1,193 research outputs found

    Strong Nash Equilibria in Games with the Lexicographical Improvement Property

    Get PDF
    We introduce a class of finite strategic games with the property that every deviation of a coalition of players that is profitable to each of its members strictly decreases the lexicographical order of a certain function defined on the set of strategy profiles. We call this property the Lexicographical Improvement Property (LIP) and show that it implies the existence of a generalized strong ordinal potential function. We use this characterization to derive existence, efficiency and fairness properties of strong Nash equilibria. We then study a class of games that generalizes congestion games with bottleneck objectives that we call bottleneck congestion games. We show that these games possess the LIP and thus the above mentioned properties. For bottleneck congestion games in networks, we identify cases in which the potential function associated with the LIP leads to polynomial time algorithms computing a strong Nash equilibrium. Finally, we investigate the LIP for infinite games. We show that the LIP does not imply the existence of a generalized strong ordinal potential, thus, the existence of SNE does not follow. Assuming that the function associated with the LIP is continuous, however, we prove existence of SNE. As a consequence, we prove that bottleneck congestion games with infinite strategy spaces and continuous cost functions possess a strong Nash equilibrium

    Frame Permutation Quantization

    Full text link
    Frame permutation quantization (FPQ) is a new vector quantization technique using finite frames. In FPQ, a vector is encoded using a permutation source code to quantize its frame expansion. This means that the encoding is a partial ordering of the frame expansion coefficients. Compared to ordinary permutation source coding, FPQ produces a greater number of possible quantization rates and a higher maximum rate. Various representations for the partitions induced by FPQ are presented, and reconstruction algorithms based on linear programming, quadratic programming, and recursive orthogonal projection are derived. Implementations of the linear and quadratic programming algorithms for uniform and Gaussian sources show performance improvements over entropy-constrained scalar quantization for certain combinations of vector dimension and coding rate. Monte Carlo evaluation of the recursive algorithm shows that mean-squared error (MSE) decays as 1/M^4 for an M-element frame, which is consistent with previous results on optimal decay of MSE. Reconstruction using the canonical dual frame is also studied, and several results relate properties of the analysis frame to whether linear reconstruction techniques provide consistent reconstructions.Comment: 29 pages, 5 figures; detailed added to proof of Theorem 4.3 and a few minor correction

    Two Combinatorial Models with identical Statics yet different Dynamics

    Full text link
    Motivated by the problem of sorting, we introduce two simple combinatorial models with distinct Hamiltonians yet identical spectra (and hence partition function) and show that the local dynamics of these models are very different. After a deep quench, one model slowly relaxes to the sorted state whereas the other model becomes blocked by the presence of stable local minima.Comment: 23 pages, 11 figure

    Exact Markov Chain-based Runtime Analysis of a Discrete Particle Swarm Optimization Algorithm on Sorting and OneMax

    Full text link
    Meta-heuristics are powerful tools for solving optimization problems whose structural properties are unknown or cannot be exploited algorithmically. We propose such a meta-heuristic for a large class of optimization problems over discrete domains based on the particle swarm optimization (PSO) paradigm. We provide a comprehensive formal analysis of the performance of this algorithm on certain "easy" reference problems in a black-box setting, namely the sorting problem and the problem OneMAX. In our analysis we use a Markov-model of the proposed algorithm to obtain upper and lower bounds on its expected optimization time. Our bounds are essentially tight with respect to the Markov-model. We show that for a suitable choice of algorithm parameters the expected optimization time is comparable to that of known algorithms and, furthermore, for other parameter regimes, the algorithm behaves less greedy and more explorative, which can be desirable in practice in order to escape local optima. Our analysis provides a precise insight on the tradeoff between optimization time and exploration. To obtain our results we introduce the notion of indistinguishability of states of a Markov chain and provide bounds on the solution of a recurrence equation with non-constant coefficients by integration

    Convergence in Models with Bounded Expected Relative Hazard Rates

    Full text link
    We provide a general framework to study stochastic sequences related to individual learning in economics, learning automata in computer sciences, social learning in marketing, and other applications. More precisely, we study the asymptotic properties of a class of stochastic sequences that take values in [0,1][0,1] and satisfy a property called "bounded expected relative hazard rates." Sequences that satisfy this property and feature "small step-size" or "shrinking step-size" converge to 1 with high probability or almost surely, respectively. These convergence results yield conditions for the learning models in B\"orgers, Morales, and Sarin (2004), Erev and Roth (1998), and Schlag (1998) to choose expected payoff maximizing actions with probability one in the long run.Comment: After revision. Accepted for publication by Journal of Economic Theor
    corecore