4 research outputs found

    Path planning and obstacle avoidance for a robot with large degree of redundancy

    Full text link
    An algorithm to allow a redundant robot to avoid obstacles in its workspace is proposed. The task of path planning is formulated as a sequence of nonlinear programming problems. For each problem, the objective is to minimize the distance between the current location of the end-effector and some intermediate point along a desired path. Two penalties are added to the objective function to ensure that the robot is not colliding with an obstacle and that its links are intersecting one another. Inequality constraints describing the mechanical stops and limiting values for joint movements are incorporated. Obstacles are represented as polygons, which are composed of series of connecting line segments. Successive quadratic programming algorithm is used to solve the path planning problem. To save computation time, the algorithm activates the joints that are closer to the end effector. If activations of those joints cannot satisfactory complete the task, other joints will be sequentially mobilized until the desired path is reached. The proposed method is demonstrated especially efficient when the degrees of freedom are large

    Collision-free path planning for robots using B-splines and simulated annealing

    Get PDF
    This thesis describes a technique to obtain an optimal collision-free path for an automated guided vehicle (AGV) and/or robot in two and three dimensions by synthesizing a B-spline curve under geometric and intrinsic constraints. The problem is formulated as a combinatorial optimization problem and solved by using simulated annealing. A two-link planar manipulator is included to show that the B-spline curve can also be synthesized by adding kinematic characteristics of the robot. A cost function, which includes obstacle proximity, excessive arc length, uneven parametric distribution and, possibly, link proximity costs, is developed for the simulated annealing algorithm. Three possible cases for the orientation of the moving object are explored: (a) fixed orientation, (b) orientation as another independent variable, and (c) orientation given by the slope of the curve. To demonstrate the robustness of the technique, several examples are presented. Objects are modeled as ellipsoid type shapes. The procedure to obtain the describing parameters of the ellipsoid is also presented

    Path planning for robotic truss assembly

    Get PDF
    A new Potential Fields approach to the robotic path planning problem is proposed and implemented. Our approach, which is based on one originally proposed by Munger, computes an incremental joint vector based upon attraction to a goal and repulsion from obstacles. By repetitively adding and computing these 'steps', it is hoped (but not guaranteed) that the robot will reach its goal. An attractive force exerted by the goal is found by solving for the the minimum norm solution to the linear Jacobian equation. A repulsive force between obstacles and the robot's links is used to avoid collisions. Its magnitude is inversely proportional to the distance. Together, these forces make the goal the global minimum potential point, but local minima can stop the robot from ever reaching that point. Our approach improves on a basic, potential field paradigm developed by Munger by using an active, adaptive field - what we will call a 'flexible' potential field. Active fields are stronger when objects move towards one another and weaker when they move apart. An adaptive field's strength is individually tailored to be just strong enough to avoid any collision. In addition to the local planner, a global planning algorithm helps the planner to avoid local field minima by providing subgoals. These subgoals are based on the obstacles which caused the local planner to fail. A best-first search algorithm A* is used for graph search
    corecore