12 research outputs found

    An Approximation to Miscible Fluid Flows in Porous Media With Point Sources and Sinks by an Eulerian-Lagrangian Localized Adjoint Method and Mixed Finite Element Methods

    Get PDF
    We develop an Eulerian–Lagrangian localized adjoint method (ELLAM)-mixed finite element method (MFEM) solution technique for accurate numerical simulation of coupled systems of partial differential equations (PDEs), which describe complex fluid flow processes in porous media. An ELLAM, which was shown previously to outperform many widely used methods in the context of linear convection-diffusion PDEs, is presented to solve the transport equation for concentration. Since accurate fluid velocities are crucial in numerical simulations, an MFEM is used to solve the pressure equation for the pressure and Darcy velocity. This minimizes the numerical difficulties occurring in standard methods for approximating velocities caused by differentiation of the pressure and then multiplication by rough coefficients. The ELLAM-MFEM solution technique significantly reduces temporal errors, symmetrizes the governing transport equation, eliminates nonphysical oscillation and/or excessive numerical dispersion in many simulators, conserves mass, and treats boundary conditions accurately. Numerical experiments show that the ELLAM-MFEM solution technique simulates miscible displacements of incompressible fluid flows in porous media accurately with fairly coarse spatial grids and very large time steps, which are one or two orders of magnitude larger than the time steps used in many methods. Moreover, the ELLAM-MFEM solution technique can treat large mobility ratios, discontinuous permeabilities and porosities, anisotropic dispersion in tensor form, and point sources and sinks

    An HMM--ELLAM scheme on generic polygonal meshes for miscible incompressible flows in porous media

    Full text link
    We design a numerical approximation of a system of partial differential equations modelling the miscible displacement of a fluid by another in a porous medium. The advective part of the system is discretised using a characteristic method, and the diffusive parts by a finite volume method. The scheme is applicable on generic (possibly non-conforming) meshes as encountered in applications. The main features of our work are the reconstruction of a Darcy velocity, from the discrete pressure fluxes, that enjoys a local consistency property, an analysis of implementation issues faced when tracking, via the characteristic method, distorted cells, and a new treatment of cells near the injection well that accounts better for the conservativity of the injected fluid

    Study of discrete duality finite volume schemes for the Peaceman model

    Get PDF
    International audienceIn this paper, we are interested in the finite volume approximation of a system describing miscible displacement in porous media. This system is made of two coupled equations: an anisotropic diffusion equation on the pressure and a convection-diffusion-dispersion equation on the concentration of invading fluid. The anisotropic diffusion operators in both equations require a special care while discretizing by a finite volume method. We focus here on the numerical approximation by some Discrete Duality Finite Volume methods. After the presentation of the scheme, we establish some a priori estimates satisfied by the numerical solution and prove existence and uniqueness of the solution to the scheme. We show the efficiency of the schemes through numerical experiments

    Unified convergence analysis of numerical schemes for a miscible displacement problem

    Full text link
    This article performs a unified convergence analysis of a variety of numerical methods for a model of the miscible displacement of one incompressible fluid by another through a porous medium. The unified analysis is enabled through the framework of the gradient discretisation method for diffusion operators on generic grids. We use it to establish a novel convergence result in L(0,T;L2(Ω))L^\infty(0,T; L^2(\Omega)) of the approximate concentration using minimal regularity assumptions on the solution to the continuous problem. The convection term in the concentration equation is discretised using a centred scheme. We present a variety of numerical tests from the literature, as well as a novel analytical test case. The performance of two schemes are compared on these tests; both are poor in the case of variable viscosity, small diffusion and medium to small time steps. We show that upstreaming is not a good option to recover stable and accurate solutions, and we propose a correction to recover stable and accurate schemes for all time steps and all ranges of diffusion

    Convergence analysis of a DDFV scheme for a system describing miscible fluid flows in porous media

    Get PDF
    International audienceIn this paper, we prove the convergence of a discrete duality finite volume scheme for a system of partial differential equations describing miscible displacement in porous media. This system is made of two coupled equations: an anisotropic diffusion equation on the pressure and a convection-diffusion-dispersion equation on the concentration. We first establish some a priori estimates satisfied by the sequences of approximate solutions. Then, it yields the compactness of these sequences. Passing to the limit in the numerical scheme, we finally obtain that the limit of the sequence of approximate solutions is a weak solution to the problem under study
    corecore