13 research outputs found

    Sparse Message Passing Based Preamble Estimation for Crowded M2M Communications

    Full text link
    Due to the massive number of devices in the M2M communication era, new challenges have been brought to the existing random-access (RA) mechanism, such as severe preamble collisions and resource block (RB) wastes. To address these problems, a novel sparse message passing (SMP) algorithm is proposed, based on a factor graph on which Bernoulli messages are updated. The SMP enables an accurate estimation on the activity of the devices and the identity of the preamble chosen by each active device. Aided by the estimation, the RB efficiency for the uplink data transmission can be improved, especially among the collided devices. In addition, an analytical tool is derived to analyze the iterative evolution and convergence of the SMP algorithm. Finally, numerical simulations are provided to verify the validity of our analytical results and the significant improvement of the proposed SMP on estimation error rate even when preamble collision occurs.Comment: submitted to ICC 2018 with 6 pages and 4 figure

    Stein Variational Gradient Descent-based Detection For Random Access With Preambles In MTC

    Full text link
    Traditional preamble detection algorithms have low accuracy in the grant-based random access scheme in massive machine-type communication (mMTC). We present a novel preamble detection algorithm based on Stein variational gradient descent (SVGD) at the second step of the random access procedure. It efficiently leverages deterministic updates of particles for continuous inference. To further enhance the performance of the SVGD detector, especially in a dense user scenario, we propose a normalized SVGD detector with momentum. It utilizes the momentum and a bias correction term to reduce the preamble estimation errors during the gradient descent process. Simulation results show that the proposed algorithm performs better than Markov Chain Monte Carlo-based approaches in terms of detection accuracy

    Channel Access in Wireless Networks: Protocol Design of Energy-Aware Schemes for the IoT and Analysis of Existing Technologies

    Get PDF
    The design of channel access policies has been an object of study since the deployment of the first wireless networks, as the Medium Access Control (MAC) layer is responsible for coordinating transmissions to a shared channel and plays a key role in the network performance. While the original target was the system throughput, over the years the focus switched to communication latency, Quality of Service (QoS) guarantees, energy consumption, spectrum efficiency, and any combination of such goals. The basic mechanisms to use a shared channel, such as ALOHA, TDMA- and FDMA-based policies, have been introduced decades ago. Nonetheless, the continuous evolution of wireless networks and the emergence of new communication paradigms demand the development of new strategies to adapt and optimize the standard approaches so as to satisfy the requirements of applications and devices. This thesis proposes several channel access schemes for novel wireless technologies, in particular Internet of Things (IoT) networks, the Long-Term Evolution (LTE) cellular standard, and mmWave communication with the IEEE802.11ad standard. The first part of the thesis concerns energy-aware channel access policies for IoT networks, which typically include several battery-powered sensors. In scenarios with energy restrictions, traditional protocols that do not consider the energy consumption may lead to the premature death of the network and unreliable performance expectations. The proposed schemes show the importance of accurately characterizing all the sources of energy consumption (and inflow, in the case of energy harvesting), which need to be included in the protocol design. In particular, the schemes presented in this thesis exploit data processing and compression techniques to trade off QoS for lifetime. We investigate contention-free and contention-based chanel access policies for different scenarios and application requirements. While the energy-aware schemes proposed for IoT networks are based on a clean-slate approach that is agnostic of the communication technology used, the second part of the thesis is focused on the LTE and IEEE802.11ad standards. As regards LTE, the study proposed in this thesis shows how to use machine-learning techniques to infer the collision multiplicity in the channel access phase, information that can be used to understand when the network is congested and improve the contention resolution mechanism. This is especially useful for massive access scenarios; in the last years, in fact, the research community has been investigating on the use of LTE for Machine-Type Communication (MTC). As regards the standard IEEE802.11ad, instead, it provides a hybrid MAC layer with contention-based and contention-free scheduled allocations, and a dynamic channel time allocation mechanism built on top of such schedule. Although this hybrid scheme is expected to meet heterogeneous requirements, it is still not clear how to develop a schedule based on the various traffic flows and their demands. A mathematical model is necessary to understand the performance and limits of the possible types of allocations and guide the scheduling process. In this thesis, we propose a model for the contention-based access periods which is aware of the interleaving of the available channel time with contention-free allocations

    Broadcast-oriented wireless network-on-chip : fundamentals and feasibility

    Get PDF
    Premi extraordinari doctorat UPC curs 2015-2016, àmbit Enginyeria de les TICRecent years have seen the emergence and ubiquitous adoption of Chip Multiprocessors (CMPs), which rely on the coordinated operation of multiple execution units or cores. Successive CMP generations integrate a larger number of cores seeking higher performance with a reasonable cost envelope. For this trend to continue, however, important scalability issues need to be solved at different levels of design. Scaling the interconnect fabric is a grand challenge by itself, as new Network-on-Chip (NoC) proposals need to overcome the performance hurdles found when dealing with the increasingly variable and heterogeneous communication demands of manycore processors. Fast and flexible NoC solutions are needed to prevent communication become a performance bottleneck, situation that would severely limit the design space at the architectural level and eventually lead to the use of software frameworks that are slow, inefficient, or less programmable. The emergence of novel interconnect technologies has opened the door to a plethora of new NoCs promising greater scalability and architectural flexibility. In particular, wireless on-chip communication has garnered considerable attention due to its inherent broadcast capabilities, low latency, and system-level simplicity. Most of the resulting Wireless Network-on-Chip (WNoC) proposals have set the focus on leveraging the latency advantage of this paradigm by creating multiple wireless channels to interconnect far-apart cores. This strategy is effective as the complement of wired NoCs at moderate scales, but is likely to be overshadowed at larger scales by technologies such as nanophotonics unless bandwidth is unrealistically improved. This dissertation presents the concept of Broadcast-Oriented Wireless Network-on-Chip (BoWNoC), a new approach that attempts to foster the inherent simplicity, flexibility, and broadcast capabilities of the wireless technology by integrating one on-chip antenna and transceiver per processor core. This paradigm is part of a broader hybrid vision where the BoWNoC serves latency-critical and broadcast traffic, tightly coupled to a wired plane oriented to large flows of data. By virtue of its scalable broadcast support, BoWNoC may become the key enabler of a wealth of unconventional hardware architectures and algorithmic approaches, eventually leading to a significant improvement of the performance, energy efficiency, scalability and programmability of manycore chips. The present work aims not only to lay the fundamentals of the BoWNoC paradigm, but also to demonstrate its viability from the electronic implementation, network design, and multiprocessor architecture perspectives. An exploration at the physical level of design validates the feasibility of the approach at millimeter-wave bands in the short term, and then suggests the use of graphene-based antennas in the terahertz band in the long term. At the link level, this thesis provides an insightful context analysis that is used, afterwards, to drive the design of a lightweight protocol that reliably serves broadcast traffic with substantial latency improvements over state-of-the-art NoCs. At the network level, our hybrid vision is evaluated putting emphasis on the flexibility provided at the network interface level, showing outstanding speedups for a wide set of traffic patterns. At the architecture level, the potential impact of the BoWNoC paradigm on the design of manycore chips is not only qualitatively discussed in general, but also quantitatively assessed in a particular architecture for fast synchronization. Results demonstrate that the impact of BoWNoC can go beyond simply improving the network performance, thereby representing a possible game changer in the manycore era.Avenços en el disseny de multiprocessadors han portat a una àmplia adopció dels Chip Multiprocessors (CMPs), que basen el seu potencial en la operació coordinada de múltiples nuclis de procés. Generacions successives han anat integrant més nuclis en la recerca d'alt rendiment amb un cost raonable. Per a que aquesta tendència continuï, però, cal resoldre importants problemes d'escalabilitat a diferents capes de disseny. Escalar la xarxa d'interconnexió és un gran repte en ell mateix, ja que les noves propostes de Networks-on-Chip (NoC) han de servir un tràfic eminentment variable i heterogeni dels processadors amb molts nuclis. Són necessàries solucions ràpides i flexibles per evitar que les comunicacions dins del xip es converteixin en el pròxim coll d'ampolla de rendiment, situació que limitaria en gran mesura l'espai de disseny a nivell d'arquitectura i portaria a l'ús d'arquitectures i models de programació lents, ineficients o poc programables. L'aparició de noves tecnologies d'interconnexió ha possibilitat la creació de NoCs més flexibles i escalables. En particular, la comunicació intra-xip sense fils ha despertat un interès considerable en virtut de les seva baixa latència, simplicitat, i bon rendiment amb tràfic broadcast. La majoria de les Wireless NoC (WNoC) proposades fins ara s'han centrat en aprofitar l'avantatge en termes de latència d'aquest nou paradigma creant múltiples canals sense fils per interconnectar nuclis allunyats entre sí. Aquesta estratègia és efectiva per complementar a NoCs clàssiques en escales mitjanes, però és probable que altres tecnologies com la nanofotònica puguin jugar millor aquest paper a escales més grans. Aquesta tesi presenta el concepte de Broadcast-Oriented WNoC (BoWNoC), un nou enfoc que intenta rendibilitzar al màxim la inherent simplicitat, flexibilitat, i capacitats broadcast de la tecnologia sense fils integrant una antena i transmissor/receptor per cada nucli del processador. Aquest paradigma forma part d'una visió més àmplia on un BoWNoC serviria tràfic broadcast i urgent, mentre que una xarxa convencional serviria fluxos de dades més pesats. En virtut de la escalabilitat i del seu suport broadcast, BoWNoC podria convertir-se en un element clau en una gran varietat d'arquitectures i algoritmes poc convencionals que milloressin considerablement el rendiment, l'eficiència, l'escalabilitat i la programabilitat de processadors amb molts nuclis. El present treball té com a objectius no només estudiar els aspectes fonamentals del paradigma BoWNoC, sinó també demostrar la seva viabilitat des dels punts de vista de la implementació, i del disseny de xarxa i arquitectura. Una exploració a la capa física valida la viabilitat de l'enfoc usant tecnologies longituds d'ona milimètriques en un futur proper, i suggereix l'ús d'antenes de grafè a la banda dels terahertz ja a més llarg termini. A capa d'enllaç, la tesi aporta una anàlisi del context de l'aplicació que és, més tard, utilitzada per al disseny d'un protocol d'accés al medi que permet servir tràfic broadcast a baixa latència i de forma fiable. A capa de xarxa, la nostra visió híbrida és avaluada posant èmfasi en la flexibilitat que aporta el fet de prendre les decisions a nivell de la interfície de xarxa, mostrant grans millores de rendiment per una àmplia selecció de patrons de tràfic. A nivell d'arquitectura, l'impacte que el concepte de BoWNoC pot tenir sobre el disseny de processadors amb molts nuclis no només és debatut de forma qualitativa i genèrica, sinó també avaluat quantitativament per una arquitectura concreta enfocada a la sincronització. Els resultats demostren que l'impacte de BoWNoC pot anar més enllà d'una millora en termes de rendiment de xarxa; representant, possiblement, un canvi radical a l'era dels molts nuclisAward-winningPostprint (published version

    Broadcast-oriented wireless network-on-chip : fundamentals and feasibility

    Get PDF
    Premi extraordinari doctorat UPC curs 2015-2016, àmbit Enginyeria de les TICRecent years have seen the emergence and ubiquitous adoption of Chip Multiprocessors (CMPs), which rely on the coordinated operation of multiple execution units or cores. Successive CMP generations integrate a larger number of cores seeking higher performance with a reasonable cost envelope. For this trend to continue, however, important scalability issues need to be solved at different levels of design. Scaling the interconnect fabric is a grand challenge by itself, as new Network-on-Chip (NoC) proposals need to overcome the performance hurdles found when dealing with the increasingly variable and heterogeneous communication demands of manycore processors. Fast and flexible NoC solutions are needed to prevent communication become a performance bottleneck, situation that would severely limit the design space at the architectural level and eventually lead to the use of software frameworks that are slow, inefficient, or less programmable. The emergence of novel interconnect technologies has opened the door to a plethora of new NoCs promising greater scalability and architectural flexibility. In particular, wireless on-chip communication has garnered considerable attention due to its inherent broadcast capabilities, low latency, and system-level simplicity. Most of the resulting Wireless Network-on-Chip (WNoC) proposals have set the focus on leveraging the latency advantage of this paradigm by creating multiple wireless channels to interconnect far-apart cores. This strategy is effective as the complement of wired NoCs at moderate scales, but is likely to be overshadowed at larger scales by technologies such as nanophotonics unless bandwidth is unrealistically improved. This dissertation presents the concept of Broadcast-Oriented Wireless Network-on-Chip (BoWNoC), a new approach that attempts to foster the inherent simplicity, flexibility, and broadcast capabilities of the wireless technology by integrating one on-chip antenna and transceiver per processor core. This paradigm is part of a broader hybrid vision where the BoWNoC serves latency-critical and broadcast traffic, tightly coupled to a wired plane oriented to large flows of data. By virtue of its scalable broadcast support, BoWNoC may become the key enabler of a wealth of unconventional hardware architectures and algorithmic approaches, eventually leading to a significant improvement of the performance, energy efficiency, scalability and programmability of manycore chips. The present work aims not only to lay the fundamentals of the BoWNoC paradigm, but also to demonstrate its viability from the electronic implementation, network design, and multiprocessor architecture perspectives. An exploration at the physical level of design validates the feasibility of the approach at millimeter-wave bands in the short term, and then suggests the use of graphene-based antennas in the terahertz band in the long term. At the link level, this thesis provides an insightful context analysis that is used, afterwards, to drive the design of a lightweight protocol that reliably serves broadcast traffic with substantial latency improvements over state-of-the-art NoCs. At the network level, our hybrid vision is evaluated putting emphasis on the flexibility provided at the network interface level, showing outstanding speedups for a wide set of traffic patterns. At the architecture level, the potential impact of the BoWNoC paradigm on the design of manycore chips is not only qualitatively discussed in general, but also quantitatively assessed in a particular architecture for fast synchronization. Results demonstrate that the impact of BoWNoC can go beyond simply improving the network performance, thereby representing a possible game changer in the manycore era.Avenços en el disseny de multiprocessadors han portat a una àmplia adopció dels Chip Multiprocessors (CMPs), que basen el seu potencial en la operació coordinada de múltiples nuclis de procés. Generacions successives han anat integrant més nuclis en la recerca d'alt rendiment amb un cost raonable. Per a que aquesta tendència continuï, però, cal resoldre importants problemes d'escalabilitat a diferents capes de disseny. Escalar la xarxa d'interconnexió és un gran repte en ell mateix, ja que les noves propostes de Networks-on-Chip (NoC) han de servir un tràfic eminentment variable i heterogeni dels processadors amb molts nuclis. Són necessàries solucions ràpides i flexibles per evitar que les comunicacions dins del xip es converteixin en el pròxim coll d'ampolla de rendiment, situació que limitaria en gran mesura l'espai de disseny a nivell d'arquitectura i portaria a l'ús d'arquitectures i models de programació lents, ineficients o poc programables. L'aparició de noves tecnologies d'interconnexió ha possibilitat la creació de NoCs més flexibles i escalables. En particular, la comunicació intra-xip sense fils ha despertat un interès considerable en virtut de les seva baixa latència, simplicitat, i bon rendiment amb tràfic broadcast. La majoria de les Wireless NoC (WNoC) proposades fins ara s'han centrat en aprofitar l'avantatge en termes de latència d'aquest nou paradigma creant múltiples canals sense fils per interconnectar nuclis allunyats entre sí. Aquesta estratègia és efectiva per complementar a NoCs clàssiques en escales mitjanes, però és probable que altres tecnologies com la nanofotònica puguin jugar millor aquest paper a escales més grans. Aquesta tesi presenta el concepte de Broadcast-Oriented WNoC (BoWNoC), un nou enfoc que intenta rendibilitzar al màxim la inherent simplicitat, flexibilitat, i capacitats broadcast de la tecnologia sense fils integrant una antena i transmissor/receptor per cada nucli del processador. Aquest paradigma forma part d'una visió més àmplia on un BoWNoC serviria tràfic broadcast i urgent, mentre que una xarxa convencional serviria fluxos de dades més pesats. En virtut de la escalabilitat i del seu suport broadcast, BoWNoC podria convertir-se en un element clau en una gran varietat d'arquitectures i algoritmes poc convencionals que milloressin considerablement el rendiment, l'eficiència, l'escalabilitat i la programabilitat de processadors amb molts nuclis. El present treball té com a objectius no només estudiar els aspectes fonamentals del paradigma BoWNoC, sinó també demostrar la seva viabilitat des dels punts de vista de la implementació, i del disseny de xarxa i arquitectura. Una exploració a la capa física valida la viabilitat de l'enfoc usant tecnologies longituds d'ona milimètriques en un futur proper, i suggereix l'ús d'antenes de grafè a la banda dels terahertz ja a més llarg termini. A capa d'enllaç, la tesi aporta una anàlisi del context de l'aplicació que és, més tard, utilitzada per al disseny d'un protocol d'accés al medi que permet servir tràfic broadcast a baixa latència i de forma fiable. A capa de xarxa, la nostra visió híbrida és avaluada posant èmfasi en la flexibilitat que aporta el fet de prendre les decisions a nivell de la interfície de xarxa, mostrant grans millores de rendiment per una àmplia selecció de patrons de tràfic. A nivell d'arquitectura, l'impacte que el concepte de BoWNoC pot tenir sobre el disseny de processadors amb molts nuclis no només és debatut de forma qualitativa i genèrica, sinó també avaluat quantitativament per una arquitectura concreta enfocada a la sincronització. Els resultats demostren que l'impacte de BoWNoC pot anar més enllà d'una millora en termes de rendiment de xarxa; representant, possiblement, un canvi radical a l'era dels molts nuclisAward-winningPostprint (published version
    corecore