8,904 research outputs found

    CIAGAN: Conditional Identity Anonymization Generative Adversarial Networks

    Full text link
    The unprecedented increase in the usage of computer vision technology in society goes hand in hand with an increased concern in data privacy. In many real-world scenarios like people tracking or action recognition, it is important to be able to process the data while taking careful consideration in protecting people's identity. We propose and develop CIAGAN, a model for image and video anonymization based on conditional generative adversarial networks. Our model is able to remove the identifying characteristics of faces and bodies while producing high-quality images and videos that can be used for any computer vision task, such as detection or tracking. Unlike previous methods, we have full control over the de-identification (anonymization) procedure, ensuring both anonymization as well as diversity. We compare our method to several baselines and achieve state-of-the-art results.Comment: CVPR 202

    LoGAN: Generating Logos with a Generative Adversarial Neural Network Conditioned on color

    Get PDF
    Designing a logo is a long, complicated, and expensive process for any designer. However, recent advancements in generative algorithms provide models that could offer a possible solution. Logos are multi-modal, have very few categorical properties, and do not have a continuous latent space. Yet, conditional generative adversarial networks can be used to generate logos that could help designers in their creative process. We propose LoGAN: an improved auxiliary classifier Wasserstein generative adversarial neural network (with gradient penalty) that is able to generate logos conditioned on twelve different colors. In 768 generated instances (12 classes and 64 logos per class), when looking at the most prominent color, the conditional generation part of the model has an overall precision and recall of 0.8 and 0.7 respectively. LoGAN's results offer a first glance at how artificial intelligence can be used to assist designers in their creative process and open promising future directions, such as including more descriptive labels which will provide a more exhaustive and easy-to-use system.Comment: 6 page, ICMLA1

    Beyond deep fakes: Conceptual framework, applications, and research agenda for neural rendering of realistic digital faces

    Get PDF
    Neural rendering (NR) has emerged as a novel technology for the generation and animation of realistic digital human faces. NR is based on machine learning techniques such as generative adversarial networks and is used to infer human face features and their animation from large amounts of (video) training data. NR shot to prominence with the deep fake phenomenon, the malicious and unwanted use of someone’s face for deception or satire. In this paper we demonstrate that the potential uses of NR far outstrip its use for deep fakes. We contrast NR approaches with traditional computer graphics approaches, discuss typical types of NR applications in digital face generation, and derive a conceptual framework for both guiding the design of digital characters, and for classifying existing NR use cases. We conclude with research ideas for studying the potential applications and implications of NR-based digital characters

    Exploring TV Seriality and Television Studies through Data-Driven Approaches

    Get PDF
    The chapter discusses the use of data-driven approaches in television studies, which has become possible due to the increasing availability of digital data. Computational techniques can be used to analyze cultural artifacts, gain insights into audience reactions to specific shows or episodes, and investigate patterns and trends in television programming over time. The chapter also highlights the challenges of analyzing television series, which are complex open systems that interact with external factors such as the production process, audience feedback, and cultural and social context. Content analysis, which involves qualitative and quantitative methods based on the coding process and data collection, can be used to analyze various elements of a TV series. Generative AI is also discussed, which refers to the use of deep multi-modal algorithms to generate new content such as images, speech, and text. Generative methods like Generative Adversarial Networks (GANs) and Stable Diffusion can create new content that is almost indistinguishable from real data. While generating videos is more challenging, Recurrent Neural Networks (RNNs) like LSTMs can capture the temporal dynamics of the scenes to create interesting and promising applications for complex, but short-duration videos
    • 

    corecore