268 research outputs found

    Z Source Inverter Topologies-A Survey

    Get PDF
    Need for alternative energy sources to satisfy the rising demand in energy consumption elicited the research in the area of power converters/inverters. An increasing interest of using Z source inverter/converter in power generation involving renewable energy sources like wind and solar energy for both off grid and grid tied schemes were originated from 2003. This paper surveys the literature of Z source inverters/converter topologies that were developed over the years

    Finite control set model predictive control for grid-tied quasi-Z-source based multilevel inverter

    Get PDF
    In this paper, a finite control set Model Predictive Control (MPC) for grid-tie quasi-Z-Source (qZS) based multilevel inverter is proposed. The proposed Power Conditioning System (PCS) consists of a single-phase 2-cell Cascaded H-Bridge (CHB) inverter where each module is fed by a qZS network. The aim of the proposed control technique is to achieve grid-tie current injection, low Total Harmonic Distortion (THD) current, unity power factor, while balancing DC-link voltage for all qZS-CHB inverter modules. The feasibility of this strategy is validated by simulation using Matlab/Simulink environment

    Grid-tie Quasi Z-Source Inverter-Based Static Synchronous Compensator

    Get PDF
    This research work proposes intensive study and mathematical modelling analysis of transformer-less quasi Z-source inverter (qZSI) based static synchronous compensator (STATCOM) system. In this work, a single-phase qZSI is acted as a STATCOM system to compensate the grid reactive power at the point of coupling under different loading conditions. A new controller-based lead compensator is developed to achieve fast DC-link voltage balance across each qZS network. Simulation studies are conducted to evaluate the controller’s performance

    Model predictive control of a microgrid with energy-stored quasi-Z-source cascaded H-bridge multilevel inverter and PV systems

    Get PDF
    This paper presents a new energy management system (EMS) based on model predictive control (MPC) for a microgrid with solar photovoltaic (PV) power plants and a quasi-Z-source cascaded H-bridge multilevel inverter that integrates an energy storage system (ES-qZS-CHBMLI). The system comprises three modules, each with a PV power plant, quasi-impedance network, battery energy storage system (BESS), and voltage source inverter (VSI). Traditional EMS methods focus on distributing the power among the BESSs to balance their state of charge (SOC), operating in charging or discharging mode. The proposed MPC-EMS carries out a multi-objective control for an ES-qZS-CHBMLI topology, which allows an optimized BESS power distribution while meeting the system operator requirements. It prioritizes the charge of the BESS with the lowest SOC and the discharge of the BESS with the highest SOC. Thus, both modes can coexist simultaneously, while ensuring decoupled power control. The MPC-EMS proposed herein is compared with a proportional sharing algorithm based on SOC (SOC-EMS) that pursues the same objectives. The simulation results show an improvement in the control of the power delivered to the grid. The Integral Time Absolute Error, ITAE, achieved with the MPC-EMS for the active and reactive power is 20 % and 4 %, respectively, lower than that obtained with the SOC-EMS. A 1,3 % higher charge for the BESS with the lowest SOC is also registered. Furthermore, an experimental setup based on an OPAL RT-4510 unit and a dSPACE MicroLabBox prototyping unit is implemented to validate the simulation result

    Fault diagnosis in a five-level multilevel inverter using an artificial neural network approach

    Get PDF
    Introduction. Cascaded H-bridge multilevel inverters (CHB-MLI) are becoming increasingly used in applications such as distribution systems, electrical traction systems, high voltage direct conversion systems, and many others. Despite the fact that multilevel inverters contain a large number of control switches, detecting a malfunction takes a significant amount of time. In the fault switch configurations diode included for freewheeling operation during open-fault condition. During short circuit fault conditions are carried out by the fuse, which can reveal the freewheeling current direction. The fault category can be identified independently and also failure of power switches harmed by the functioning and reliability of CHB-MLI. This paper investigates the effects and performance of open and short switching faults of multilevel inverters. Output voltage characteristics of 5 level MLI are frequently determined from distinctive switch faults with modulation index value of 0.85 is used during simulation analysis. In the simulation experiment for the modulation index value of 0.85, one second open and short circuit faults are created for the place of faulty switch. Fault is identified automatically by means of artificial neural network (ANN) technique using sinusoidal pulse width modulation based on distorted total harmonic distortion (THD) and managed by its own. The novelty of the proposed work consists of a fast Fourier transform (FFT) and ANN to identify faulty switch. Purpose. The proposed architecture is to identify faulty switch during open and short failures, which has to be reduced THD and make the system in reliable operation. Methods. The proposed topology is to be design and evaluate using MATLAB/Simulink platform. Results. Using the FFT and ANN approaches, the normal and faulty conditions of the MLI are explored, and the faulty switch is detected based on voltage changing patterns in the output. Practical value. The proposed topology has been very supportive for implementing non-conventional energy sources based multilevel inverter, which is connected to large demand in grid.Вступ. Каскадні багаторівневі інвертори H-bridge все частіше використовуються в таких пристроях, як розподільні системи, електричні тягові системи, системи прямого перетворення високої напруги та багато інших. Незважаючи на те, що багаторівневі інвертори містять велику кількість перемикачів, що управляють, виявлення несправності займає значний час. У конфігурації аварійного вимикача увімкнено діод для роботи в режимі вільного ходу в умовах обриву несправності. При короткому замиканні аварійні стани виконуються запобіжником, який може визначити напрямок струму вільного ходу. Категорія несправності може бути визначена самостійно, а також відмова силових вимикачів, що порушує функціонування та надійність каскадних багаторівневих інверторів H-bridge. У цій статті досліджуються наслідки та характеристики обривів та коротких замикань багаторівневих інверторів. Характеристики вихідної напруги 5-рівневого інвертору часто визначаються характерними несправностями перемикача, при цьому при аналізі моделювання використовується значення індексу модуляції 0,85. В імітаційному експерименті значення індексу модуляції 0,85 в місці несправного перемикача створюються односекундні обриви і коротке замикання. Несправність ідентифікується автоматично за допомогою методу штучної нейронної мережі з використанням синусоїдальної широтно-імпульсної модуляції на основі спотвореного повного гармонійного спотворення та керується самостійно. Новизна запропонованої роботи полягає у застосуванні швидкого перетворення Фур’є та штучної нейронної мережі для ідентифікації несправного перемикача. Мета. Пропонована архітектура призначена для виявлення несправного комутатора при розмиканні та короткочасних відмовах, що має знизити повне гармонійне спотворення та забезпечити надійну роботу системи. методи. Запропонована топологія має бути спроектована та оцінена з використанням платформи MATLAB/Simulink. Результати. Використовуючи підходи швидкого перетворення Фур’є та штучної нейронної мережі, досліджуються нормальні та несправні стани багаторівневих інверторів, і несправний перемикач виявляється на основі моделей зміни напруги на виході. Практична цінність. Запропонована топологія дуже сприятлива для реалізації нетрадиційних джерел енергії на основі багаторівневого інвертора, пов'язаного з великим попитом у мережі

    A Reduced Power Switches Count Multilevel Converter-Based Photovoltaic System with Integrated Energy Storage

    Get PDF
    A multilevel topology for photovoltaic (PV) systems with integrated energy storage (ES) is presented in this article. Both PV and ES power cells are connected in series to form a dc link, which is then connected to an H-bridge to convert the dc voltage to an ac one. The main advantage of the proposed converter compared to the cascaded-H-bridge (CHB) converter, as well as compared to the available multilevel topologies, is that fewer semiconductor devices are needed here. As the output voltage levels increase, more switches are saved, which results in a more efficient, cheaper, and smaller converter. So far, there is still no modulation strategy that is designed particularly for PV-fed multilevel converters with built-in ES. The standard modulations are impractical for such an application since they suffer from deficiencies, such as polluted output signals - thus, requiring larger output filter - and overmodulation. A modified modulation strategy for PV+ES multilevel inverters is, therefore, introduced in this article. The proposal has been simulated and experimentally validated to evaluate its effectiveness, where it has been shown that the proposed topology is not exclusively feasible, but also suffers from less conduction and switching loss, achieving higher efficiency with respect to its counterpart CHB. </p

    Model Predictive Control Technique of Multilevel Inverter for PV Applications

    Get PDF
    Renewable energy sources, such as solar, wind, hydro, and biofuels, continue to gain popularity as alternatives to the conventional generation system. The main unit in the renewable energy system is the power conditioning system (PCS). It is highly desirable to obtain higher efficiency, lower component cost, and high reliability for the PCS to decrease the levelized cost of energy. This suggests a need for new inverter configurations and controls optimization, which can achieve the aforementioned needs. To achieve these goals, this dissertation presents a modified multilevel inverter topology for grid-tied photovoltaic (PV) system to achieve a lower cost and higher efficiency comparing with the existing system. In addition, this dissertation will also focus on model predictive control (MPC) which controls the modified multilevel topology to regulate the injected power to the grid. A major requirement for the PCS is harvesting the maximum power from the PV. By incorporating MPC, the performance of the maximum power point tracking (MPPT) algorithm to accurately extract the maximum power is improved for multilevel DC-DC converter. Finally, this control technique is developed for the quasi-z-source inverter (qZSI) to accurately control the DC link voltage, input current, and produce a high quality grid injected current waveform compared with the conventional techniques. This dissertation presents a modified symmetrical and asymmetrical multilevel DC-link inverter (MLDCLI) topology with less power switches and gate drivers. In addition, the MPC technique is used to drive the modified and grid connected MLDCLI. The performance of the proposed topology with finite control set model predictive control (FCS-MPC) is verified by simulation and experimentally. Moreover, this dissertation introduces predictive control to achieve maximum power point for grid-tied PV system to quicken the response by predicting the error before the switching signal is applied to the converter. Using the modified technique ensures the iii system operates at maximum power point which is more economical. Thus, the proposed MPPT technique can extract more energy compared to the conventional MPPT techniques from the same amount of installed solar panel. In further detail, this dissertation proposes the FCS-MPC technique for the qZSI in PV system. In order to further improve the performance of the system, FCS-MPC with one step horizon prediction has been implemented and compared with the classical PI controller. The presented work shows the proposed control techniques outperform the ones of the conventional linear controllers for the same application. Finally, a new method of the parallel processing is presented to reduce the time processing for the MPC

    Quasi impedance source based high power medium voltage converter for grid integration of distributed energy sources

    Get PDF
    The next generation of Power Electronics systems would need to be able to work at higher power levels, higher switching frequencies, compact size, and higher ambient temperatures, as well as should have improved energy efficiency than existing Silicon (Si) devices. As a result, new wide bandgap semiconductor technologies must be introduced to address Si's physical limitations. Silicon Carbide (SiC) devices are becoming popular because of their outstanding properties that address all the requirements of the next generation Power Electronics system. On the other hand, the converter topology still plays a major role in deciding the overall system performance. Hence the major objective of this dissertation is to devise new multilevel quasi impedance source (qZS) based converter topologies using SiC devices to achieve a compact, highly efficient, and modular solution for grid integration of Solar PV Energy Source to the utility grid. Other objectives include modification in the PWM methods to address the problem of unequal power-sharing in Solar PV multilevel converters. By using qZS as the front-end power converter several different power converter topologies have been developed and presented in this dissertation. The detailed design, modulation, loss analysis, and control have been developed for multi module cascaded structure. Level-shifted PWM technique is developed at first for two cascaded modules which are similar to the standard Phase opposed disposed Pulse width modulation (PODPWM). However, this control method cannot be directly applied to a higher number of modules. For more than two cascaded modules a unified combined hybrid PWM technique is developed and presented. During normal balanced operation, the power among the modules is unequal. To address the unequal power sharing problem, further modification in the PWM technique is done called the Carrier rotation technique. For providing the isolation between the low voltage PV panels and the high voltage AC grid, a modified Inverter topology, and a new modulation technique is developed. The presented technique, however, is limited to a single module, and more research is needed to implement for cascaded structure. Front-end qZS based single-stage DC-AC-DC converter is developed as an alternative of one of the most popular conventional dual active bridge (DAB) converter. The proposed converter offers reduced component count while maintaining the continuous input current. The detailed operation, modulation technique, simulation, and experimental result are presented to show the superiority of the developed qZS Cascaded Multilevel Converter. The developed power converter has strong commercialization potentia

    Design and Hardware Implementation Considerations of Modified Multilevel Cascaded H-Bridge Inverter for Photovoltaic System

    Get PDF
    Inverters are an essential part in many applications including photovoltaic generation. With the increasing penetration of renewable energy sources, the drive for efficient inverters is gaining more and more momentum. In this paper, output power quality, power loss, implementation complexity, cost, and relative advantages of the popular cascaded multilevel H-bridge inverter and a modified version of it are explored. An optimal number of levels and the optimal switching frequency for such inverters are investigated, and a five-level architecture is chosen considering the trade-offs. This inverter is driven by level shifted in-phase disposition pulse width modulation technique to reduce harmonics, which is chosen through deliberate testing of other advanced disposition pulse width modulation techniques. To reduce the harmonics further, the application of filters is investigated, and an LC filter is applied which provided appreciable results. This system is tested in MATLAB/Simulink and then implemented in hardware after design and testing in Proteus ISIS. The general cascaded multilevel H-bridge inverter design is also implemented in hardware to demonstrate a novel low-cost MOSFET driver build for this study. The hardware setups use MOSFETs as switching devices and low-cost ATmega microcontrollers for generating the switching pulses via level shifted in-phase disposition pulse width modulation. This implementation substantiated the effectiveness of the proposed design
    corecore