8 research outputs found

    Virtual environment architecture for rapid application development

    Get PDF
    We describe the MITRE Virtual Environment Architecture (VEA), a product of nearly two years of investigations and prototypes of virtual environment technology. This paper discusses the requirements for rapid prototyping, and an architecture we are developing to support virtual environment construction. VEA supports rapid application development by providing a variety of pre-built modules that can be reconfigured for each application session. The modules supply interfaces for several types of interactive I/O devices, in addition to large-screen or head-mounted displays

    Virtual environment as aids in persuading user in learning process

    Get PDF
    With the advent of computing technologies, a plethora of computer applications were developed to solve simple to complex human and organization problems. Computer applications cover variety of fields and have been known to be powerful tools in changing person‘s attitudes, behaviours, feelings and actions. This paper investigates the use of virtual environment technology as aids in persuading users in learning process. It explains the concept of persuasive and virtual environment technologies and the integration of both technologies in persuading learners to learn. It elaborates on the design of persuasion and explains the benefits of integrating persuasive and virtual environment technologies in the learning process. Finally, it gives an overview of a proposed approach in utilizing virtual environment as aids in persuasive design for learning

    Ilaptic Feedback Device for Needle Insertion

    Get PDF
    Tele-surgery is one of the emerging fields which combine engineering and medical sciences. Application of tole-surgery can be found in remote communities, war-zones and disasterstricken areas. One of the most complex and tedious issue in tele-surgery is needle insertion. The surgeon relies on haptic feedback during needle insertion. The force exerted on needle during insertion is measured and reproduced at surgeon's end is known as haptic feedback. The realistic force reproduction requires haptic feedback device which should be dynamically identical to needle. The haptic feedback device enables the surgeon to sense the needle insertion remotely. The basic objective of this thesis is to design a device used for needle insertions in soft tissue. The force information from needle insertions is measured by a sensor. The force feedback produced by the device can be used in robot-assisted needle insertion. A device is designed for reality-based data that results in more accurate representation of a needle insertion haptic feedback scenario. The device is modeled dynamically and it is clear from the model that the reactive force is reproduced by the friction forces which is controlled by the motors. The system is sensitive to mass of rollers, mass of the stick and friction between the stick and rollers. The needle insertion force is modeled in three parts; force due to capsule stiffness, friction, and cutting. The force due to capsule stiffness is modeled terms of three components namely diameter of needle, elasticity of tissue and deformation of tissue. The data from model is compared with real time force data. The haptic feedback device input and output forces are compared and the highest correlation factor is 82%. The sensitivity analysis of the device is performed. The capsule stiffness force for 0.9 millimeter diameter needle is 0.98 Newton, the stiffness force for 0.8 millimeter is 0.91 Newton and stiffness force for 0.6 millimeter diameter is 0.41 Newton. The capsule stiffness force for 0.6 millimeter needle is not following the capsule stiffness model. The insertion force data was collected on chicken skin and meat. The device designed in this work is having one degree of freedom; it only produces force feedback for vertical needle insertion. This design is not able to produce the force feedback for angular needle insertion. Graphical User Interface is designed for the visual haptic feedback. The data acquisition is done with the help of a PC sound card. Future work should include the design of a multidegree of freedom haptic feedback device and to advance the GUI for audio feedback that may be extended to accommodate the design of a simulator

    Haptic Feedback Device for Needle Insertion

    Get PDF
    Tele-surgery is one of the emerging fields which combine engineering and medical sciences. Application of tele-surgery can be found in remote communities, war-zones and disasterstricken areas. One of the most complex and tedious issue in tele-surgery is needle insertion. The surgeon relies on haptic feedback during needle insertion. The force exerted on needle during insertion is measured and reproduced at surgeon's end is known as haptic feedback. The realistic force reproduction requires haptic feedback device which should be dynamically identical to needle. The haptic feedback device enables the surgeon to sense the needle insertion remotely. The basic objective of this thesis is to design a device used for needle insertions in soft tissue. The force information from needle insertions is measured by a sensor. The force feedback produced by the device can be used in robot-assisted needle insertion. A device is designed for reality-based data that results in more accurate representation of a needle insertion haptic feedback scenario. The device is modeled dynamically and it is clear from the model that the reactive force is reproduced by the friction forces which is controlled by the motors. The system is sensitive to mass of rollers, mass ofthe stick and friction between the stick and rollers. The needle insertion force is modeled in three parts; force due to capsule stiffness, friction, and cutting. The force due to capsule stiffness is modeled terms of three components namely diameter of needle, elasticity of tissue and deformation of tissue. The data from model is compared with real time force data. The haptic feedback device input and output forces are compared and the highest correlation factor is 82%. The sensitivity analysis of the device is performed. The capsule stiffness force for 0.9 millimeter diameter needle is 0.98 Newton, the stiffness force for 0.8 millimeter is 0.91 Newton and stiffness force for 0.6 millimeter diameter is 0.4 I Newton. The capsule stiffness force for 0.6 millimeter needle is not following the capsule stiffness model. The insertion force data was collected on chicken skin and meat. The device designed in this work is having one degree of freedom; it only produces force feedback for vertical needle insertion. This design is not able to produce the force feedback for angular needle insertion. Graphical User Interface is designed for the visual haptic feedback. The data acquisition is done with the help of a PC sound card. Future work should include the design of a multidegree of freedom haptic feedback device and to advance the GUI for audio feedback that may be extended to accommodate the design of a simulator

    Improving command selection in smart environments by exploiting spatial constancy

    Get PDF
    With the a steadily increasing number of digital devices, our environments are becoming increasingly smarter: we can now use our tablets to control our TV, access our recipe database while cooking, and remotely turn lights on and off. Currently, this Human-Environment Interaction (HEI) is limited to in-place interfaces, where people have to walk up to a mounted set of switches and buttons, and navigation-based interaction, where people have to navigate on-screen menus, for example on a smart-phone, tablet, or TV screen. Unfortunately, there are numerous scenarios in which neither of these two interaction paradigms provide fast and convenient access to digital artifacts and system commands. People, for example, might not want to touch an interaction device because their hands are dirty from cooking: they want device-free interaction. Or people might not want to have to look at a screen because it would interrupt their current task: they want system-feedback-free interaction. Currently, there is no interaction paradigm for smart environments that allows people for these kinds of interactions. In my dissertation, I introduce Room-based Interaction to solve this problem of HEI. With room-based interaction, people associate digital artifacts and system commands with real-world objects in the environment and point toward these real-world proxy objects for selecting the associated digital artifact. The design of room-based interaction is informed by a theoretical analysis of navigation- and pointing-based selection techniques, where I investigated the cognitive systems involved in executing a selection. An evaluation of room-based interaction in three user studies and a comparison with existing HEI techniques revealed that room-based interaction solves many shortcomings of existing HEI techniques: the use of real-world proxy objects makes it easy for people to learn the interaction technique and to perform accurate pointing gestures, and it allows for system-feedback-free interaction; the use of the environment as flat input space makes selections fast; the use of mid-air full-arm pointing gestures allows for device-free interaction and increases awareness of other’s interactions with the environment. Overall, I present an alternative selection paradigm for smart environments that is superior to existing techniques in many common HEI-scenarios. This new paradigm can make HEI more user-friendly, broaden the use cases of smart environments, and increase their acceptance for the average user

    Proceedings of the 1993 Conference on Intelligent Computer-Aided Training and Virtual Environment Technology, Volume 1

    Get PDF
    These proceedings are organized in the same manner as the conference's contributed sessions, with the papers grouped by topic area. These areas are as follows: VE (virtual environment) training for Space Flight, Virtual Environment Hardware, Knowledge Aquisition for ICAT (Intelligent Computer-Aided Training) & VE, Multimedia in ICAT Systems, VE in Training & Education (1 & 2), Virtual Environment Software (1 & 2), Models in ICAT systems, ICAT Commercial Applications, ICAT Architectures & Authoring Systems, ICAT Education & Medical Applications, Assessing VE for Training, VE & Human Systems (1 & 2), ICAT Theory & Natural Language, ICAT Applications in the Military, VE Applications in Engineering, Knowledge Acquisition for ICAT, and ICAT Applications in Aerospace

    Intelligent cameral control for graphical environments

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Program in Media Arts & Sciences, 1994.Includes bibliographical references (leaves 194-207).by Steven Mark Drucker.Ph.D
    corecore