32,516 research outputs found

    Semantic Web Information Retrieval Based on the Wordnet

    Get PDF
    [[abstract]]Most of the existing textual information retrieval approaches depend on a lexical match between words in user’s requests and words in target objects. Typically only objects that contain one or more common words with those in the user’s query are returned as relevant. This lexical based retrieval model is far from ideal. In this research an approach to semantic based information retrieval of semantically annotated documents is presented. The approach operates based on: (i).natural language understanding, (ii).the Wordnet ontology, and (iii).the Semantic web standards. Not only the information is annotated and searched on a semantic basis, but also the retrieval process can be enhanced by the use of rich vocabulary knowledge in the ontology.[[notice]]補正完畢[[journaltype]]國外[[incitationindex]]EI[[ispeerreviewed]]Y[[booktype]]紙本[[countrycodes]]KO

    Semantic component selection

    Get PDF
    The means of locating information quickly and efficiently is a growing area of research. However the real challenge is not related to locating bits of information, but finding those that are relevant. Relevant information resides within unstructured ‘natural’ text. However, understanding natural text and judging information relevancy is a challenge. The challenge is partially addressed by use of semantic models and reasoning approaches that allow categorisation and (within limited fashion) provide understanding of this information. Nevertheless, many such methods are dependent on expert input and, consequently, are expensive to produce and do not scale. Although automated solutions exist, thus far, these have not been able to approach accuracy levels achievable through use of expert input. This thesis presents SemaCS - a novel nondomain specific automated framework of categorising and searching natural text. SemaCS does not rely on expert input; it is based on actual data being searched and statistical semantic distances between words. These semantic distances are used to perform basic reasoning and semantic query interpretation. The approach was tested through a feasibility study and two case studies. Based on reasoning and analyses of data collected through these studies, it can be concluded that SemaCS provides a domain independent approach of semantic model generation and query interpretation without expert input. Moreover, SemaCS can be further extended to provide a scalable solution applicable to large datasets (i.e. World Wide Web). This thesis contributes to the current body of knowledge by establishing, adapting, and using novel techniques to define a generic selection/categorisation framework. Implementing the framework outlined in the thesis improves an existing algorithm of semantic distance acquisition. Finally, as a novel approach to the extraction of semantic information is proposed, there exists a positive impact on Information Retrieval domain and, specifically, on Natural Language Processing, word disambiguation and Web/Intranet search.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Semantic component selection

    Get PDF
    The means of locating information quickly and efficiently is a growing area of research. However the real challenge is not related to locating bits of information, but finding those that are relevant. Relevant information resides within unstructured ‘natural’ text. However, understanding natural text and judging information relevancy is a challenge. The challenge is partially addressed by use of semantic models and reasoning approaches that allow categorisation and (within limited fashion) provide understanding of this information. Nevertheless, many such methods are dependent on expert input and, consequently, are expensive to produce and do not scale. Although automated solutions exist, thus far, these have not been able to approach accuracy levels achievable through use of expert input. This thesis presents SemaCS - a novel nondomain specific automated framework of categorising and searching natural text. SemaCS does not rely on expert input; it is based on actual data being searched and statistical semantic distances between words. These semantic distances are used to perform basic reasoning and semantic query interpretation. The approach was tested through a feasibility study and two case studies. Based on reasoning and analyses of data collected through these studies, it can be concluded that SemaCS provides a domain independent approach of semantic model generation and query interpretation without expert input. Moreover, SemaCS can be further extended to provide a scalable solution applicable to large datasets (i.e. World Wide Web). This thesis contributes to the current body of knowledge by establishing, adapting, and using novel techniques to define a generic selection/categorisation framework. Implementing the framework outlined in the thesis improves an existing algorithm of semantic distance acquisition. Finally, as a novel approach to the extraction of semantic information is proposed, there exists a positive impact on Information Retrieval domain and, specifically, on Natural Language Processing, word disambiguation and Web/Intranet search

    Contextual Media Retrieval Using Natural Language Queries

    Full text link
    The widespread integration of cameras in hand-held and head-worn devices as well as the ability to share content online enables a large and diverse visual capture of the world that millions of users build up collectively every day. We envision these images as well as associated meta information, such as GPS coordinates and timestamps, to form a collective visual memory that can be queried while automatically taking the ever-changing context of mobile users into account. As a first step towards this vision, in this work we present Xplore-M-Ego: a novel media retrieval system that allows users to query a dynamic database of images and videos using spatio-temporal natural language queries. We evaluate our system using a new dataset of real user queries as well as through a usability study. One key finding is that there is a considerable amount of inter-user variability, for example in the resolution of spatial relations in natural language utterances. We show that our retrieval system can cope with this variability using personalisation through an online learning-based retrieval formulation.Comment: 8 pages, 9 figures, 1 tabl

    NITELIGHT: A Graphical Tool for Semantic Query Construction

    No full text
    Query formulation is a key aspect of information retrieval, contributing to both the efficiency and usability of many semantic applications. A number of query languages, such as SPARQL, have been developed for the Semantic Web; however, there are, as yet, few tools to support end users with respect to the creation and editing of semantic queries. In this paper we introduce a graphical tool for semantic query construction (NITELIGHT) that is based on the SPARQL query language specification. The tool supports end users by providing a set of graphical notations that represent semantic query language constructs. This language provides a visual query language counterpart to SPARQL that we call vSPARQL. NITELIGHT also provides an interactive graphical editing environment that combines ontology navigation capabilities with graphical query visualization techniques. This paper describes the functionality and user interaction features of the NITELIGHT tool based on our work to date. We also present details of the vSPARQL constructs used to support the graphical representation of SPARQL queries

    Multimedia information technology and the annotation of video

    Get PDF
    The state of the art in multimedia information technology has not progressed to the point where a single solution is available to meet all reasonable needs of documentalists and users of video archives. In general, we do not have an optimistic view of the usability of new technology in this domain, but digitization and digital power can be expected to cause a small revolution in the area of video archiving. The volume of data leads to two views of the future: on the pessimistic side, overload of data will cause lack of annotation capacity, and on the optimistic side, there will be enough data from which to learn selected concepts that can be deployed to support automatic annotation. At the threshold of this interesting era, we make an attempt to describe the state of the art in technology. We sample the progress in text, sound, and image processing, as well as in machine learning

    Table Search Using a Deep Contextualized Language Model

    Full text link
    Pretrained contextualized language models such as BERT have achieved impressive results on various natural language processing benchmarks. Benefiting from multiple pretraining tasks and large scale training corpora, pretrained models can capture complex syntactic word relations. In this paper, we use the deep contextualized language model BERT for the task of ad hoc table retrieval. We investigate how to encode table content considering the table structure and input length limit of BERT. We also propose an approach that incorporates features from prior literature on table retrieval and jointly trains them with BERT. In experiments on public datasets, we show that our best approach can outperform the previous state-of-the-art method and BERT baselines with a large margin under different evaluation metrics.Comment: Accepted at SIGIR 2020 (Long
    • …
    corecore