2,466 research outputs found

    Psychophysiological modelling and the measurement of fear conditioning

    Get PDF
    Quantification of fear conditioning is paramount to many clinical and translational studies on aversive learning. Various measures of fear conditioning co-exist, including different observables and different methods of pre-processing. Here, we first argue that low measurement error is a rational desideratum for any measurement technique. We then show that measurement error can be approximated in benchmark experiments by how closely intended fear memory relates to measured fear memory, a quantity that we term retrodictive validity. From this perspective, we discuss different approaches commonly used to quantify fear conditioning. One of these is psychophysiological modelling (PsPM). This builds on a measurement model that describes how a psychological variable, such as fear memory, influences a physiological measure. This model is statistically inverted to estimate the most likely value of the psychological variable, given the measured data. We review existing PsPMs for skin conductance, pupil size, heart period, respiration, and startle eye-blink. We illustrate the benefit of PsPMs in terms of retrodictive validity and translate this into sample size required to achieve a desired level of statistical power. This sample size can differ up to a factor of three between different observables, and between the best, and the current standard, data pre-processing methods

    Sleight of Hand: Identifying Concealed Information by Monitoring Mouse-Cursor Movements

    Get PDF
    Organizational members who conceal information about adverse behaviors present a substantial risk to that organization. Yet the task of identifying who is concealing information is extremely difficult, expensive, error-prone, and time-consuming. We propose a unique methodology for identifying concealed information: measuring peopleā€™s mouse-cursor movements in online screening questionnaires. We theoretically explain how mouse-cursor movements captured during a screening questionnaire differ between people concealing information and truth tellers. We empirically evaluate our hypotheses using an experiment during which people conceal information about a questionable act. While people completed the screening questionnaire, we simultaneously collected mouse-cursor movements and electrodermal activityā€”the primary sensor used for polygraph examinationsā€”as an additional validation of our methodology. We found that mouse-cursor movements can significantly differentiate between people concealing information and people telling the truth. Mouse-cursor movements can also differentiate between people concealing information and truth tellers on a broader set of comparisons relative to electrodermal activity. Both mouse-cursor movements and electrodermal activity have the potential to identify concealed information, yet mouse-cursor movements yielded significantly fewer false positives. Our results demonstrate that analyzing mouse-cursor movements has promise for identifying concealed information. This methodology can be automated and deployed online for mass screening of individuals in a natural setting without the need for human facilitators. Our approach further demonstrates that mouse-cursor movements can provide insight into the cognitive state of computer users

    Prerequisites for Affective Signal Processing (ASP)

    Get PDF
    Although emotions are embraced by science, their recognition has not reached a satisfying level. Through a concise overview of affect, its signals, features, and classification methods, we provide understanding for the problems encountered. Next, we identify the prerequisites for successful Affective Signal Processing: validation (e.g., mapping of constructs on signals), triangulation, a physiology-driven approach, and contributions of the signal processing community. Using these directives, a critical analysis of a real-world case is provided. This illustrates that the prerequisites can become a valuable guide for Affective Signal Processing (ASP)

    Biosignals as an Advanced Man-Machine Interface

    Get PDF
    As is known for centuries, humans exhibit an electrical profile. This profile is altered through various physiological processes, which can be measured through biosignals; e.g., electromyography (EMG) and electrodermal activity (EDA). These biosignals can reveal our emotions and, as such, can serve as an advanced man-machine interface (MMI) for empathic consumer products. However, such an MMI requires the correct classification of biosignals to emotion classes. This paper explores the use of EDA and three facial EMG signals to determine neutral, positive, negative, and mixed emotions, using recordings of 24 people. A range of techniques is tested, which resulted in a generic framework for automated emotion classification with up to 61.31% correct classification of the four emotion classes, without the need of personal profiles. Among various other directives for future research, the results emphasize the need for both personalized biosignal-profiles and the recording of multiple biosignals in parallel

    An unsupervised automated paradigm for artifact removal from electrodermal activity in an uncontrolled clinical setting

    Get PDF
    Objective. Electrodermal activity (EDA) reflects sympathetic nervous system activity through sweating-related changes in skin conductance and could be used in clinical settings in which patients cannot self-report pain, such as during surgery or when in a coma. To enable EDA data to be used robustly in clinical settings, we need to develop artifact detection and removal frameworks that can handle the types of interference experienced in clinical settings while salvaging as much useful information as possible. Approach. In this study, we collected EDA data from 70 subjects while they were undergoing surgery in the operating room. We then built a fully automated artifact removal framework to remove the heavy artifacts that resulted from the use of surgical electrocautery during the surgery and compared it to two existing state-of-the-art methods for artifact removal from EDA data. This automated framework consisted of first utilizing three unsupervised machine learning methods for anomaly detection, and then customizing the threshold to separate artifact for each data instance by taking advantage of the statistical properties of the artifact in that data instance. We also created simulated surgical data by introducing artifacts into cleaned surgical data and measured the performance of all three methods in removing it. Main results. Our method achieved the highest overall accuracy and precision and lowest overall error on simulated data. One of the other methods prioritized high sensitivity while sacrificing specificity and precision, while the other had low sensitivity, high error, and left behind several artifacts. These results were qualitatively similar between the simulated data instances and operating room data instances. Significance. Our framework allows for robust removal of heavy artifact from EDA data in clinical settings such as surgery, which is the first step to enable clinical integration of EDA as part of standard monitoring

    Affective Man-Machine Interface: Unveiling human emotions through biosignals

    Get PDF
    As is known for centuries, humans exhibit an electrical profile. This profile is altered through various psychological and physiological processes, which can be measured through biosignals; e.g., electromyography (EMG) and electrodermal activity (EDA). These biosignals can reveal our emotions and, as such, can serve as an advanced man-machine interface (MMI) for empathic consumer products. However, such a MMI requires the correct classification of biosignals to emotion classes. This chapter starts with an introduction on biosignals for emotion detection. Next, a state-of-the-art review is presented on automatic emotion classification. Moreover, guidelines are presented for affective MMI. Subsequently, a research is presented that explores the use of EDA and three facial EMG signals to determine neutral, positive, negative, and mixed emotions, using recordings of 21 people. A range of techniques is tested, which resulted in a generic framework for automated emotion classification with up to 61.31% correct classification of the four emotion classes, without the need of personal profiles. Among various other directives for future research, the results emphasize the need for parallel processing of multiple biosignals

    Seizure Detection, Seizure Prediction, and Closed-Loop Warning Systems in Epilepsy

    Get PDF
    Nearly one-third of patients with epilepsy continue to have seizures despite optimal medication management. Systems employed to detect seizures may have the potential to improve outcomes in these patients by allowing more tailored therapies and might, additionally, have a role in accident and SUDEP prevention. Automated seizure detection and prediction require algorithms which employ feature computation and subsequent classification. Over the last few decades, methods have been developed to detect seizures utilizing scalp and intracranial EEG, electrocardiography, accelerometry and motion sensors, electrodermal activity, and audio/video captures. To date, it is unclear which combination of detection technologies yields the best results, and approaches may ultimately need to be individualized. This review presents an overview of seizure detection and related prediction methods and discusses their potential uses in closed-loop warning systems in epilepsy
    • ā€¦
    corecore