18,871 research outputs found

    Panako: a scalable acoustic fingerprinting system handling time-scale and pitch modification

    Get PDF
    In this paper a scalable granular acoustic fingerprinting system robust against time and pitch scale modification is presented. The aim of acoustic fingerprinting is to identify identical, or recognize similar, audio fragments in a large set using condensed representations of audio signals, i.e. fingerprints. A robust fingerprinting system generates similar fingerprints for perceptually similar audio signals. The new system, presented here, handles a variety of distortions well. It is designed to be robust against pitch shifting, time stretching and tempo changes, while remaining scalable. After a query, the system returns the start time in the reference audio, and the amount of pitch shift and tempo change that has been applied. The design of the system that offers this unique combination of features is the main contribution of this research. The fingerprint itself consists of a combination of key points in a Constant-Q spectrogram. The system is evaluated on commodity hardware using a freely available reference database with fingerprints of over 30.000 songs. The results show that the system responds quickly and reliably on queries, while handling time and pitch scale modifications of up to ten percent

    Selective AP-sequence Based Indoor Localization without Site Survey

    Full text link
    In this paper, we propose an indoor localization system employing ordered sequence of access points (APs) based on received signal strength (RSS). Unlike existing indoor localization systems, our approach does not require any time-consuming and laborious site survey phase to characterize the radio signals in the environment. To be precise, we construct the fingerprint map by cutting the layouts of the interested area into regions with only the knowledge of positions of APs. This can be done offline within a second and has a potential for practical use. The localization is then achieved by matching the ordered AP-sequence to the ones in the fingerprint map. Different from traditional fingerprinting that employing all APs information, we use only selected APs to perform localization, due to the fact that, without site survey, the possibility in obtaining the correct AP sequence is lower if it involves more APs. Experimental results show that, the proposed system achieves localization accuracy < 5m with an accumulative density function (CDF) of 50% to 60% depending on the density of APs. Furthermore, we observe that, using all APs for localization might not achieve the best localization accuracy, e.g. in our case, 4 APs out of total 7 APs achieves the best performance. In practice, the number of APs used to perform localization should be a design parameter based on the placement of APs.Comment: VTC2016-Spring, 15-18 May 2016, Nanjing, Chin
    • …
    corecore