63,654 research outputs found

    DeltaImpactFinder: Assessing Semantic Merge Conflicts with Dependency Analysis

    Get PDF
    In software development, version control systems (VCS) provide branching and merging support tools. Such tools are popular among developers to concurrently change a code-base in separate lines and reconcile their changes automatically afterwards. However, two changes that are correct independently can introduce bugs when merged together. We call semantic merge conflicts this kind of bugs. Change impact analysis (CIA) aims at estimating the effects of a change in a codebase. In this paper, we propose to detect semantic merge conflicts using CIA. On a merge, DELTAIMPACTFINDER analyzes and compares the impact of a change in its origin and destination branches. We call the difference between these two impacts the delta-impact. If the delta-impact is empty, then there is no indicator of a semantic merge conflict and the merge can continue automatically. Otherwise, the delta-impact contains what are the sources of possible conflicts.Comment: International Workshop on Smalltalk Technologies 2015, Jul 2015, Brescia, Ital

    A C++-embedded Domain-Specific Language for programming the MORA soft processor array

    Get PDF
    MORA is a novel platform for high-level FPGA programming of streaming vector and matrix operations, aimed at multimedia applications. It consists of soft array of pipelined low-complexity SIMD processors-in-memory (PIM). We present a Domain-Specific Language (DSL) for high-level programming of the MORA soft processor array. The DSL is embedded in C++, providing designers with a familiar language framework and the ability to compile designs using a standard compiler for functional testing before generating the FPGA bitstream using the MORA toolchain. The paper discusses the MORA-C++ DSL and the compilation route into the assembly for the MORA machine and provides examples to illustrate the programming model and performance

    A heuristic-based approach to code-smell detection

    Get PDF
    Encapsulation and data hiding are central tenets of the object oriented paradigm. Deciding what data and behaviour to form into a class and where to draw the line between its public and private details can make the difference between a class that is an understandable, flexible and reusable abstraction and one which is not. This decision is a difficult one and may easily result in poor encapsulation which can then have serious implications for a number of system qualities. It is often hard to identify such encapsulation problems within large software systems until they cause a maintenance problem (which is usually too late) and attempting to perform such analysis manually can also be tedious and error prone. Two of the common encapsulation problems that can arise as a consequence of this decomposition process are data classes and god classes. Typically, these two problems occur together – data classes are lacking in functionality that has typically been sucked into an over-complicated and domineering god class. This paper describes the architecture of a tool which automatically detects data and god classes that has been developed as a plug-in for the Eclipse IDE. The technique has been evaluated in a controlled study on two large open source systems which compare the tool results to similar work by Marinescu, who employs a metrics-based approach to detecting such features. The study provides some valuable insights into the strengths and weaknesses of the two approache

    Target Directed Event Sequence Generation for Android Applications

    Full text link
    Testing is a commonly used approach to ensure the quality of software, of which model-based testing is a hot topic to test GUI programs such as Android applications (apps). Existing approaches mainly either dynamically construct a model that only contains the GUI information, or build a model in the view of code that may fail to describe the changes of GUI widgets during runtime. Besides, most of these models do not support back stack that is a particular mechanism of Android. Therefore, this paper proposes a model LATTE that is constructed dynamically with consideration of the view information in the widgets as well as the back stack, to describe the transition between GUI widgets. We also propose a label set to link the elements of the LATTE model to program snippets. The user can define a subset of the label set as a target for the testing requirements that need to cover some specific parts of the code. To avoid the state explosion problem during model construction, we introduce a definition "state similarity" to balance the model accuracy and analysis cost. Based on this model, a target directed test generation method is presented to generate event sequences to effectively cover the target. The experiments on several real-world apps indicate that the generated test cases based on LATTE can reach a high coverage, and with the model we can generate the event sequences to cover a given target with short event sequences

    Analysis of Software Binaries for Reengineering-Driven Product Line Architecture\^aAn Industrial Case Study

    Full text link
    This paper describes a method for the recovering of software architectures from a set of similar (but unrelated) software products in binary form. One intention is to drive refactoring into software product lines and combine architecture recovery with run time binary analysis and existing clustering methods. Using our runtime binary analysis, we create graphs that capture the dependencies between different software parts. These are clustered into smaller component graphs, that group software parts with high interactions into larger entities. The component graphs serve as a basis for further software product line work. In this paper, we concentrate on the analysis part of the method and the graph clustering. We apply the graph clustering method to a real application in the context of automation / robot configuration software tools.Comment: In Proceedings FMSPLE 2015, arXiv:1504.0301

    Recovering Grammar Relationships for the Java Language Specification

    Get PDF
    Grammar convergence is a method that helps discovering relationships between different grammars of the same language or different language versions. The key element of the method is the operational, transformation-based representation of those relationships. Given input grammars for convergence, they are transformed until they are structurally equal. The transformations are composed from primitive operators; properties of these operators and the composed chains provide quantitative and qualitative insight into the relationships between the grammars at hand. We describe a refined method for grammar convergence, and we use it in a major study, where we recover the relationships between all the grammars that occur in the different versions of the Java Language Specification (JLS). The relationships are represented as grammar transformation chains that capture all accidental or intended differences between the JLS grammars. This method is mechanized and driven by nominal and structural differences between pairs of grammars that are subject to asymmetric, binary convergence steps. We present the underlying operator suite for grammar transformation in detail, and we illustrate the suite with many examples of transformations on the JLS grammars. We also describe the extraction effort, which was needed to make the JLS grammars amenable to automated processing. We include substantial metadata about the convergence process for the JLS so that the effort becomes reproducible and transparent
    corecore