5 research outputs found

    A Deep Learning Approach to Radio Signal Denoising

    Get PDF
    This paper proposes a Deep Learning approach to radio signal de-noising. This approach is data-driven, thus it allows de-noising signals, corresponding to distinct protocols, without requiring explicit use of expert knowledge, in this way granting higher flexibility. The core component of the Artificial Neural Network architecture used in this work is a Convolutional De-noising AutoEncoder. We report about the performance of the system in spectrogram-based denoising of the protocol preamble across protocols of the IEEE 802.11 family, studied using simulation data. This approach can be used within a machine learning pipeline: the denoised data can be fed to a protocol classifier. A further perspective advantage of using the AutoEncoders in such a pipeline is that they can be co-trained with the downstream classifier (protocol detector), to optimize its accuracy

    On Investigations of Machine Learning and Deep Learning Techniques for MIMO Detection

    Get PDF
    This paper reviews in detail the various types of multiple input multiple output (MIMO) detector algorithms. The current MIMO detectors are not suitable for massive MIMO (mMIMO) scenarios where there are a large number of antennas. Their performance degrades with the increase in number of antennas in the MIMO system. For combatting the issues, machine learning (ML) and deep learning (DL) based detection algorithms are being researched and developed. An extensive survey of these detectors is provided in this paper, alongwith their advantages and challenges. The issues discussed have to be resolved before using them for final deployment

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig
    corecore