6,299 research outputs found

    Strategies for Searching Video Content with Text Queries or Video Examples

    Full text link
    The large number of user-generated videos uploaded on to the Internet everyday has led to many commercial video search engines, which mainly rely on text metadata for search. However, metadata is often lacking for user-generated videos, thus these videos are unsearchable by current search engines. Therefore, content-based video retrieval (CBVR) tackles this metadata-scarcity problem by directly analyzing the visual and audio streams of each video. CBVR encompasses multiple research topics, including low-level feature design, feature fusion, semantic detector training and video search/reranking. We present novel strategies in these topics to enhance CBVR in both accuracy and speed under different query inputs, including pure textual queries and query by video examples. Our proposed strategies have been incorporated into our submission for the TRECVID 2014 Multimedia Event Detection evaluation, where our system outperformed other submissions in both text queries and video example queries, thus demonstrating the effectiveness of our proposed approaches

    Watch and Learn: Semi-Supervised Learning of Object Detectors from Videos

    Full text link
    We present a semi-supervised approach that localizes multiple unknown object instances in long videos. We start with a handful of labeled boxes and iteratively learn and label hundreds of thousands of object instances. We propose criteria for reliable object detection and tracking for constraining the semi-supervised learning process and minimizing semantic drift. Our approach does not assume exhaustive labeling of each object instance in any single frame, or any explicit annotation of negative data. Working in such a generic setting allow us to tackle multiple object instances in video, many of which are static. In contrast, existing approaches either do not consider multiple object instances per video, or rely heavily on the motion of the objects present. The experiments demonstrate the effectiveness of our approach by evaluating the automatically labeled data on a variety of metrics like quality, coverage (recall), diversity, and relevance to training an object detector.Comment: To appear in CVPR 201

    Spatio-Temporal Multimedia Big Data Analytics Using Deep Neural Networks

    Get PDF
    With the proliferation of online services and mobile technologies, the world has stepped into a multimedia big data era, where new opportunities and challenges appear with the high diversity multimedia data together with the huge amount of social data. Nowadays, multimedia data consisting of audio, text, image, and video has grown tremendously. With such an increase in the amount of multimedia data, the main question raised is how one can analyze this high volume and variety of data in an efficient and effective way. A vast amount of research work has been done in the multimedia area, targeting different aspects of big data analytics, such as the capture, storage, indexing, mining, and retrieval of multimedia big data. However, there is insufficient research that provides a comprehensive framework for multimedia big data analytics and management. To address the major challenges in this area, a new framework is proposed based on deep neural networks for multimedia semantic concept detection with a focus on spatio-temporal information analysis and rare event detection. The proposed framework is able to discover the pattern and knowledge of multimedia data using both static deep data representation and temporal semantics. Specifically, it is designed to handle data with skewed distributions. The proposed framework includes the following components: (1) a synthetic data generation component based on simulation and adversarial networks for data augmentation and deep learning training, (2) an automatic sampling model to overcome the imbalanced data issue in multimedia data, (3) a deep representation learning model leveraging novel deep learning techniques to generate the most discriminative static features from multimedia data, (4) an automatic hyper-parameter learning component for faster training and convergence of the learning models, (5) a spatio-temporal deep learning model to analyze dynamic features from multimedia data, and finally (6) a multimodal deep learning fusion model to integrate different data modalities. The whole framework has been evaluated using various large-scale multimedia datasets that include the newly collected disaster-events video dataset and other public datasets

    Behavior and event detection for annotation and surveillance

    Get PDF
    Visual surveillance and activity analysis is an active research field of computer vision. As a result, there are several different algorithms produced for this purpose. To obtain more robust systems it is desirable to integrate the different algorithms. To achieve this goal, the paper presents results in automatic event detection in surveillance videos, and a distributed application framework for supporting these methods. Results in motion analysis for static and moving cameras, automatic fight detection, shadow segmentation, discovery of unusual motion patterns, indexing and retrieval will be presented. These applications perform real time, and are suitable for real life applications

    Real-Time Idling Vehicles Detection using Combined Audio-Visual Deep Learning

    Full text link
    Combustion vehicle emissions contribute to poor air quality and release greenhouse gases into the atmosphere, and vehicle pollution has been associated with numerous adverse health effects. Roadways with extensive waiting and/or passenger drop off, such as schools and hospital drop-off zones, can result in high incidence and density of idling vehicles. This can produce micro-climates of increased vehicle pollution. Thus, the detection of idling vehicles can be helpful in monitoring and responding to unnecessary idling and be integrated into real-time or off-line systems to address the resulting pollution. In this paper we present a real-time, dynamic vehicle idling detection algorithm. The proposed idle detection algorithm and notification rely on an algorithm to detect these idling vehicles. The proposed method relies on a multi-sensor, audio-visual, machine-learning workflow to detect idling vehicles visually under three conditions: moving, static with the engine on, and static with the engine off. The visual vehicle motion detector is built in the first stage, and then a contrastive-learning-based latent space is trained for classifying static vehicle engine sound. We test our system in real-time at a hospital drop-off point in Salt Lake City. This in-situ dataset was collected and annotated, and it includes vehicles of varying models and types. The experiments show that the method can detect engine switching on or off instantly and achieves 71.02 average precision (AP) for idle detections and 91.06 for engine off detections

    Cal Poly Honors Undergraduate Research Journal 2009

    Get PDF
    corecore