18,999 research outputs found

    Center-based Clustering under Perturbation Stability

    Full text link
    Clustering under most popular objective functions is NP-hard, even to approximate well, and so unlikely to be efficiently solvable in the worst case. Recently, Bilu and Linial \cite{Bilu09} suggested an approach aimed at bypassing this computational barrier by using properties of instances one might hope to hold in practice. In particular, they argue that instances in practice should be stable to small perturbations in the metric space and give an efficient algorithm for clustering instances of the Max-Cut problem that are stable to perturbations of size O(n1/2)O(n^{1/2}). In addition, they conjecture that instances stable to as little as O(1) perturbations should be solvable in polynomial time. In this paper we prove that this conjecture is true for any center-based clustering objective (such as kk-median, kk-means, and kk-center). Specifically, we show we can efficiently find the optimal clustering assuming only stability to factor-3 perturbations of the underlying metric in spaces without Steiner points, and stability to factor 2+32+\sqrt{3} perturbations for general metrics. In particular, we show for such instances that the popular Single-Linkage algorithm combined with dynamic programming will find the optimal clustering. We also present NP-hardness results under a weaker but related condition

    Average Distance Queries through Weighted Samples in Graphs and Metric Spaces: High Scalability with Tight Statistical Guarantees

    Get PDF
    The average distance from a node to all other nodes in a graph, or from a query point in a metric space to a set of points, is a fundamental quantity in data analysis. The inverse of the average distance, known as the (classic) closeness centrality of a node, is a popular importance measure in the study of social networks. We develop novel structural insights on the sparsifiability of the distance relation via weighted sampling. Based on that, we present highly practical algorithms with strong statistical guarantees for fundamental problems. We show that the average distance (and hence the centrality) for all nodes in a graph can be estimated using O(ϵ2)O(\epsilon^{-2}) single-source distance computations. For a set VV of nn points in a metric space, we show that after preprocessing which uses O(n)O(n) distance computations we can compute a weighted sample SVS\subset V of size O(ϵ2)O(\epsilon^{-2}) such that the average distance from any query point vv to VV can be estimated from the distances from vv to SS. Finally, we show that for a set of points VV in a metric space, we can estimate the average pairwise distance using O(n+ϵ2)O(n+\epsilon^{-2}) distance computations. The estimate is based on a weighted sample of O(ϵ2)O(\epsilon^{-2}) pairs of points, which is computed using O(n)O(n) distance computations. Our estimates are unbiased with normalized mean square error (NRMSE) of at most ϵ\epsilon. Increasing the sample size by a O(logn)O(\log n) factor ensures that the probability that the relative error exceeds ϵ\epsilon is polynomially small.Comment: 21 pages, will appear in the Proceedings of RANDOM 201

    Indexability, concentration, and VC theory

    Get PDF
    Degrading performance of indexing schemes for exact similarity search in high dimensions has long since been linked to histograms of distributions of distances and other 1-Lipschitz functions getting concentrated. We discuss this observation in the framework of the phenomenon of concentration of measure on the structures of high dimension and the Vapnik-Chervonenkis theory of statistical learning.Comment: 17 pages, final submission to J. Discrete Algorithms (an expanded, improved and corrected version of the SISAP'2010 invited paper, this e-print, v3

    Efficient Document Indexing Using Pivot Tree

    Full text link
    We present a novel method for efficiently searching top-k neighbors for documents represented in high dimensional space of terms based on the cosine similarity. Mostly, documents are stored as bag-of-words tf-idf representation. One of the most used ways of computing similarity between a pair of documents is cosine similarity between the vector representations, but cosine similarity is not a metric distance measure as it doesn't follow triangle inequality, therefore most metric searching methods can not be applied directly. We propose an efficient method for indexing documents using a pivot tree that leads to efficient retrieval. We also study the relation between precision and efficiency for the proposed method and compare it with a state of the art in the area of document searching based on inner product.Comment: 6 Pages, 2 Figure

    Computing medians and means in Hadamard spaces

    Full text link
    The geometric median as well as the Frechet mean of points in an Hadamard space are important in both theory and applications. Surprisingly, no algorithms for their computation are hitherto known. To address this issue, we use a split version of the proximal point algorithm for minimizing a sum of convex functions and prove that this algorithm produces a sequence converging to a minimizer of the objective function, which extends a recent result of D. Bertsekas (2001) into Hadamard spaces. The method is quite robust and not only does it yield algorithms for the median and the mean, but it also applies to various other optimization problems. We moreover show that another algorithm for computing the Frechet mean can be derived from the law of large numbers due to K.-T. Sturm (2002). In applications, computing medians and means is probably most needed in tree space, which is an instance of an Hadamard space, invented by Billera, Holmes, and Vogtmann (2001) as a tool for averaging phylogenetic trees. It turns out, however, that it can be also used to model numerous other tree-like structures. Since there now exists a polynomial-time algorithm for computing geodesics in tree space due to M. Owen and S. Provan (2011), we obtain efficient algorithms for computing medians and means, which can be directly used in practice.Comment: Corrected version. Accepted in SIAM Journal on Optimizatio
    corecore