928 research outputs found

    Multi-Dimensional Resource Orchestration in Vehicular Edge Networks

    Get PDF
    In the era of autonomous vehicles, the advanced technologies of connected vehicle lead to the development of driving-related applications to meet the stringent safety requirements and the infotainment applications to improve passenger experience. Newly developed vehicular applications require high-volume data transmission, accurate sensing data collection, and reliable interaction, imposing substantial constrains on vehicular networks that solely rely on cellular networks to fetch data from the Internet and on-board processors to make driving decisions. To enhance multifarious vehicular applications, Heterogeneous Vehicular Networks (HVNets) have been proposed, in which edge nodes, including base stations and roadside units, can provide network connections, resulting in significantly reduced vehicular communication cost. In addition, caching servers are equipped at the edge nodes, to further alleviate the communication load for backhaul links and reduce data downloading delay. Hence, we aim to orchestrate the multi-dimensional resources, including communication, caching, and sensing resources, in the complex and dynamic vehicular environment to enhance vehicular edge network performance. The main technical issues are: 1) to accommodate the delivery services for both location-based and popular contents, the scheme of caching contents at edge servers should be devised, considering the cooperation of caching servers at different edge nodes, the mobility of vehicles, and the differential requirements of content downloading services; 2) to support the safety message exchange and collective perception services for vehicles, communication and sensing resources are jointly allocated, the decisions of which are coupled due to the resource sharing among different services and neighboring vehicles; and 3) for interaction-intensive service provisioning, e.g., trajectory design, the forwarding resources in core networks are allocated to achieve delay-sensitive packet transmissions between vehicles and management controllers, ensuring the high-quality interactivity. In this thesis, we design the multi-dimensional resource orchestration schemes in the edge assisted HVNets to address the three technical issues. Firstly, we design a cooperative edge caching scheme to support various vehicular content downloading services, which allows vehicles to fetch one content from multiple caching servers cooperatively. In particular, we consider two types of vehicular content requests, i.e., location-based and popular contents, with different delay requirements. Both types of contents are encoded according to fountain code and cooperatively cached at multiple servers. The proposed scheme can be optimized by finding an optimal cooperative content placement that determines the placing locations and proportions for all contents. To this end, we analyze the upper bound proportion of content caching at a single server and provide the respective theoretical analysis of transmission delay and service cost (including content caching and transmission cost) for both types of contents. We then formulate an optimization problem of cooperative content placement to minimize the overall transmission delay and service cost. As the problem is a multi-objective multi-dimensional multi-choice knapsack one, which is proved to be NP-hard, we devise an ant colony optimization-based scheme to solve the problem and achieve a near-optimal solution. Simulation results are provided to validate the performance of the proposed scheme, including its convergence and optimality of caching, while guaranteeing low transmission delay and service cost. Secondly, to support the vehicular safety message transmissions, we propose a two-level adaptive resource allocation (TARA) framework. In particular, three types of safety message are considered in urban vehicular networks, i.e., the event-triggered message for urgent condition warning, the periodic message for vehicular status notification, and the message for environmental perception. Roadside units are deployed for network management, and thus messages can be transmitted through either vehicle-to-infrastructure or vehicle-to-vehicle connections. To satisfy the requirements of different message transmissions, the proposed TARA framework consists of a group-level resource reservation module and a vehicle-level resource allocation module. Particularly, the resource reservation module is designed to allocate resources to support different types of message transmission for each vehicle group at the first level, and the group is formed by a set of neighboring vehicles. To learn the implicit relation between the resource demand and message transmission requests, a supervised learning model is devised in the resource reservation module, where to obtain the training data we further propose a sequential resource allocation (SRA) scheme. Based on historical network information, the SRA scheme offline optimizes the allocation of sensing resources (i.e., choosing vehicles to provide perception data) and communication resources. With the resource reservation result for each group, the vehicle-level resource allocation module is then devised to distribute specific resources for each vehicle to satisfy the differential requirements in real time. Extensive simulation results are provided to demonstrate the effectiveness of the proposed TARA framework in terms of the high successful reception ratio and low latency for message transmissions, and the high quality of collective environmental perception. Thirdly, we investigate forwarding resource sharing scheme to support interaction intensive services in HVNets, especially for the delay-sensitive packet transmission between vehicles and management controllers. A learning-based proactive resource sharing scheme is proposed for core communication networks, where the available forwarding resources at a switch are proactively allocated to the traffic flows in order to maximize the efficiency of resource utilization with delay satisfaction. The resource sharing scheme consists of two joint modules: estimation of resource demands and allocation of available resources. For service provisioning, resource demand of each traffic flow is estimated based on the predicted packet arrival rate. Considering the distinct features of each traffic flow, a linear regression scheme is developed for resource demand estimation, utilizing the mapping relation between traffic flow status and required resources, upon which a network switch makes decision on allocating available resources for delay satisfaction and efficient resource utilization. To learn the implicit relation between the allocated resources and delay, a multi-armed bandit learning-based resource sharing scheme is proposed, which enables fast resource sharing adjustment to traffic arrival dynamics. The proposed scheme is proved to be asymptotically approaching the optimal strategy, with polynomial time complexity. Extensive simulation results are presented to demonstrate the effectiveness of the proposed resource sharing scheme in terms of delay satisfaction, traffic adaptiveness, and resource sharing gain. In summary, we have investigated the cooperative caching placement for content downloading services, joint communication and sensing resource allocation for safety message transmissions, and forwarding resource sharing scheme in core networks for interaction intensive services. The schemes developed in the thesis should provide practical and efficient solutions to manage the multi-dimensional resources in vehicular networks

    Evaluation of HTTP/DASH Adaptation Algorithms on Vehicular Networks

    Full text link
    Video streaming currently accounts for the majority of Internet traffic. One factor that enables video streaming is HTTP Adaptive Streaming (HAS), that allows the users to stream video using a bit rate that closely matches the available bandwidth from the server to the client. MPEG Dynamic Adaptive Streaming over HTTP (DASH) is a widely used standard, that allows the clients to select the resolution to download based on their own estimations. The algorithm for determining the next segment in a DASH stream is not partof the standard, but it is an important factor in the resulting playback quality. Nowadays vehicles are increasingly equipped with mobile communication devices, and in-vehicle multimedia entertainment systems. In this paper, we evaluate the performance of various DASH adaptation algorithms over a vehicular network. We present detailed simulation results highlighting the advantages and disadvantages of various adaptation algorithms in delivering video content to vehicular users, and we show how the different adaptation algorithms perform in terms of throughput, playback interruption time, and number of interruptions

    Service Migration from Cloud to Multi-tier Fog Nodes for Multimedia Dissemination with QoE Support.

    Get PDF
    A wide range of multimedia services is expected to be offered for mobile users via various wireless access networks. Even the integration of Cloud Computing in such networks does not support an adequate Quality of Experience (QoE) in areas with high demands for multimedia contents. Fog computing has been conceptualized to facilitate the deployment of new services that cloud computing cannot provide, particularly those demanding QoE guarantees. These services are provided using fog nodes located at the network edge, which is capable of virtualizing their functions/applications. Service migration from the cloud to fog nodes can be actuated by request patterns and the timing issues. To the best of our knowledge, existing works on fog computing focus on architecture and fog node deployment issues. In this article, we describe the operational impacts and benefits associated with service migration from the cloud to multi-tier fog computing for video distribution with QoE support. Besides that, we perform the evaluation of such service migration of video services. Finally, we present potential research challenges and trends

    A QoS-aware cache replacement policy for Vehicular Named Data Networks

    Get PDF
    International audienceVehicular Named Data Network (VNDN) uses Named Data Network (NDN) as a communication enabler. The communication is achieved using the content name instead of the host address. NDN integrates content caching at the network level rather than the application level. Hence, the network becomes aware of content caching and delivering. The content caching is a fundamental element in VNDN communication. However, due to the limitations of the cache store, only the most used content should be cached while the less used should be evicted. Traditional caching replacement policies may not work efficiently in VNDN due to the large and diverse exchanged content. To solve this issue, we propose an efficient cache replacement policy that takes the quality of service into consideration. The idea consists of classifying the traffic into different classes, and split the cache store into a set of sub-cache stores according to the defined traffic classes with different storage capacities according to the network requirements. Each content is assigned a popularity-density value that balances the content popularity with its size. Content with the highest popularity-density value is cached while the lowest is evicted. Simulation results prove the efficiency of the proposed solution to enhance the overall network quality of service

    Vehicle as a Service (VaaS): Leverage Vehicles to Build Service Networks and Capabilities for Smart Cities

    Full text link
    Smart cities demand resources for rich immersive sensing, ubiquitous communications, powerful computing, large storage, and high intelligence (SCCSI) to support various kinds of applications, such as public safety, connected and autonomous driving, smart and connected health, and smart living. At the same time, it is widely recognized that vehicles such as autonomous cars, equipped with significantly powerful SCCSI capabilities, will become ubiquitous in future smart cities. By observing the convergence of these two trends, this article advocates the use of vehicles to build a cost-effective service network, called the Vehicle as a Service (VaaS) paradigm, where vehicles empowered with SCCSI capability form a web of mobile servers and communicators to provide SCCSI services in smart cities. Towards this direction, we first examine the potential use cases in smart cities and possible upgrades required for the transition from traditional vehicular ad hoc networks (VANETs) to VaaS. Then, we will introduce the system architecture of the VaaS paradigm and discuss how it can provide SCCSI services in future smart cities, respectively. At last, we identify the open problems of this paradigm and future research directions, including architectural design, service provisioning, incentive design, and security & privacy. We expect that this paper paves the way towards developing a cost-effective and sustainable approach for building smart cities.Comment: 32 pages, 11 figure
    corecore