3,931 research outputs found

    From Word to Sense Embeddings: A Survey on Vector Representations of Meaning

    Get PDF
    Over the past years, distributed semantic representations have proved to be effective and flexible keepers of prior knowledge to be integrated into downstream applications. This survey focuses on the representation of meaning. We start from the theoretical background behind word vector space models and highlight one of their major limitations: the meaning conflation deficiency, which arises from representing a word with all its possible meanings as a single vector. Then, we explain how this deficiency can be addressed through a transition from the word level to the more fine-grained level of word senses (in its broader acceptation) as a method for modelling unambiguous lexical meaning. We present a comprehensive overview of the wide range of techniques in the two main branches of sense representation, i.e., unsupervised and knowledge-based. Finally, this survey covers the main evaluation procedures and applications for this type of representation, and provides an analysis of four of its important aspects: interpretability, sense granularity, adaptability to different domains and compositionality.Comment: 46 pages, 8 figures. Published in Journal of Artificial Intelligence Researc

    Deriving Verb Predicates By Clustering Verbs with Arguments

    Full text link
    Hand-built verb clusters such as the widely used Levin classes (Levin, 1993) have proved useful, but have limited coverage. Verb classes automatically induced from corpus data such as those from VerbKB (Wijaya, 2016), on the other hand, can give clusters with much larger coverage, and can be adapted to specific corpora such as Twitter. We present a method for clustering the outputs of VerbKB: verbs with their multiple argument types, e.g. "marry(person, person)", "feel(person, emotion)." We make use of a novel low-dimensional embedding of verbs and their arguments to produce high quality clusters in which the same verb can be in different clusters depending on its argument type. The resulting verb clusters do a better job than hand-built clusters of predicting sarcasm, sentiment, and locus of control in tweets

    Transitive probabilistic CLIR models.

    Get PDF
    Transitive translation could be a useful technique to enlarge the number of supported language pairs for a cross-language information retrieval (CLIR) system in a cost-effective manner. The paper describes several setups for transitive translation based on probabilistic translation models. The transitive CLIR models were evaluated on the CLEF test collection and yielded a retrieval effectiveness\ud up to 83% of monolingual performance, which is significantly better than a baseline using the synonym operator

    Finding predominant word senses in untagged text

    Get PDF
    In word sense disambiguation (WSD), the heuristic of choosing the most common sense is extremely powerful because the distribution of the senses of a word is often skewed. The problem with using the predominant, or first sense heuristic, aside from the fact that it does not take surrounding context into account, is that it assumes some quantity of handtagged data. Whilst there are a few hand-tagged corpora available for some languages, one would expect the frequency distribution of the senses of words, particularly topical words, to depend on the genre and domain of the text under consideration. We present work on the use of a thesaurus acquired from raw textual corpora and the WordNet similarity package to find predominant noun senses automatically. The acquired predominant senses give a precision of 64% on the nouns of the SENSEVAL- 2 English all-words task. This is a very promising result given that our method does not require any hand-tagged text, such as SemCor. Furthermore, we demonstrate that our method discovers appropriate predominant senses for words from two domainspecific corpora

    Towards a Universal Wordnet by Learning from Combined Evidenc

    Get PDF
    Lexical databases are invaluable sources of knowledge about words and their meanings, with numerous applications in areas like NLP, IR, and AI. We propose a methodology for the automatic construction of a large-scale multilingual lexical database where words of many languages are hierarchically organized in terms of their meanings and their semantic relations to other words. This resource is bootstrapped from WordNet, a well-known English-language resource. Our approach extends WordNet with around 1.5 million meaning links for 800,000 words in over 200 languages, drawing on evidence extracted from a variety of resources including existing (monolingual) wordnets, (mostly bilingual) translation dictionaries, and parallel corpora. Graph-based scoring functions and statistical learning techniques are used to iteratively integrate this information and build an output graph. Experiments show that this wordnet has a high level of precision and coverage, and that it can be useful in applied tasks such as cross-lingual text classification
    corecore