded Single-rotation CORDIC. To the best of our knowledge, this work is the first in providing reliable architectures for these variants of CORDIC. The former is suitable for low-area applications and, hence, we propose recomputing with encoded operands schemes which add negligible area overhead to the designs. Moreover, the proposed error detection schemes for the latter variant are optimized for efficient applications which hamper the performance of the architectures negligibly. We present three variants of recomputing with encoded operands to detect both transient and permanent faults, coupled with signature-based schemes. The overheads of the proposed designs are assessed through Xilinx FPGA implementations and their effectiveness is benchmarked through error simulations. The results give confidence for the proposed efficient architectures which can be tailored based on the reliability requirements and the overhead to be tolerated

    Reliable Low-Latency and Low-Complexity Viterbi Architectures Benchmarked on ASIC and FPGA

    Get PDF
    The Viterbi algorithm is commonly applied in a number of sensitive usage models including decoding convolutional codes used in communications such as satellite communication, cellular relay, and wireless local area networks. Moreover, the algorithm has been applied to automatic speech recognition and storage devices. In this thesis, efficient error detection schemes for architectures based on low-latency, low-complexity Viterbi decoders are presented. The merit of the proposed schemes is that reliability requirements, overhead tolerance, and performance degradation limits are embedded in the structures and can be adapted accordingly. We also present three variants of recomputing with encoded operands and its modifications to detect both transient and permanent faults, coupled with signature-based schemes. The instrumented decoder architecture has been subjected to extensive error detection assessments through simulations, and application-specific integrated circuit (ASIC) [32nm library] and field-programmable gate array (FPGA) [Xilinx Virtex-6 family] implementations for benchmark. The proposed fine-grained approaches can be utilized based on reliability objectives and performance/implementation metrics degradation tolerance

    DESIGN FOR TESTABILITY TECHNIQUES FOR VIDEO CODING SYSTEMS

    Get PDF
    Motion estimation algorithms are used in various video coding systems. While focusing on the testing of ME in a video coding system, this work presents an error detection and data recovery (EDDR) design, based on the residue-andquotient (RQ) code, to embed into ME for video coding testing applications. An error in processing elements (PEs), i.e. key components of a ME, can be detected and recovered effectively by using the proposed EDDR design. Therefore, paper describes a novel testing scheme of motion estimation. The key part of this scheme is to offer high reliability for motion estimation architecture. The experimental result shows the design achieve 100% fault coverage. And, the main advantages of this scheme are minimal performance degradation, small cost of hardware overhead and the benefit of at speed testing

    An Efficient Implementation of Built in Self Diagnosis for Low Power Test Pattern Generator

    Get PDF
    A New architecture of Built-In Self-Diagnosis is presented in this project. The logic Built-In-Self-Test architecture method is extreme response compaction architecture. This architecture first time enables an autonomous on-chip evaluation of test responses with negligible hardware overhead. Architecture advantage is all data, which is relevant for a subsequent diagnosis, is gathered during just one test session. Due to some reasons, the existing method Built-In Self-Test is less often applied to random logic than to embedded memories.  The generation of deterministic test patterns can become prohibitively high due to hardware overhead. The diagnostic resolution of compacted test responses is in many cases poor and the overhead required for an acceptable resolution may become too high.  Modifications in Linear Feedback Shift Register to generate test pattern with security for modified Built-In-Self-Test applications with reduced power requirement. The modified Built-In-Self-Test circuit incorporates a fault syndrome compression scheme and improves the circuit speed with reduction of time

    FPGA ARCHITECTURE AND VERIFICATION OF BUILT IN SELF-TEST (BIST) FOR 32-BIT ADDER/SUBTRACTER USING DE0-NANO FPGA AND ANALOG DISCOVERY 2 HARDWARE

    Get PDF
    The integrated circuit (IC) is an integral part of everyday modern technology, and its application is very attractive to hardware and software design engineers because of its versatility, integration, power consumption, cost, and board area reduction. IC is available in various types such as Field Programming Gate Array (FPGA), Application Specific Integrated Circuit (ASIC), System on Chip (SoC) architecture, Digital Signal Processing (DSP), microcontrollers (μC), and many more. With technology demand focused on faster, low power consumption, efficient IC application, design engineers are facing tremendous challenges in developing and testing integrated circuits that guaranty functionality, high fault coverage, and reliability as the transistor technology is shrinking to the point where manufacturing defects of ICs are affecting yield which associates with the increased cost of the part. The competitive IC market is pressuring manufactures of ICs to develop and market IC in a relatively quick turnaround which in return requires design and verification engineers to develop an integrated self-test structure that would ensure fault-free and the quality product is delivered on the market. 70-80% of IC design is spent on verification and testing to ensure high quality and reliability for the enduser. To test complex and sophisticated IC designs, the verification engineers must produce laborious and costly test fixtures which affect the cost of the part on the competitive market. To avoid increasing the part cost due to yield and test time to the end-user and to keep up with the competitive market many IC design engineers are deviating from complex external test fixture approach and are focusing on integrating Built-in Self-Test (BIST) or Design for Test (DFT) techniques onto IC’s which would reduce time to market but still guarantee high coverage for the product. Understanding the BIST, the architecture, as well as the application of IC, must be understood before developing IC. The architecture of FPGA is elaborated in this paper followed by several BIST techniques and applications of those BIST relative to FPGA, SoC, analog to digital (ADC), or digital to analog converters (DAC) that are integrated on IC. Paper is concluded with verification of BIST for the 32-bit adder/subtracter designed in Quartus II software using the Analog Discovery 2 module as stimulus and DE0-NANO FPGA board for verification

    Design of ALU and Cache Memory for an 8 bit ALU

    Get PDF
    The design of an ALU and a Cache memory for use in a high performance processor was examined in this thesis. Advanced architectures employing increased parallelism were analyzed to minimize the number of execution cycles needed for 8 bit integer arithmetic operations. In addition to the arithmetic unit, an optimized SRAM memory cell was designed to be used as cache memory and as fast Look Up Table. The ALU consists of stand alone units for bit parallel computation of basic integer arithmetic operations. Addition and subtraction were performed using Kogge Stone parallel prefix hardware operating at 330MHz. A high performance multiplier was built using Radix 4 Modified Booth Encoder (MBE) and a Wallace Tree summation array. The multiplier requires single clock cycle for 8 bit integer multiplication and operates at a maximum frequency of 100MHz. Multiplicative division hardware was built for executing both integer division and square root. The division hardware computes 8-bit division and square root in 4 clock cycles. Multiplier forms the basic building block of all these functional units, making high level of resource sharing feasible with this architecture. The optimal operating frequency for the arithmetic unit is 70MHz. A 6T CMOS SRAM cell measuring 90 µm2 was designed using minimum size transistors. The layout allows for horizontal overlap resulting in effective area of 76 µm2 for an 8x8 array. By substituting equivalent bit line capacitance of P4 L1 Cache, the memory was simulated to have a read time of 3.27ns. An optimized set of test vectors were identified to enable high fault coverage without the need for any additional test circuitry. Sixteen test cases were identified that would toggle all the nodes and provide all possible inputs to the sub units of the multiplier. A correlation based semi automatic method was investigated to facilitate test case identification for large multipliers. This method of testability eliminates performance and area overhead associated with conventional testability hardware. Bottom up design methodology was employed for the design. The performance and area metrics are presented along with estimated power consumption. A set of Monte Carlo analysis was carried out to ensure the dependability of the design under process variations as well as fluctuations in operating conditions. The arithmetic unit was found to require a total die area of 2mm2 (approx.) in 0.35 micron process

    Reliable and Fault-Resilient Schemes for Efficient Radix-4 Complex Division

    Get PDF
    Complex division is commonly used in various applications in signal processing and control theory including astronomy and nonlinear RF measurements. Nevertheless, unless reliability and assurance are embedded into the architectures of such structures, the suboptimal (and thus erroneous) results could undermine the objectives of such applications. As such, in this thesis, we present schemes to provide complex number division architectures based on (Sweeney, Robertson, and Tocher) SRT-division with fault diagnosis mechanisms. Different fault resilient architectures are proposed in this thesis which can be tailored based on the eventual objectives of the designs in terms of area and time requirements, among which we pinpoint carefully the schemes based on recomputing with shifted operands (RESO) to be able to detect both natural and malicious faults and with proper modification achieve high throughputs. The design also implements a minimized look up table approach which favors in error detection based designs and provides high fault coverage with relatively-low overhead. Additionally, to benchmark the effectiveness of the proposed schemes, extensive fault diagnosis assessments are performed for the proposed designs through fault simulations and FPGA implementations; the design is implemented on Xilinx Spartan-VI and Xilinx Virtex-VI FPGA families

    DESIGN OF AN ERROR DETECTION AND DATA RECOVERY ARCHITECTURE FOR MOTION ESTIMATION TESTING APPLICATIONS

    Get PDF
    Motion estimation (ME) in a video coding system is the critical role, so testing such a module is of priority concern. While focusing on the testing of ME in a video coding system, this work presents an error detection and data recovery (EDDR) design based on residue -and- quotient (RQ) code. An error in processing elements (PEs) can be detected and recovered effectively by using the proposed EDDR design. Importantly, the proposed EDDR design performs satisfactorily in terms of throughput and reliability for motion estimation (ME) testing applications
    corecore