7 research outputs found

    States in Process Calculi

    Full text link
    Formal reasoning about distributed algorithms (like Consensus) typically requires to analyze global states in a traditional state-based style. This is in contrast to the traditional action-based reasoning of process calculi. Nevertheless, we use domain-specific variants of the latter, as they are convenient modeling languages in which the local code of processes can be programmed explicitly, with the local state information usually managed via parameter lists of process constants. However, domain-specific process calculi are often equipped with (unlabeled) reduction semantics, building upon a rich and convenient notion of structural congruence. Unfortunately, the price for this convenience is that the analysis is cumbersome: the set of reachable states is modulo structural congruence, and the processes' state information is very hard to identify. We extract from congruence classes of reachable states individual state-informative representatives that we supply with a proper formal semantics. As a result, we can now freely switch between the process calculus terms and their representatives, and we can use the stateful representatives to perform assertional reasoning on process calculus models.Comment: In Proceedings EXPRESS/SOS 2014, arXiv:1408.127

    A Distributed Algorithm for the Minimum Diameter Spanning Tree Problem

    No full text
    International audienceWe present a new algorithm, which solves the problem of distributively finding a minimum diameter spanning tree of any (non-negatively) real-weighted graph G=(V,E,\omega). As an intermediate step, we use a new, fast, linear-time all-pairs shortest paths distributed algorithm to find an absolute center of G. The resulting distributed algorithm is asynchronous, it works for named asynchronous arbitrary networks and achieves O(|V|) time complexity and O(|V| |E|) message complexity

    Development of concurrent programs: An example

    Full text link
    corecore