1,361 research outputs found

    Media-based navigation with generic links

    No full text

    Cascaded Boundary Regression for Temporal Action Detection

    Full text link
    Temporal action detection in long videos is an important problem. State-of-the-art methods address this problem by applying action classifiers on sliding windows. Although sliding windows may contain an identifiable portion of the actions, they may not necessarily cover the entire action instance, which would lead to inferior performance. We adapt a two-stage temporal action detection pipeline with Cascaded Boundary Regression (CBR) model. Class-agnostic proposals and specific actions are detected respectively in the first and the second stage. CBR uses temporal coordinate regression to refine the temporal boundaries of the sliding windows. The salient aspect of the refinement process is that, inside each stage, the temporal boundaries are adjusted in a cascaded way by feeding the refined windows back to the system for further boundary refinement. We test CBR on THUMOS-14 and TVSeries, and achieve state-of-the-art performance on both datasets. The performance gain is especially remarkable under high IoU thresholds, e.g. map@tIoU=0.5 on THUMOS-14 is improved from 19.0% to 31.0%

    Training-Free Instance Segmentation from Semantic Image Segmentation Masks

    Full text link
    In recent years, the development of instance segmentation has garnered significant attention in a wide range of applications. However, the training of a fully-supervised instance segmentation model requires costly both instance-level and pixel-level annotations. In contrast, weakly-supervised instance segmentation methods (i.e., with image-level class labels or point labels) struggle to satisfy the accuracy and recall requirements of practical scenarios. In this paper, we propose a novel paradigm for instance segmentation called training-free instance segmentation (TFISeg), which achieves instance segmentation results from image masks predicted using off-the-shelf semantic segmentation models. TFISeg does not require training a semantic or/and instance segmentation model and avoids the need for instance-level image annotations. Therefore, it is highly efficient. Specifically, we first obtain a semantic segmentation mask of the input image via a trained semantic segmentation model. Then, we calculate a displacement field vector for each pixel based on the segmentation mask, which can indicate representations belonging to the same class but different instances, i.e., obtaining the instance-level object information. Finally, instance segmentation results are obtained after being refined by a learnable category-agnostic object boundary branch. Extensive experimental results on two challenging datasets and representative semantic segmentation baselines (including CNNs and Transformers) demonstrate that TFISeg can achieve competitive results compared to the state-of-the-art fully-supervised instance segmentation methods without the need for additional human resources or increased computational costs. The code is available at: TFISegComment: 14 pages,5 figure

    Wireless Deep Video Semantic Transmission

    Full text link
    In this paper, we design a new class of high-efficiency deep joint source-channel coding methods to achieve end-to-end video transmission over wireless channels. The proposed methods exploit nonlinear transform and conditional coding architecture to adaptively extract semantic features across video frames, and transmit semantic feature domain representations over wireless channels via deep joint source-channel coding. Our framework is collected under the name deep video semantic transmission (DVST). In particular, benefiting from the strong temporal prior provided by the feature domain context, the learned nonlinear transform function becomes temporally adaptive, resulting in a richer and more accurate entropy model guiding the transmission of current frame. Accordingly, a novel rate adaptive transmission mechanism is developed to customize deep joint source-channel coding for video sources. It learns to allocate the limited channel bandwidth within and among video frames to maximize the overall transmission performance. The whole DVST design is formulated as an optimization problem whose goal is to minimize the end-to-end transmission rate-distortion performance under perceptual quality metrics or machine vision task performance metrics. Across standard video source test sequences and various communication scenarios, experiments show that our DVST can generally surpass traditional wireless video coded transmission schemes. The proposed DVST framework can well support future semantic communications due to its video content-aware and machine vision task integration abilities.Comment: published in IEEE JSA

    The TREC-2002 video track report

    Get PDF
    TREC-2002 saw the second running of the Video Track, the goal of which was to promote progress in content-based retrieval from digital video via open, metrics-based evaluation. The track used 73.3 hours of publicly available digital video (in MPEG-1/VCD format) downloaded by the participants directly from the Internet Archive (Prelinger Archives) (internetarchive, 2002) and some from the Open Video Project (Marchionini, 2001). The material comprised advertising, educational, industrial, and amateur films produced between the 1930's and the 1970's by corporations, nonprofit organizations, trade associations, community and interest groups, educational institutions, and individuals. 17 teams representing 5 companies and 12 universities - 4 from Asia, 9 from Europe, and 4 from the US - participated in one or more of three tasks in the 2001 video track: shot boundary determination, feature extraction, and search (manual or interactive). Results were scored by NIST using manually created truth data for shot boundary determination and manual assessment of feature extraction and search results. This paper is an introduction to, and an overview of, the track framework - the tasks, data, and measures - the approaches taken by the participating groups, the results, and issues regrading the evaluation. For detailed information about the approaches and results, the reader should see the various site reports in the final workshop proceedings

    A Case-Based Reasoning Model Powered by Deep Learning for Radiology Report Recommendation

    Get PDF
    Case-Based Reasoning models are one of the most used reasoning paradigms in expert-knowledge-driven areas. One of the most prominent fields of use of these systems is the medical sector, where explainable models are required. However, these models are considerably reliant on user input and the introduction of relevant curated data. Deep learning approaches offer an analogous solution, where user input is not required. This paper proposes a hybrid Case-Based Reasoning, Deep Learning framework for medical-related applications, focusing on the generation of medical reports. The proposal combines the explainability and user-focused approach of case-based reasoning models with the deep learning techniques performance. Moreover, the framework is fully modular to fit a wide variety of tasks and data, such as real-time sensor captured data, images, or text, to name a few. An implementation of the proposed framework focusing on radiology report generation assistance is provided. This implementation is used to evaluate the proposal, showing that it can provide meaningful and accurate corrections, even when the amount of information available is minimal. Additional tests on the optimization degree of the case base are also performed, evidencing how the proposed framework can optimize this base to achieve optimal performance
    corecore