7 research outputs found

    Capacity Region of the Symmetric Injective K-User Deterministic Interference Channel

    Full text link
    We characterize the capacity region of the symmetric injective K-user Deterministic Interference Channel (DIC) for all channel parameters. The achievable rate region is derived by first projecting the achievable rate region of Han-Kobayashi (HK) scheme, which is in terms of common and private rates for each user, along the direction of aggregate rates for each user (i.e., the sum of common and private rates). We then show that the projected region is characterized by only the projection of those facets in the HK region for which the coefficient of common rate and private rate are the same for all users, hence simplifying the region. Furthermore, we derive a tight converse for each facet of the simplified achievable rate region.Comment: A shorter version of this paper to appear in International Symposium on Information Theory (ISIT) 201

    GDoF of the MISO BC: Bridging the gap between finite precision CSIT and perfect CSIT

    Get PDF
    This work bridges the gap between sharply contrasting results on the degrees of freedom of the K user broadcast channel where the transmitter is equipped with K transmit antennas and each of the K receivers is equipped with a single antenna. This channel has K DoF when channel state information at the transmitter (CSIT) is perfect, but as shown recently, it has only 1 DoF when the CSIT is limited to finite precision. By considering the full range of partial CSIT assumptions parameterized by β ⋯ [0,1], such that the strength of the channel estimation error terms scales as ∼ SNR-β relative to the channel strengths which scale as ∼ SNR, it is shown that this channel has 1 - β + Kβ DoF. For K = 2 users with arbitrary βij parameters, the DoF are shown to be 1 + mini,j βij. To explore diversity of channel strengths, the results are further extended to the symmetric Generalized Degrees of Freedom setting where the direct channel strengths scale as ∼ SNR and the cross channel strengths scale as ∼ SNRα, α ⋯ [0,1], β ⋯ [0,α]. Here, the roles of α and β are shown to counter each other on equal terms, so that the sum GDoF value in the K user setting is (α - β) + K(1 - (α-β )) and for the 2 user setting with arbitrary βij, is 2 - α + mini,j βij

    Generalized Degrees of Freedom of the Symmetric Cache-Aided MISO Broadcast Channel with Partial CSIT

    Get PDF
    We consider the cache-aided MISO broadcast channel (BC) in which a multi-antenna transmitter serves KK single-antenna receivers, each equipped with a cache memory. The transmitter has access to partial knowledge of the channel state information. For a symmetric setting, in terms of channel strength levels, partial channel knowledge levels and cache sizes, we characterize the generalized degrees of freedom (GDoF) up to a constant multiplicative factor. The achievability scheme exploits the interplay between spatial multiplexing gains and coded-multicasting gain. On the other hand, a cut-set-based argument in conjunction with a GDoF outer bound for a parallel MISO BC under channel uncertainty are used for the converse. We further show that the characterized order-optimal GDoF is also attained in a decentralized setting, where no coordination is required for content placement in the caches.Comment: first revisio
    corecore