7,297 research outputs found

    Pattern-recalling processes in quantum Hopfield networks far from saturation

    Get PDF
    As a mathematical model of associative memories, the Hopfield model was now well-established and a lot of studies to reveal the pattern-recalling process have been done from various different approaches. As well-known, a single neuron is itself an uncertain, noisy unit with a finite unnegligible error in the input-output relation. To model the situation artificially, a kind of 'heat bath' that surrounds neurons is introduced. The heat bath, which is a source of noise, is specified by the 'temperature'. Several studies concerning the pattern-recalling processes of the Hopfield model governed by the Glauber-dynamics at finite temperature were already reported. However, we might extend the 'thermal noise' to the quantum-mechanical variant. In this paper, in terms of the stochastic process of quantum-mechanical Markov chain Monte Carlo method (the quantum MCMC), we analytically derive macroscopically deterministic equations of order parameters such as 'overlap' in a quantum-mechanical variant of the Hopfield neural networks (let us call "quantum Hopfield model" or "quantum Hopfield networks"). For the case in which non-extensive number pp of patterns are embedded via asymmetric Hebbian connections, namely, p/N→0p/N \to 0 for the number of neuron N→∞N \to \infty ('far from saturation'), we evaluate the recalling processes for one of the built-in patterns under the influence of quantum-mechanical noise.Comment: 10 pages, 3 figures, using jpconf.cls, Proc. of Statphys-Kolkata VI

    Emerging Consciousness as a Result of Complex-Dynamical Interaction Process

    Get PDF
    A quite general interaction process within a multi-component system is analysed by the extended effective potential method, liberated from usual limitations of perturbation theory or integrable model. The obtained causally complete solution of the many-body problem reveals the phenomenon of dynamic multivaluedness, or redundance, of emerging, incompatible system realisations and dynamic entanglement of system components within each realisation. The ensuing concept of dynamic complexity (and related intrinsic chaoticity) is absolutely universal and can be applied to the problem of consciousness that emerges now as a high enough, properly specified level of unreduced complexity of a suitable interaction process. This complexity level can be identified with the appearance of bound, permanently localised states in the multivalued brain dynamics from strongly chaotic states of unconscious intelligence, by analogy with classical behaviour emergence from quantum states at much lower levels of world dynamics. We show that the main properties of this dynamically emerging consciousness (and intelligence, at the preceding complexity level) correspond to empirically derived properties of natural versions and obtain causally substantiated conclusions about their artificial realisation, including the fundamentally justified paradigm of genuine machine consciousness. This rigorously defined machine consciousness is different from both natural consciousness and any mechanistic, dynamically single-valued imitation of the latter. We use then the same, truly universal concept of complexity to derive equally rigorous conclusions about mental and social implications of the machine consciousness paradigm, demonstrating its indispensable role in the next stage of civilisation development
    • 

    corecore