83,565 research outputs found

    The Role of Inter-Controller Traffic for Placement of Distributed SDN Controllers

    Get PDF
    We consider a distributed Software Defined Networking (SDN) architecture adopting a cluster of multiple controllers to improve network performance and reliability. Besides the Openflow control traffic exchanged between controllers and switches, we focus on the control traffic exchanged among the controllers in the cluster, needed to run coordination and consensus algorithms to keep the controllers synchronized. We estimate the effect of the inter-controller communications on the reaction time perceived by the switches depending on the data-ownership model adopted in the cluster. The model is accurately validated in an operational Software Defined WAN (SDWAN). We advocate a careful placement of the controllers, that should take into account both the above kinds of control traffic. We evaluate, for some real ISP network topologies, the delay tradeoffs for the controllers placement problem and we propose a novel evolutionary algorithm to find the corresponding Pareto frontier. Our work provides novel quantitative tools to optimize the planning and the design of the network supporting the control plane of SDN networks, especially when the network is very large and in-band control plane is adopted. We also show that for operational distributed controllers (e.g. OpenDaylight and ONOS), the location of the controller which acts as a leader in the consensus algorithm has a strong impact on the reactivity perceived by switches.Comment: 14 page

    Energy-aware routing in multiple domains software defined networks

    Get PDF
    The growing energy consumption of communication networks has attracted the attention of the networking researchers in the last decade. In this context, the new architecture of Software-Defined Networks (SDN) allows a flexible programmability, suitable for the power-consumption optimization problem. In this paper we address the issue of designing a novel distributed routing algorithm that optimizes the power consumption in large scale SDN with multiple domains. The solution proposed, called DEAR (Distributed Energy- Aware Routing), tackles the problem of minimizing the number of links that can be used to satisfy a given data traffic demand under performance constraints such as control traffic delay and link utilization. To this end, we present a complete formulation of the optimization problem that considers routing requirements for control and data plane communications. Simulation results confirm that the proposed solution enables the achievement of significant energy savings.Peer ReviewedPostprint (published version
    • …
    corecore