4 research outputs found

    Manifold Constrained Low-Rank Decomposition

    Full text link
    Low-rank decomposition (LRD) is a state-of-the-art method for visual data reconstruction and modelling. However, it is a very challenging problem when the image data contains significant occlusion, noise, illumination variation, and misalignment from rotation or viewpoint changes. We leverage the specific structure of data in order to improve the performance of LRD when the data are not ideal. To this end, we propose a new framework that embeds manifold priors into LRD. To implement the framework, we design an alternating direction method of multipliers (ADMM) method which efficiently integrates the manifold constraints during the optimization process. The proposed approach is successfully used to calculate low-rank models from face images, hand-written digits and planar surface images. The results show a consistent increase of performance when compared to the state-of-the-art over a wide range of realistic image misalignments and corruptions

    The low-rank decomposition of correlation-enhanced superpixels for video segmentation

    Get PDF
    Low-rank decomposition (LRD) is an effective scheme to explore the affinity among superpixels in the image and video segmentation. However, the superpixel feature collected based on colour, shape, and texture may be rough, incompatible, and even conflicting if multiple features extracted in various manners are vectored and stacked straight together. It poses poor correlation, inconsistence on intra-category superpixels, and similarities on inter-category superpixels. This paper proposes a correlation-enhanced superpixel for video segmentation in the framework of LRD. Our algorithm mainly consists of two steps, feature analysis to establish the initial affinity among superpixels, followed by construction of a correlation-enhanced superpixel. This work is very helpful to perform LRD effectively and find the affinity accurately and quickly. Experiments conducted on datasets validate the proposed method. Comparisons with the state-of-the-art algorithms show higher speed and more precise in video segmentation
    corecore