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ABSTRACT

A new Potential Fields approach to the robotic path planning problem is proposed

and implemented. Our approach, which is based on one originally proposed by

Munger [1] [2], computes an incremental joint vector based upon attraction to a

goal and repulsion from obstacles. By repetitively adding and computing these

"steps", it is hoped (but not guaranteed) that the robot will reach its goal. A

attractive force exerted by the goal is found by solving for the the minimum norm

solution to the linear jacobian equation. A repulsive force between obstacles and

the robot's links is used to avoid collisions. Its magnitude is inversely proportional

to the distance. Together, these forces make the goal the global minimum potential

point, but local minima can stop the robot from ever reaching that point.

Our approach improves on a basic, potential field paradigm developed by

Munger by using an active, adaptive field -- what we will call a "flexible" potential

field. Active fields are stronger when objects move towards one another and weaker

when they move apart. An adaptive field's strength is individually tailored to be

just strong enough to avoid any collision.

In addition to the local planner, a global planning algorithm helps the planner

to avoid local field minima by providing subgoals. These subgoals are based on the

obstacles which caused the local planner to fail. A best-first search algorithm A* is

used for graph search.

X PRi[CIR)ING PAGE BLANK NOT FILMED



CHAPTER 1

INTRODUCTION

1.1 Goal

This paper addresses the problem of reliable and efficient planning of a collision-

free path for a single chain multi-link robot. Our proposed algorithm plans free space

moves, i.e., we do not plan paths that incorporate contact motions.

One application of this work is to build truss structures which might be used

as space platforms, energy collectors, radiators, in space applications. An example

of such a platform is shown in Figure 1.1 [3].

We have tested our algorithm's path planning for two different robot con-

figurations. At the Center for Intelligent Robotic Systems for Space Exploration

(CIRSSE) the planner provides a general capability for free space path planning. It

is incorporated in a testbed which explores the integration of autonomous robotic

algorithms for space operations. At NASA's Langley Space Center, roboticists are

also working on the construction of space structures, but the emphasis is on robotic

assistance to a human's task. Here, the planner can relieve a busy human of a very

time consuming task.

The goal of our work may be stated as follows. Given:

• Robot's kinematic data,

1. Modified D-H Parameters,

2. Joint ranges,

3. Link models (planes and cylinders),

• Environment's obstacles,

• Joint angle vector for the Start position of the robot,

1
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Figure 1.1: Langley Structural Assembly Laboratory

• Position and orientation of the goal's end effector,

• Approach and departure offsets,

the program should produce a sequence of joint angles (called a path) which will be

kinematically correct, collision free, and accurate.

Our algorithm is based on a combination of previously proposed planning

methods. It is relatively fast and its plans are smooth. Unfortunately, the algorithm

is not guaranteed to find a solution, even if one exists, nor is its solution guaranteed

to be optimal (with respect to time, distance, or speed). The body of this work

strives to increase the planner's flexibility by addressing problems encountered by

the previous work. As a result, for relatively uncluttered spaces like those in the

two applications listed, acceptable solutions are found.

1.2 Organization of the Text

Chapter 2 reviews other paradigms of path planning. Then it summarizes Rolf

Munger's thesis project, from whose work this paper is directly descended. Details



of his work can be found in CIRSSE Report #91, and we suggest that his work

be kept at hand while reading this report. Chapter 3 discusses our improvements

to Munger's local path planner. Chapter 4 reports our modifications to his global

path planner. Chapter 5 discusses the algorithm's modular programming and input

files. Chapter 6 describes the CIRSSE testbed and the implementation of the path-

planner within that testbed. Chapter 7 describes the NASA Langley testbed, its

goals, and the planner's solutions. Finally, we conclude our discussion in Chapter 8

with observations on the results obtained by the planner and suggestions for future

improvements.

In the Appendixes, we list our program's files and develop a model for planar

objects.

1.3 Nomenclature

Here are some definitions which are used in this report.

DOF Degrees Of Freedom. For a single chain robot: the number of independently

moving joints.

redundant If a robot's DOF is greater than the size of the space it is expected to

work in, then it is redundant. Essentially it is more flexible because it has the

freedom to choee more than one configuration per pose.

pose The combination of the EE's position and orientation in cartesian space.

EE End effector, tool frame, gripper. The part of the robot which carries the tool

or payload.

Throughout the text, scalars are printed in italics, constants in ITALICS,

vectors in bold, and matricies in BOLD. Occassionally, key words will be empha-

sized by putting them in italics, these should be distinguishable from scalars by their



context. In discussing the software development, we will indicate UNIX commands

and file names by the typewriter font.



CHAPTER 2

SURVEY OF SOLUTIONS TO THE PROBLEM

2.1 Previous Solutions

In the early days of robotics, people planned the paths; robots just followed

them. Programmers would enter a sequence of joint values or cartesian points. Then

the robot would move, in order, to each knot point. Later, a "teach" method was

devised. While the operator drove the robot to the goal, he would save key positions

along the way.

These methods have drawbacks. If the goal, the starting point, or any obstacles

change after the knot points are saved, then the path would have to be re-entered.

These methods also take time and expertise.

Clearly, none of these approaches are desirable for our problem. We want an

autonomous, computer generated solution. Presently, most proposed solutions of

this path planning problem fall into one of two categories; global planners and local

planners.

2.1.1 Global Methods

Global methods consider the entire environment (or a large part of it). They

have an advantage over local solutions in that, they will usually find a solution, if

one exists. This comes, however, at the expense of computational complexity. In

fact, as the degrees of freedom of the robot increase, these methods may quickly

become intractable.

The global methods can be categorized as follows:

1. Search through Graphs of the Environment,

(a) Cell Decomposition Graphs.



(b) Visibility Graphs.

2. Divide, then Conquer the Environment.

3. Apply Calculus of Variations of Optimization.

These techniques are all linked in one key aspect: they require that the envi-

ronment be mapped onto the robot's joint space. For example: to a 6-DOF robot,

what was a point in cartesian 3-space "balloons" into a three dimensional object in

the robot's six dimensional joint space. Meanwhile the robot itself has shrunk to a

point. The problem is dramatically reduced from planning a path for a 6 dimen-

sional robot in 3 dimensional space to planning a path for a point in six dimensional

space, albeit with larger obstacles, see [5] [6] [7] [8]. Unfortunately, the environ-

meat's transformation requires inverse kinematics routines, which are notoriously

computation-intensive [9] [10] [11].

2.1.1.1 Graph Search Methods

Cell Decomposition methods divide the world into two types of space: free

and occupied. The free space cells are put into a graph, and the adjacent cells

are connected. Then a search algorithm is applied which finds the shortest path

from the "start" cell to the "goal" cell through connected cells. The specific search

algorithm used will depend on the type of optimality desired [12] [13] [14].

An alternate way of building the graph is to choose a sufficiently large set

of subgoals based on geometrical information. This method requires an algorithm

which determines visibility between subgoals. If visibility is established then the

subgoals are connected.



2.1.1.2 Divide and Conquer Method

Divide and Conquer methods try to minimize the number of transformations

of obstacles to joint space. First, a line is drawn in joint space between the start and

the goal. This is our starting path. Search along that line for obstacle collisions. If

one is found, then search in the hyperplane normal to the line for a point which is not

in occupied space. When such a point is found, draw a line to it from the last safe

point found on the original path. Repeat the search along this new line. Continue

by connecting the new point to the goal. By adding back recursion, this method will

always find a feasible path. It also has the advantage of only transforming points

along the path into joint space, see Weaver [4].

2.1.1.3 Calculus of Variations

Finally, there is a more mathematical approach which relies on the calculus of

variations to minimize a cost function which usually involves distance to obstacles

and path length. These methods are currently intractable with robots of high order

[2O].

2.1. Local Methods

Local solutions try to solve the "global" problem by repetitively finding in-

cremental changes of the current position which bring the robot closer to the goal.

Thus they concentrate only on what is "near" the current state, and ignore the

larger picture. These methods are computationally fast, but they may not find a

solution if the increments are poorly chosen. In addition, their solutions may not

be optimal.

The simplest local method is called the hypothesize and test method. The

algorithm generates a joint increment, "step", towards the goal, and if the step is

feasible, repeats. If not feasible, if a collision occurs, then it chooses a heuristic step
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(perhapsrandom) and continues. This hasnot led to great success.

A better method is called the potential field approach. While the goal exerts

an attractive force on the robot, obstaclesrepulse the robot. Each step is taken

along the gradient of this potential field. Since there is only one attractor, the goal,

it will have the globally minimum potential. Unfortunately, this does not rule out

the existence of local minima, which have null gradients and thus null steps [21].

There are many variations of the potential field method. The vortex field

method proposed by DeMedio and Oriolo [15] attempts to reduce the problem of

local minima by adding a cross product to the repulsion. A method to escape local

minima by brownian motion has been reported by Barraquand [16] to have success

with many difficult problems. Still others, propose minima-less potential fields based

on superquadric potentials, Khosla and Volpe [17] [18], and on star-shaped obstacles,

Rimon and Koditschek [19].

2.2 Munger's Hybrid Global and Local Path Planner

As mentioned earlier, this project extends the method proposed by Rolf Munger

[1]. This overview will cover the concepts necessary to understand our project's mod-

ifications. We will also note some strengths and weaknesses of his approach, but

save a complete discussion for Chapters 3 and 4 when we describe our modifications.

To summarize: Munger combines a global graph search over geometrically

chosen subgoals and a local potential field approach to determine the visibility be-

tween those subgoals. For speed, he uses a single representation for all objects in

the environment, the robot's links, the struts, and the world's obstacles.

His work can be divided into four areas:

• Modeling of the World

• Potential Field Path Planning (local)
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Figure 2.1: Swept Sphere Model for Links, Struts, and Obstacles

• Graph Search Path Planning (global)

• Software Implementation

2.2.1 Swept Sphere Model

All path planners need a model of the physical world to check for collisions.

Potential field path planners not only need to determine distances between models

in order to calculate potentials, but also need to know the direction from one model

to another in order to calculate the direction of repulsion.

Since the repulsions between n moving parts and themselves, as well as between

themselves and m fixed parts, need to be calculated at each step for n joints (i.e.

C)(n 3) + O(n 2 rn)), the calculation needs to be fast. Therefore, Munger chose a very

simple model called a swept sphere. Figure 2.1 shows the area swept out by a disk

along a line segment.

Note that one weakness of having a single simple model is that complicated

obstacles cannot be modeled accurately. Since he needs to guarantee a collision-free
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Figure 2.2: Example of Incremental Steps Forming a Path

path, the swept spheres must be made conservatively larger than the actual objects.

Therefore, on occasion, collisions will be reported which would not actually occur,

and feasible paths will not be found.

In Appendix A, we describe a plane model which helps to simulate more types

of world obstacles. Tornero and Hamlin [28] discuss a computationally fast modeling

method based on spherical objects.

2.2.2 Local Path Planning with Potential Fields

As previously mentioned, the local planner calculates a joint increment which

avoids obstacles and moves towards the goal. This increment is added to the current

joint position vector. Then we repeat the process. Thus a "path" is a list of joint

increments which if followed sequentially by the robot, moves it from the start to

the goal, see Figure 2.2. The dotted lines in the figure trace the path of the payload

strut for each step.

Munger's potential field method sets the joint vector increment, dq, sometimes
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called the "step", as follows:

dq = dqatt + dqrep + dqrange (2.1)

where

dqatt is the attractive force exerted by the goal. It is found by solving the system

of linear equations:

J dqatt "- dx (2.2)

where J isthe manipulator jacobian and dx ismade by stacking the cartesian

directionvector and rotation axis vector which _ es the current iteration's

gripper pose to the goal'spose. Since for redundant robots (> 6-DOF) this

linearequation isunderdetermined, there are,in general, many solutions.We

choose a solution which minimizes the cost function

cost(x)= xTQx

Q is a positive definite diagonal weighting matrix.

This standard optimality problem (see ref) is solved by introducing a la-

grangian vector A. The attractive force solution is

dqatt - Q-1jTA (2.3)

where A is found from

•IQ-X,ITA = dx (2.4)

Since jQ-XjT is square, this linear equation can be solved by gaussian elimina-

tion and back substitution. Instead of gaussian elimination, however, Munger

uses Householder Transformations, which, while slower, have better numerical

properties [22].
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Figure 2.3: Joint Limit Repulsion

dqrep is the collision repulsion vector. Since a joint affects all the links later in

the chain, the repulsion felt by each joint is equal to the sum of the repulsion

contributions of each later link. The repulsion contribution of each link is

the sum of the repulsions, 6q, between that link and every obstacle in the

environment. The repulsion between a link and a obstacle is

r.s (2.5)=

where C is a constant, r is the unit vector from the link to the obstacle, s is

the unit direction that the joint moves the link, and d is the distance between

the link and the obstacle. Note that this is an inverse square law much like

gravity or electro-magnetism.

dqrange tries to keep the joints within the physical limitations of a particular robot

by increasing rapidly when the current joint position nears its limit. The

repulsion is defined as shown in Figure 2.3. Through trim and error, x and y

were set to be .8qm_ and 10, respectively.
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Figure 2.4: Bad Step Sizes (A. oscillation B. collision)

Because the translationaland rotationalmotions of the robot do not neces-

sarilyfinishat the same time, Munger also provides a method to reduce vectors to

the null space of the manipulator jacobian's translationalor rotationalpart (top or

bottom half,respectively).Ifdq isin the nullspace of J then itdoes not affectthe

pose of the gripper dx, but ifthe robot is redundant, it can stillmove some links

of the robot away from obstacles. This iscalled "self-motion'. Working with the

null space of the top or bottom of J allows the goal position to be held while the

robot finishesrotating or for the goal orientationto be held while the robot finishes

translating,respectively.

There are three major weaknesses with Munger's solution. First,there are

many "magic" numbers which need to be balanced with one another by trialand

error.Second, the iterativenature of the plan produces discretesteps which, iftoo
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large, can cause oscillations, collisions, or joint overruns (see Fig 2.4). Finally, there

may be places where Ildqll approaches zero, trapping the robot in a local minimum.

Taken together, these problems make the algorithm inflexible, prone to failure,

and slow. The majority of this project goes towards remedying these ailments.

2.2.3 Graph Search Around Obstacle Corners

Munger uses a global algorithm to assist his potential field path planner.. He

employs the graph search method. First, a list is created which includes the starting

location and the goal. Then since he deals with tetrahedral trusses, subgoals are

put at the corners of tetrahedra. These subgoals are likely to position the robot to

avoid the tetrahedra.

Next, all the nodes in the list are connected and each connection is given

a weight which is the lower bound of the cost to traverse that connection, i.e., the

distance (plus an angular rotation factor). Now, any search algorithm can be applied
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to find a path through the connections from start to goal. The A* algorithm was

chosen for its speed in finding the lowest weighted path [23] [24].

The A* algorithm is applied, and a trial list of connections is generated.

Clearly, since all nodes are connected, the goal and the start axe connected, and

this trivial connection will always be the first solution tried.

Each connection in the list must be tested, in order, for visibility by the local

path planner. If the local planner cannot find a path for the connection, then that

connection is labeled _invisible', and A* will no longer include it in subsequent

solutions.

Before a connection is considered invisible, however, the local planner is given

four opportunities to find a feasible path for it. This includes inverting the goal's

orientation of symmetric payloads and rotating the payload the long way around
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the axis of rotation (see Fig 2.6).

Applying global search in this way greatly expands the ability of the local

path planner, but the global search is only as good as the choice of subgoals. If the

subgoals have bad orientation or approach directions or are near too many obstacles,

they may be invisible. If there are too many invisible subgoals, the algorithm will

be very, very slow.

2.2.4 Software Implementation

The structure of the software was left essentially unchanged except for the

interface with CIRSSE and will be explained fully in the chapter on software, Chap-

ter 5, and the chapter on CIRSSE, Chapter 6.



CHAPTER 3

LOCAL PATH PLANNER

This chapter is the start of the original work done for this project.

3.1 Pseudo-Potential Fields

The simplicity of Equation 2.1 is deceptive. In nature, forces like gravity are

applied continuously in time, but our pseudo-potential fields are applied discretely,

in steps. As a result, oscillations, collisions, and joint-range overruns can occur from

one step to another because the steps are not well suited to the repulsion field. In

addition, the repulsive field treats objects as point "masses" located at their points

of closest approach, instead of as distributed masses over their entire volume. This

can cause "rocking" when one point on the object is pushed away only to bring

another point on the same object too close to the obstacle; resulting in a back and

forth motion like a see-saw.

We have made four improvements to Munger's path planner: more robust

path finding, shorter computation time, more accurate goal pose acquisition, and

smoother paths.

3.2 Robust Path Planning

3.2.1 Resolving Singularities

To obtain dqatt, Munger used the jacobian to transform a cartesian attrac-

tion vector to a joint space vector. In solving the optimality problem that arises,

(Section 2.2.2), he failed to account for the robot's singular positions, i.e., where

the jacobian looses full rank; where there exists a vector in cartesian space which no

joint space vector can effect. Mathematically: if rank(J) < 6 then rank(JQJ T) < 6

17
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which implies that jQj'r is singular. If jQjT is singular, we cannot solve Equa-

tion 2.4 for A. If we cannot solve for A, then we cannot solve Equation 2.3 for dqatt.

Thus, the planner does not move towards the goal; it fails.

Our solution is to always make the jacobian full rank. First, we check the

jacobian's rank. If it is degenerate, we delete rows of the jacobian until it attains

full rank. Since the new jacobian Jnew is fat (more columns than rows) and Q is

also full rank (positive definite), TJnewQJnew will be full rank. Finally, we can solve

for dqatt as before.

dqatt algorithm:

1. Using Munger's algorithm, solve for dqatt

2. If his algorithm returns without error then quit.

3. Else, apply gaussian elimination on Equation 2.2 and obtain:

J'dq = dx' (3.1)

where

I

dx t

0

0 0

J_,2 "t• •• ,}I,DOF

"..

". j-,..... 3n,DOF

0 ... 0

Let n be the rank of the jacobian, dxl be n x I, and dx2 be (6 - n) x I.

4. Drop dx2 and the nullrows of J' to obtain a new formula,

J" dq = dxl (3.2)
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5. Since J" is full rank, j-Qj,,T is also full rank. Solve for dq by using Munger's

minimum norm linear equation algorithm.

--end of algorithm--

In step #3, we use a standard gaussian elimination with scaled partial pivoting

algorithm which can be found in many texts on computational mathematics [26].

Note: if dx_ is non-zero, then it represents an unrealizable component of the

desired direction dx (see Figure 3.1).

By making the j_obian full-rank, the planner no longer fails whenever the

robot is at or near a singular configuration. This greatly improves performance

since redundant robots have many singularities throughout their workspace.

The planner will still fail, however, when the desired direction and the singular

direction are precisely the same. In such a case, dxl will be a null vector, and the

algorithm will return a null vector for dqatt. Not only is it very unlikely for the

vectors to coincide exactly, but even if they do, the other components of dq, dqrep

and dqr_age, will probably push the robot away from this situation. We have not

encountered this problem in our experiences with the planner, but for less flexible

robots (example: those with 6-DOF) this problem may occur more often. A possible

solution would be to choose a small random dqatt whenever the dqatt algorithm

fails.

This rank reduction step is fairly complicated, O(nS), where n = DOF, but

since the DOF of most manipulators is fairly small, the time consumed is not no-

ticeable on a per iteration basis.

3.2.2 Joint-Range Excursion

Any real robot's joints have constrainted ranges of motion. If the planner's

planned path does not stay within these limits then its path is not considered fea-

sible.
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Munger's solution proposed an inverse square law repulsive force near joint

limits. There are two problems. First, if the repulsion constant is too small, then the

joint can go out of range. Second, if the repulsion is too large, then the "flexibility" of

the robot's joints will be lowered, and more local minima will be created. Moreover,

there is no single setting which will be "just right" for all cases.

We solved this problem by combining a small joint limit repulsion with an

algorithm for "freezing" any joint which exceeds its limit.

Joint Range Freezing Algorithm:

1. Calculate dq from Equation 2.1.

2. Add dq to the current joint vector.

3. If this new joint vector is in the robot's range, then quit.

4. Else, if the i th joint is out of range, then zero the i th column of the jacobian,

the i th column of dqrep and the i th column of dqrange.
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5. Re-solve dqatt using the dqatt algorithm.

6. Calculate dq from Equation 2.1 using the new dqatt, dqrep, and dqrange.

7. Goto Step #2

--end of algorithm--

re-solve Equation 2.2 for dqatt, add dqrep and dqrmage (saved from the first

iteration), and repeat. By zeroing a column of the jacobian, Step #4, the joint

corresponding to that column has no effect on the end effector's pose. Then, by

virtue of finding the minimum cost solution, we can guarantee that the i th element

of dqatt will be zero. (Note: the i th elements of dqrep and dqrmage must also be

zeroed).

This algorithm completely eliminates the problem of joint overruns while main-

taining good flexibility. Figure 3.2 shows a typical case where joint overruns might

occur. The wrist, joint #3, is strongly attracted to the goal because it has such a

strong effect on the EE pose. As a result it has reached its limit and must be frozen.

The goal-ward rotation, however, is continued by the other joints, which take on

more of the burden of rotating. Finally, the wrist is freed to move again when the

goal no longer attracts it against its limit.

3.2.3 Active, Adaptive, Flexible Potential Fields

This section proposes fundamental changes to the repulsion field calculation

in order to minimize the number of failures due to local minima.

Munger proposed a "static" repulsion field. It relies on the constant, C, in

Equation 2.5, to scale the repulsion field of obstacles with respect to the attraction

field of the goal. This "universal constant" does not adjust to varying attractive

field strength nor to large clusters of obstacles. An "adaptive" repulsion would make

itself only as large as was necessary to stop a collision.
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His proposal is also "passive". The repulsion between objects is the same

whether they are moving towards or away from one another. Hence, objects which

are already moving apart avoid each other unnecessarily. An "active" scheme re-

pulses more when objects are moving towards one another and less when they are

moving apart.

Our active repulsion selects a strong adaptive repulsion if a link is moving

towards an object, and it chooses a weak static repulsion if they are moving apart.

How does it determine relative motion? Referring to Figure 3.3, r is the direction

vector from the stationary obstacle to the moved link. s is the direction that Linkj

moves when Joint_ rotates in the positive right hand sense about its axis z|. r and

s are unit vectors. (While this figure shows a revolute joint, our proposed method

works equally well with prismatic joints, with only minor modifications.)
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Obstacle Repulsion Algorithm:

1. Let j = DOF; let dq = dqatt; let dqrep equal the null vector.

2. Calculate r and the distance between Linkj and Obstacles.

3. Let i = 1.

4. Calculate s for Linkj and Jointl .

5. If sign(sign(r, s)sign(dqi)) is non-negative then the link is moving towards

the obstacle; calculate dq,,p_ using passive repulsion, from Equation 2.5:

cr.S
dq_p, #-- dqr,p, + d--T- (3.3)

6. Else, the links are moving together; calculate dqr,p, using adaptive repulsion,

as follows:

dq,,_, _ dq_,p, + (THRESHOLD) 2r" sldqil (3.4)
an

With the addition of the dqi term, the repulsion becomes normalized about

THRESHOLD. If d < THRESHOLD and the link is moving directly at

the obstacle, i.e., It-s I _ 1, then Idq_,,I becomes greater than the attraction

force, Idqil, and the links move _part. Compare this adaptive force with the

static force in Figure 3.4.

7. Let dqi _ dqi + dq,,v,. This keeps the joint increment current for future

calculations of the adaptive force.

8. If i < j then let i _ i + 1; goto Step #4.

9. Until every obstacle has been tested, increment k and goto Step #2.

10. Let j _ j - 1; goto Step #2.
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11. report dqrep.

--end of algorithm--

It is difficult to quantify the improvement due to flexible fields. Qualitatively,

however, there are three visible improvements to the planner. Figure 3.5 shows a

virtue of the active nature of our flexible field. Since the link is moving away from

the obstacle, our flexible field actively selects the low, passive repulsive force, and

the link moves directly towards the goal. If a passive field were used, the link would

unnecessarily avoid the obstacle.

A second improvement is shown in Figure 3.6. Since the adaptive field repulses

only as much as necessary to keep the link farther than the threshold distance, when

the link is between two obstacles, it does not oscillate, rather the repulsions adapt

to keep the link where it is. With the static field, the closer obstacle's repulsion

is stronger, so the link moves towards the farther obstacle, then this repeats in an

oscillatory manner.

The best improvement is also difficult to quantify; fewer collisions occur. A

well chosen threshold distance can make collisions very rare. Still there are some

situations where collisions will occur no matter how large the threshold is made.
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For example; since the repulsions are calculated for one joint at a time, two joint

moves, each of which is safe alone, can cause a collision when combined, Figure 3.7.

Figure 3.8 shows a situation where a lumped mass obstacle is insufficient to avoid a

collision. Since the link's desired direction is normal to the obstacle's closest point,

r. s is zero. The repulsion is zero; the link collides with the obstacle.

3.2.3.1 Clusters

When there are too many obstacles grouped closely together, their overlapping

repulsive fields can become too large for the robot to approach. If this "cluster" is

near the goal, then the planner may report a local minimum even though there is a

direct, feasible path to the goal.

We solve this problem by reducing groups of obstacles to a single "cluster",

having a single repulsive field. Figure 3.9 shows two obstacles being combined into

and replaced by one cluster. The Cluster Formation Algorithm, which describes

how the environment's obstacles are converted into clusters, is called in place of

Step #2 of the Obstacle Repulsion Algorithm. Therefore, clusters are defined for

each individual link and dissolve after each step is calculated. They are always
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Figure 3.9: Cluster Formation from Objects

"up-to-date', and thus, do not significantly diminish the resolution of the obstacle

models.

Cluster Formation Algorithm:

1. Choose any two objects, i and j, from the environment.

2. Find the vectors from the current link to objects i and j. Call these vectors a

and c, respectively.

3. If

a.c

Ilallllcll
> 1 - SMALL ANGLE. (3.5)

then the pair (i,j) is a cluster; replace objects i and j with a new object i

(same name) with the following characteristics:

(a) The direction of the new object is b.

b = (sizei) a + (sizej) c
sizel + sizej

where size has been defined in previous iterations as follows:

(3.6)
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(b) Initially, the size of all objects is 1. New objects follow the formula:

sizei _ sizei + sizej.

For example: if a cluster formed from two objects (as in Figure 3.9) com-

bines with another individual object, then the resulting cluster (object)

has a size of three.

(c) Let Ilbll = min(llall, Ilell). The new object's distance is as close as the

nearer of the two original objects.

4. Repeat steps #2 and #3 for all remaining object pairs i and j.

5. If any clusters were found then repeat steps #2-4 (in order to group clusters

together into bigger clusters).

6. Report remaining objects' (clusters') direction vectors and distances to the

Obstacle Repulsion Algorithm.

--end of algorithm--

The advantage of using the size weighting system is that it eliminates the

pathological case where a long string of obstacles is reduced to a single, unrepresen-

tative cluster. The weighting factor essentially provides a "center of mass" for the

cluster.

Clustering greatly improves the planner's performance in crowded environ-

ments. Munger's planner failed whenever too many obstacles were near the goal.

His planner avoided the obstacles so well that the robot never reached the goal it-

self. Clustering completely eliminates this problem. A cluster of obstacles can be

approached as closely as a single obstacle: to within THRESHOLD meters.

A problem does arise, however, when too many obstacles are loosely called

clusters. Figure 3.10 illustrates what may happen if SMALL ANGLE is made too

large. Obstacles a, b, and c form the cluster abe which does not adequately repulse

the link from obstacle a. Thus a collision with a occurs on the next iteration.
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The cluster'stemporary nature, Which makes itaccurate,also slows down the

planner. Calculating clustersiscomplicated. Ifn is the number of links and m is

the number of obstacles,then the average complexity isO(nm2). But the worst case

complexity (due to truly staggering bad luck) isO(nm4). Clearly,we must keep the

number of obstacles m low.

3.2.3.2 Overall Repulsion Control Factor
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If a goal is within the adaptive distance threshold of any obstacle, then the

end effector cannot reach that goal since the adaptive repulsion is larger than the

goal attraction. This problem was solved by modifying the joint increment equa-

tion, Equation 2.1, with an overall repulsion control parameter, p. The new joint

increment equation is

dq = dqatt + p (dqrep 4" dqrtmge) (3.7)

p is defined as shown in Figure 3.11. It is zero whenever the EE pose is near

the goal or the start so that obstacles near the goal and start can be approached.

It has a value of one (full repulsion) during the middle of the path for maximum

obstacle avoidance. Finally, there are two transition periods which turn on and off

the repulsion fields. The slopes of the transitions are inversely proportional to the

minimum distance between any obstacle and the robot.

This factor may allow some collisions near the endpoints of the path, but this

small price gains us the ability to reach goals which are also obstacles; for example,

when we wish to pick up a strut.

3.2.4 Variable Step Size

The norm of the joint increment dq determines the size of the step. Munger's

step size is set arbitrarily to a constant value. If the constant is too large, Figure 2.4,

oscillations or collisions result. If the constant is too small, then the algorithm will

be slowed by unnecessary iteration computations.

A simple solution is to reduce the maximum step size when the robot is near

obstacles.

Step Size Algorithm:

1. Calculate dq step.
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2. Calculate the maximum step size, as a function of the repulsion control p:

' max step size = (MAX SIZE- MIN SIZE) + p (MIN SIZE) (3.8)

3. If Ildqll > max step size then

dq

dq, ildqllmax step size. (3.9)

4. If any robot's link is closer than MINIMUM meters then

dq
dq÷ FACTOR (3.10)

where FACTOR is currently equal to 2.

--end of algorithm--

Thus when p is zero, the step size is at a minimum, and when p = 1, the step

size is at its maximum. The logic is that when there is full repulsion, we can be

confident that moving fast will not cause a collision, but when there is less repulsion,

we should be more cautious and move slower.

Figure 3.12 shows the typical solution to the problem. The reduced step size

gives the repulsion a chance to act on the path, making it smoother. Not all cases

are handled quite so well; if the threshold is too small, a max step size step can

jump over the MINIMUM distance region and cause a collision.

3.3 Faster Path Planning

Because the local path planner is used to determine visibility between global

subgoals, it is imperative for the local planner to be fast.

3.3.1 Standard Stopping Criteria

First, we implemented two standard stopping criteria for iterative processes.

The simplest counts the number of steps taken and if greater than max count, stops.
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This is a brute force cure for endless loops. The second criteria tests for movement.

If the step size l[dql[ drops below some minimum threshold, then the robot is not

moving, and we stop. Since, through self-motion, redundant robots can have large

[[dql I steps without any movement at the gripper, we also test the change in gripper

pose. If it becomes too small, we stop.

3.3.2 Oscillation Detection

Another condition which should cause the local planner to quit is a path with

oscillations at the gripper pose. These paths are undesirable because they are hard

for the robot's motor controllers to handle.

We define oscillations according to the path of the end effector (Figure 3.13).

First, we choose a range of n steps to be tested. Then we call the Oscillation

Detection Algorithm after each iteration of the local planner. If oscillations are

detected then we report a local planner failure.
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Oscillation Detection Algorithm:

1. Store the current end effector's pose as pose;.

2. Calculate and store the distance from pose;_1 to pose; as di-1,;.

3. Calculate di_,_+a.i,the straight line distance from pose;_,+_ to pose;.

4. Calculate the path length traversed by the end effector in the last n steps,

n-I

path lengthi = Y]_ di-j,i-j+l
j_l

(3.11)

5. If d_-'t_" 1path l_,_gth, < Z' then the end effector has not moved significantly within the

last n steps; report oscillations.

6. Else, report no oscillations.

--end of algorithm--

3.3.3 Ignore Obstacles

The more obstacles there are in the environment, the slower the planner. Speed

can be improved by ignoring some obstacles. Before calculating the repulsion be-

tween any two objects, and even before putting an object into a cluster, the distance

between the objects is compared to a threshold, and if that distance is larger than

the threshold, then the pair of objects is considered too far apart to significantly

effect one another, and they are dropped from further consideration.

This simple method greatly improves the speed of the algorithm in crowded

environments. Clusters, Section 3.2.3.1, would be too time consuming without ig-

noring distant obstacles.
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3.4 Accurate Goal Pose Acquisition

3.4.1 Step Size Conditioning

Obtaining both positional and rotational accuracy with an iterative algorithm

is a convergence problem. Consider Figure 3.14 which shows a strut payload moving

towards its goal. If the step size, dqi, is too large, the goal will be overshot (as

indicated by the dotted line).

To remedy this, we scale down the step sizes. Within the local planner's

iterative loop: after dq is calculated but before it is added to the current joint

vector (between steps #1 and #2 in Joint Range Freezing Algorithm), we call the

Step Size Conditioning Algorithm. But first, let us define a "distance measure" by

adding the cartesian distances traveled by each end of the strut and dividing by two.

This distance measure measures both cartesian distance and rotation, and thus, it is

a measure of pose. Using this new measure, let us define distancei_l, in Figure 3.14,

to be the distance traveled by step i - 1, and d to be the distance from step i to the

goal.
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Step Size Conditioning Algorithm:

1. Calculate d and distancei_l.

2. If d < distancei_a, then condition the i th step according to the ratio, d/distancei_l.

Let

d

dcll = dq|-a distancei_l" (3.12)

--end of algorithm--

Note that we assume that linearly reducing the step size will linearly reduce

the distance measure. Near the goal, this is a good assumption because we are

dealing with very small joint increments.

With this improvement, we have been able to obtain fine accuracy (to within

mm) at the expense of more iterations. While the convergence properties of our

conditioning algorithm cannot be guaranteed, it does appear to be linear in nature,

i.e., when the position is required to be ten times more accurate, the a3gorithm

requires ten times as many iterations to achieve that accuracy.

3.4.2 Goals and Subgoals



Figure 3.16: Choosing the Correct Report Size can be Critical

In the interest of speed, it would be advantageous to discriminate between

our "real" goal, and other "subgoals'. A subgoal such as those produced by the

global planner from geometric information does not need to be attained with the

same level of accuracy as the real goal, where we may need to do part insertions,

visual inspections, or other detailed work. Thus, we adjust the stopping criteria for

a successful plan accordingly (in Figure 3.15 alpha > beta and d > D).

3.5 Smoothing

Our step size conditioning may leave the output path with very closely spaced

steps and small oscillations. Trajectory generators and motor controllers do not

respond well to these types of paths. We take a particularly simple one; we accu-

mulate steps until the sum of their norms exceeds a threshold. Then we report that

as one step. We also vary the size of the threshold in proportion to the minimum

robot-obstacle distance to minimize the possibility of collision.
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As can be seen in Figure 3.16, while this can smooth the path, it can also lead

to undetected collisions. Therefore, the threshold must be chosen carefully (small).

One better method to smooth paths is called string-tightening. This method

averages the changes between steps (see Weaver [4]).



CHAPTER 4

GLOBAL PATH PLANNER

4.1 Sending Different Options to the Local Planner

The local planner is given four chances to establish visibility between inter-

mediate goals. We have added two control options for the local path planner. The

first option sends two labels: one describes the goal as either the real goal, or as

an intermediate goal, and the other describes the starting location as the original

starting location, or as an intermediate one. We have already described how the

local planner will change the success criterion according to the type of goal in Sec-

tion 3.4.2. It will also only plan lift-off and approach offsets if the start and the

goal, respectively, are real.

The second option controls the magnitude of the lift off and goal approach

offsets.

4.2 More Subgoals

The global planner is only as good as the choice of intermediate goals, or sub-

goals. If there are too many subgoals, the planner will be slow, in fact, O(rrt _) where

m is the number of subgoals. But if there are too few subgoals, then the planner

may not find any solutions. Munger placed subgoals at the corners of tetrahedra,

and we have added more subgoals near the edges of triangles (see Figure 4.1).

Through experience, however, we have found that these geometric subgoals

have some undesirable properties. For every strut in the environment there is one

subgoal: too many when building large truss structures. Another problem is that the

subgoals are placed without regard to either the final goal or the starting position.

Often these subgoals are invisible.

41
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We have devised one solution for both problems. After every failure of the local

path planner to establish visibility between nodes, we create two subgoals around

the obstacle which was closest to the robot when the local algorithm failed. This

obstacle probably caused the failure, so it needs to be avoided. The two subgoals are

placed offset from the obstacle (in this case a strut, see Figure 4.2) along the normal

to the plane defined by the obstacle's axis and the line connecting the obstacle to

the center of the goal. See Chapter 8 for examples of this type of subgoal's success.

While this type of subgoal produces two subgoals per obstacle, it only does

so for those obstacles from which we have encountered interference. The worst

case is worse (O(4rn2)), but the average case will have fewer subgoals (rn will be

significantly reduced).
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CHAPTER 5

SOFTWARE IMPLEMENTATION

The algorithms described in the previous chapters have been implemented in C

running under UNIX on CIRSSE's Sun 3/60, Sun 4/350, and SPARC workstations.

The algorithm can run on its own or as a client within a distributed application in

the CIRSSE Testbed Operating System (CTOS, see Chapter 6). In either case, the

algorithm is the same except for a few modifications in the interfacing procedures.

The algorithm is portable to other computer systems with the exception of the

CTOS interface and the graphics interface. Since the basic structure of the software

has not changed, this chapter repeats many of Munger's descriptions. 1

5.1 Programming Concepts

We divide the code into 19 modules for organization, compiler friendliness, de-

bugging, and reprograrnming. Each module consists of a C code file (filena_e. c)

and a header file (filena_e.h). This division is a way to hoard information "pri-

vately" within a module while sharing "public" information with other modules.

The code files contain the private constants, type definitions, and variables, as well

as the public and private procedures. The header files contain public constants,

type definitions, variables, and procedure declarations. Within each header file is a

complete description of its public procedures, sufficient to enable a user to use those

procedures.

5.1.1 Module Hierarchy

If module A uses public information in module B, then module A is said to

be "higher" in the program hierarchy. There are two degrees to which module A

1Sections marked with a" are either paraphrased or taken directly from Munger [1], pp. 44-66.
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can use module B. If A's code file #includes B's header file, then A has access to

all of B's public features. For example, A can call public procedures defined in

B. However, if a procedure in A returns a value whose type is defined in B, then

A's header file must also #include B's header file so that B's type definitions are

available to modules which wish to use A. This causes a problem, however, if a

module which includes A's header file also includes B's header file: B's header file

will be included twice. To avoid this, we surround every header file's code with a

unique labeling structure that ensures that every header file is included only once.

#ifndef UNIQUE_MODULE_LABEL

#define UNIQUE_MODULE_LABEL

module's constants, typedefs, declarations

#endif

Figure 5.1 shows the path planner's complete module hierarchy. Solid lines

represent normal links and dashed lines represent an inclusion of header file in header

file. The arrows point from the included file to the including file.

5.1.2 Variables

In order to keep modules as separate as possible, program-wide global variables

are banned. Although global variables are used extensively within modules, they

are not shared with other modules (i.e. they are static). Thus data transfer

between the modules is carried out solely in the procedure arguments. There are,

regrettably, two exceptions to this rule: gsmTid and ppTid are task identification

numbers used by CTOS to facilitate message passing and are needed in many path

planner modules (wherever CTOS is used) so these were given global scope.
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5.1.3 Data types*

In order to keep strictcontrolover public data types,user modules axe allowed

only limited access to other modules' public data types. Users are not permitted to

directlyaccess data items within another module's public data type. Controlled ac-

cess,however, isprovided in the form of public procedures in the supplier'smodule.

For example, a typicaldata type may be defined in the header file:

t_edef struct complex

{
double real ;

double imag;
} COMPLEX

This could represent a data type for a module which implements operations

on complex numbers. As a convention, allinstancesof data types printed in allup-

percase lettersaxe allocatedin heap memory. These data types allhave procedures

to create new instances and procedures to killold instances:

COMPLEX *New_Complex ()

void Kill_Complex (COMPLF,X *x)

Other procedures axe provided asneeded, such as (forour example) Set, Add,

Sub, Display, etc.. Since other modules axe not allowed to access the structure

directly,statements likethe following,while perfectlylegalin C, are not allowed:

c->imag = 2.0;

x = c->real;

A procedure that adds two complex numbers 4 + 5i and 2 - 8i would look

something like:
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#include "complex.h"

void Example ()

{

COMPLEX *a, *b, *c;

a = New_complex ();

b = New_complex ();

c = New_complex ();

Set_Complex (a, 4.0, 5.0);

Set_Complex (b, 2.0, -8.0);

Add_Complex (a, b, c);

Display_Complex (c);

Kill_Complex (a);

Kill_Complex (b);

Kill_Complex (c);

}

/* set a to 4+5i */

/* set b to 2-8i */

/* add a and b and put the result in c */

/* print the result */

/* remove instances from heap memory */

It may seem that this requires alot of extra effort. However, the idiom is easily

mastered. A little extra sweat now is rewarded with greater speed, and later, when

a data type needs to be changed, only the owning module needs to be updated.

5.1.4 CIRSSE's Make

All the program's modules can be compiled using a CIRSSE version of the

UNIX utility make called cmlmf. By having the dependency tree information and

checking the time/date stamp on everyfile, cmlmf can decide which files need to be

recompiled and linked. The information on dependencies resides in a file called

Imakefile which reflects the hierarchy shown in Figure 5.1. See CIRSSE Re-

port #128 and Tech Memo #16 for details on the use of cmlmf (see Appendix A for

an example Imakefile).

5.1.5 Compiler Flags

Within "usrFlags.h" are four #define'd flags which allow us to use the same

code for both UNIX and CTOS demonstrations. By bracketing system dependent
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code in #ifdef FLAO ... #endif pairs, code can be hidden and unhidden by

undefining or defining, respectively, the FLAO.

The flags and their effect, if defined:

CTOS_ACTIVE Indicates that we are running as part of a CTOS application.

Activates the proper display devices.

PREVIEWER Only defined if CTOS_ACTIVE is defined. Indicates that we are

running as part of a larger demonstration which handles graphics on its own.

We are only responsible for the bare minimum: the output path and any error

messages.

DIAGNOSTICS Displays a full array of state information with every step.

MAN_IN_LOOP If not in PREVIEWER mode, query the user for acceptability

of paths found; if not acceptable, plan another path.

5.2 The Modules

Here, we describe each module of the program starting from the bottom to the

top of the hierarchy. The same descriptions can be found in the modules' header

files.

5.2.1 The "usrFlags" module

This header file is included into the global module's header file (so it is included

in all the modules). It contains four flags which specify compile time options (see

Section 5.1.5).

5.2.2 The "global" module"

This module is included by every other module of the program. It includes

the two standard header files stdio .h and aath. h, defines the boolean data type
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and provides standard procedures for displaying error conditions on the screen. It

also contains a customized version of the atan2 function.

5.2.3 The "spec" module"

This module provides information about the machine the program is running

on, including the availability of a graphics screen and whether or not the screen has

color capability.

5.2.4 The "lst" module"

The list module provides a way of putting any type of data into a sequential list.

A list consists of a main list data structure (LIST) and a number of list elements

(LIST_EL) representing the data elements. These list elements are dynamically

allocated, so no information about the list's length is needed at compile time. This

is the main advantage of using this module over using a simple array.

The LIST_EL data type contains a pointer "next" pointing to the next LIST_EL

in the list and a pointer "data" that points to the listed data element, thus a simple

forward chained list is implemented. However, this chaining mechanism is totally

hidden in the module, so the fact that the user's data types must be stored in a list

has no impact on their internal structure.

Lists are built by adding elements to either the beginning or the end of the list.

The most common way of reading a list is by sequential access using the procedures

"Get_First" and "Get_Next'.

This module also provides random access, but since this procedure must go

through the chain of list elements, the access is slow for long lists. To improve

random access performance, the module allows the creation of an index array. This

regular C array (in a contiguous block of memory) contains pointers to the data

elements, thus array-like list access becomes possible. However it must be noted
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that every changein the list causedby adding or deleting an elementautomatically

destroys the index, so indexed list accessis only possibleif the list is not changed

after the index is created.

5.2.5 The "stack" module"

The stack module provides a way to organize any type of data in a stack (LIFO

- buffer). Every data entry is represented by an instance of STACK_EL. This data

structure holds a pointer to the user's data and a pointer to then next instance.

Access to the stack is accomplished by the procedures "Push" and "Pop". The

procedure "Read_Top" reads the latest entry on the stack without removing it.

5.2.6 The "vector" module"

The vector module provides three data types:

• column vector with 3 elements

• 3x3 matrix

• 4x4 homogeneous matrix with 4th row omitted (assumed [0 0 0 1])

The elements of a vector are doubles, the columns of the 3x3 matrix are vectors and

the homogeneous matrix is comprised of a matrix for the first three columns and a

vector for the 4th column. Unfortunately, all three data types are used as normal

variable declarations; no instances of these types are allocated in heap memory. This

causes much unnecessary passing of structures.

The module also provides a set of useful operations on vectors and matrices.

The distance computations for line segments and planar segments are implemented

here (see Appendix E).
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5.2.7 The "alg" module"

This module provides a set of operations on m by n matrices (linear algebra).

The basic data structure is a variable (VAR) which may be a matrix, a vector or a

scalar. A variable automatically adapts its size to a matrix that is assigned to it, so

the user doesn't need to know the dimensions of the result of an operation ahead of

time.

There are some element oriented functions that require the specification of row

and column values (typically parameters r and c). As a convention, the first row or

column is number 0, so the element in the top left corner has row and column indices

(0, 0). Names of functions returning a value of type VAR begin with a capital V

(example: Vadd).

All functions returning a BOOLEAN return TRUE if they complete success-

fully and FALSE if a problem is encountered.

All assignments must be made using the procedure 'Put (expr, v)' which puts

the result of expression 'expr' into variable 'v'. For example, the assignment X =

A + B • C is programmed as follows:

Put (Vadd (A, Vmult (B, C)), X); /* correct. */

Note that direct pointer assignment will not work. The following statement is

wrong:

X _ Vadd (A, Vmult (B, C)); /* wrong ! */

The following example program will assign values to A, B and C, will evaluate

the expression A + B C, assign the result to X and print it on the screen.

[1] [201[0]A = B = C = (5.1)
3 13 -1

#include "alg.h"

main ()
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}

VAR *A, *B, *C, *X;

Init_V_r () ;

A - New_V_r ();

B = New_V_r ();

C = New_V_r ();

D - New_Vaz ();

Put (Vuser (2,

Put (Vuser (2,

Put (Vuser (2,

Put (Vadd (A,

Print_Var (X)

Kill_Yam (A);

Kill_Var (B);

Kill_Var (C);

Kill_Vam (X);

Exit_V_r ();

1, 1.0,

3.0), A);

2, 2.0, 0.0,

1.0, 3.0), S);

1, 0.0,

-1.o), c);

Vmul% (B, C)), X);

initialize module

make the variables

makes A the 2zl variable [1.01

[3.01

makes B %he 2x2 matrix [2.0 0.01

[1.0 3.0]

makes C the 2zl variable [ 0.01

[-i.o]
evaluate A+B*C, pu% resul% in X

print X on the screen

free space

exi% module

5.2.8 The "graph" module"

The graph module provides a way to organize any kind of data in a directed

or undirected graph. The data structure consists of a main structure (GRAPH) and

the two structural elements G_NODE for the nodes (vertices) and G_EDGE for the

edges of the graph.

The GRAPH data structure contains a list of the graph's nodes. Every node

in turn has a list of adjacent edges. If the graph is directed, then the node's list

cc,ntaips only adjacent edges that are pointing away from that node. Every edge

has two pointers to the two nodes it is connected to. These two pointers are called

'node1' and 'node2'. If the graph is directed, the edges are always pointing from

'node1' to 'node2'. Both the edges and the nodes have a pointer to a data structure

in the user's module. In an example of a graph representing cities and connecting
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roads the nodes would contain a pointer to CITY and the edges a pointer to ROAD.

Only the user's data structures are used for communication between the modules so

the internal structures G_NODE and G_EDGE are invisible for the user.

An edge in a graph always has an associated weight that represents the cost

of traversing the edge. In directed graphs, the edges cannot be traversed in the

wrong direction, it is however possible to define two edges between the same two

nodes having opposite directions and different weight values. This weight value is

not passed to the edge at the time the graph is being established, but the user must

provide a weight function that returns the weight of any edge to the graph module.

This way the graph module can query the weights whenever they are needed and no

unnecessary weights are computed. If the computation of the weights is complicated,

then this feature can save a considerable amount of computing time. Once the weight

is computed, it is stored in the edge structure, so the computation is done only once

per edge. This implies that an edge's weight cannot change during the lifetime of

the graph.

The module offers procedures for building, changing and deleting graphs, and

the graph search algorithm A*. There is also a set of utility functions for navigation

in the graph structure, but these functions are not accessible from outside the graph

module. They are intended as tools for development of new graph algorithms and

are documented in graph.c.

5.2.9 The "parser" module"

The parser module provides a convenient way of reading information from an

input text file. The text in the file must conform to the following syntax:

S - {expression}

expression - keyword [par_list]

par_list - '('{parameZer ','} parameter ')'

keyword - string
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parameter = string

string " {char> char

char = 'A'..'Z' _ 'a'..'z' J '0'..'9' J

In this syntax description, S is the start symbol, lowercase words are nontermi-

nal symbols and characters in single quotes are terminal symbols. An expression in

braces can be repeated any number of times (including zero times) and an expres-

sion in square brackets [ ] is optional. If there are a number of expressions separated

by bars -- then either expression is legal at this point.

Examples for legal commands are:

ADD (5, 6, 7, -11.5)

Exit_Program

saveRquit (foo.c)

The parser module will first read a user specified source file, parse it according

to above syntax, store the data in a list of expressions and return this list to the

user. The order in the list corresponds to the order in which the expressions are

encountered in the source file. If there are syntax errors, they will be printed on

the screen. The module offers a variety of interface procedures that enables the

user to read the data in a convenient manner. Expressions can be read from the

list sequentially as it is normally clone with lists. Lists can also be scanned for

the next occurrence of an expression with a particular keyword. An expression is

a data type (EXP) that also has some procedures associated to it. The user can

read an expression's keyword string, the number of parameters in the expression

and a particular parameter string given by its number in the parameter list. Finally

there are utility procedures that convert a parameter string to a real or an integer

number. This is necessary since all parameters are handled as arbitrary strings.
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5.2.10 The "model" module

This module provides a geometric primitive which is useful for the modeling

of solids. The primitive is described by two or three points pl, p2, and p3, a

radius r, a direction vector dir, a task identification id, and a "type". If the type

is STRUT_TYPE then the object is obtained by moving a sphere of radius r on a

straight line from point pl to point p2 (a cylinder with spherical caps). If the type is

TRIAN_TYPE then the object is a triangular planar segment whose boundaries are

defined by pl, p2, and p3. This plane segment has a volume equal to that swept out

by a sphere moving through every point in the plane segment. The "dir" element

describes a subgoal's approach vector. "id" is used for graphics object identification

when running with CTOS applications.

Procedures are provided to read and change the model's parameters and to

compute the minimum distance between two swept sphere models using procedures

in the vector module.

5.2.11 The "graphics" module

This module currently serves two purposes. It was originally programmed

using SUNcore graphics for use on SUN machines. This capability has been main-

rained, even though it is outdated and being phased out. More recently, an X

Windows graphics viewer has been written by Nicewarner [30] and is incorporated

in our graphics module.

"SUNcore allows line and character drawing in three dimensional space. Colors

are used if the monitor allows and if black and white mode is not explicitly selected.

After initialization, a three dimensional coordinate system is displayed. There are

procedures to create segments -- an entity that holds a number of primitives --

and others to create lines and characters at arbitrary locations in three dimensional

space."
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"Other proceduresallow the userto insert primitives into a segment and delete

them from segments. Yet another procedure allows the user to rotate the current

picture around the Vertical and the horizontal axis of the screen by moving the mouse

horizontally or vertically, respectively. This mode ends in the current orientation

when the middle button is pressed. The reason for using segments is the segment

concept of SUNcore. SUNcore segments do not provide any way of deleting single

primitives stored in them, so the whole segment must be deleted and reconstructed

in order to delete one primitive. This module automatically deletes and reconstructs

the SUNcore segments as needed. Unfortunately, this process is visible on the screen,

especially on slow machines. The segment concept allows the user to split the picture

into parts, avoiding the reconstruction of the whole picture when a single primitive

is deleted.""

If X Graphics ate selected, then we rely on the graphical viewer written by

Nicewarner [30]. If we are running on UNIX as a stand-alone program, then the

output is in the form of a file readable by the viewer interface. If we are running as

part of a CTOS application, then we send the Geometric State Manager messages

directly. We can create, delete, and move struts and links. These struts and links

must be defined in .cgra files.

5.2.12 The "env" module"

"env" stands for environment, so this module holds all data about items that

belong neither to the robot nor to its payload. At initialization, the module reads

the locations of the struts and planes from the parsed source file and informs the

graphics module.

Procedures are provided to get models of struts, planes, and intermediate steps

currently in the environment and to add and remove them.
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Procedures are also provided for extracting tetrahedra and triangles and plac-

ing intermediate steps around them. Whenever a strut is added or removed, all

intermediate steps are deleted and then re-established based on the new environ-

ment.

5.2.13 The "robot" module"

This module models a single chain robot with an arbitrary number of links.

The description of the robot's kinematics, model geometry, joint ranges and so forth

are stored in a file robot, clef, so that the files robot, c and robot, h are applicable

to any single chain robot without change. The robot's kinematics are described

using modified Denavit Hartenberg parameters (see Craig [27]).

This module maintains a set of transformation matrices that represent the

transformation from each link to world coordinates. Derived from the modified

Denavit Hartenberg parameters [27] and the current joint vector, they are updated

each time the robot changes its joint vector. The module also maintains a swept

sphere model of each link. These models are not automatically updated when the

joint vector changes, since this process is time consuming and not always necessary.

The module provides three procedures to alter the robot's state: the robot's

joint vector can be set, a part can be added to, or removed from, the gripper.

Various readout procedures supply information about the current position of

the link models, the type of a particular link (revolute or prismatic), the origin and

the axis of the joints, the current value and range of each joint, which joints are out

of range, and whether the robot is carrying a payload or not.

5.2.14 The "lpath" module

The path planning algorithm using potential fields is implemented in this mod-

ule. The user must specify which arm to plan for, the rotation-type, the departure
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and approach offsets, the initial joint vector, and the desired goal pose. The module

will return a list of joint vectors that describe a path leading there. If this is not

possible, it returns a FALSE.

5.2.15 The "gpath" module

The global path planning algorithm using graph search is implemented in this

module. It establishes a list of joint vectors describing a path that leads from the

current joint vector to a goal position defined in cartesian space. It may call the

local path planner several times on the whole task or on part of it. It may also query

the local planner for information about failures in order to set up subgoals. The

global planner may be called on repeatedly, and it will return a different path each

time until it can find no more new paths, then it will return the first path found.

5.2.16 The "ppmain" module

This module provides the interface between the planning algorithm and higher

level coordinators. The procedures contained within this module are invoked by ei-

ther the main module or the PathPlanner module. There are procedures to initialize

and shutdown the path planner. There are procedures to read instructions from a

file and to output paths to a file. A procedure which parses and executes the input

file is also provided.

5.2.17 The "main" module

This module is used exclusively when running the planner in its UNIX stand-

alone mode. _I"OS_ACTI'¢Ig must not be defined in "usrFlags.h'. This module parses

and executes an input file.

The available input file commands are listed in Section 5.3, below.
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5.2.18 The "PathPlanner" module

This module is the event handler for CTOS messages coming from the higher

level coordinator, currently the dispatcher petri-net. It handles all the standard

CTOS messages and also plans paths, re-plans paths, does inverse kinematics, and

can run input files. The messages' definitions are in ppLib.h and their calling

procedures are in ppLib. ¢. This procedure is the communications highway between

the path planner and the application coordinator.

Refer to Chapter 6 for a discussion of CTOS and message passing.

5.3 The Input File

The input file is an auxiliary input source for testing the program. It can also

be used to set up the environment when embedded in a larger program.

There are two types of commands found in the input file: static commands

and sequential commands. The static commands are read at initialization time and

their order does not matter. The planner executes the sequential commands, in

order, of course.

We describe a strut in space in two ways. First, we can describe it by its

endpoints. This requires six parameters, three for each cartesian space endpoint. For

the remainder of this section, the parameters (xl, yl, zl, x2, y2, z2) will denote

the two cartesian endpoint vectors of a strut with respect to the world coordinate

system.

A strut within a tetrahedral structure has a simpler description. By defin-

ing the position and orientation of a tetrahedral structure, all struts within that

structure can be described by a tetrahedron number and a strut number within

that tetrahedron according to the numbering system shown in Figure 5.2. p is the

position of the structure, and rl and r2 are the orthogonal orientation vectors of
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the structure with respect to the world coordinate frame (Xo, Yo, Zo). The coor-

dinate system (x, y, z) isused to specifya tetrahedron in the structure.The length

of the system's unit vectors ex, ey and ez isequal to the length of a tetrahedron's

edge (the sum of a strut length and two times the node connector length). Now we

can describe any tetrahedron by an ordered triple of integers. For instance, (2, 1,

0) describes the "O _ tetrahedron in Figure 5.2, (O = p % 2ex -t- ley q- 0ez). The

"O" tetrahedron also shows the numbering system for a particular strut within a

tetrahedron. Thus we can describe struts with four integers, once the structure's

position, orientation, and unit length have been specified. For the remainder of this

section, the ordered quadruple (X, Y, Z, N) will denote such a strut.

The following are the static commands:

• STRUTLENGTH (1)

1 specifies the length of all struts in the environment.

• NODELENGTH (1)

1 specifies the length of all nodes. Together with STRUTLENGTH defines the

unit length of the tetrahedron structure.

• STRUCTURE_LOC (px, py, pz, rlx, rly, rlz, r2x, r2y, r2z )

Defines the location of the tetrahedral structure with respect to world coordi-

nates. The parameters are vectors p, rl, and r2 from Figure 5.2.

• SUBGOAL ( xl, yl, zl, x2, y2, z2)

Defines an intermediate goal which the global planner puts in its Graph search.

The endpoints will be automatically adapted to the strut's length.

• STRUT ( xl, yl, zl, x2, y2, z2)

STRUT ( X, Y, Z, N)
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A strut is added to the environment at the given location. The strut will

automatically be adapted to the strutlength such that the center stays fixed.

• TETRA ( X, Y, Z)

Six strutsof a tetrahedron axe added to the environment.

• PLANE (xl, yl, zl, x2, y2, z2, x3, y3, z3, x4, y4, z4)

A plane object is created with the four vertices given. See AppendixE.

• ROBOT ( px, py, pz, rlx, rly, rlz, r2x,r2y, r2z)

Orients the robot's zero frame with respect to the world coordinate system.

Vector p denotes the origin of the robot's zero frame, rl denotes the orientation

direction of the robot's x axis, and r2 denotes the orientation direction of the

robot's y axis.

• X_GRAPHICS, SUN_GRAPHICS

Selects either X Window or SUNcore graphics to be displayed.

• ZOOM (z)

IfSUN_GRAPHICS isactive,then z isthe magnification of the display.

• B&W

If SUN_GRAPHICS is active,then the graphics axe displayed in black and

white.

• DIAGNOSTICS

Activates debugging print statements for display during execution.

• STEP

Pauses execution of planner aftereach step.
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This second list shows the sequential commands which must be between the

START and the 0UIT commands.

• START

Denotes the beginning of the command sequence.

• MOVE ( xl, yl, zl, x2, y2, z2, dx, dy, dz)

MOVE ( X, Y, Z, N, dx, dy, dz)

Plans a path that leads the payload strut (real or imaginary) to the indicated

goal. d is the approach direction, and -d will be the next MOVE's departure

direction. The very first MOVE has no departure direction.

• GRASP ( xl, yl, zl, x2, y2, z2)

GRASP ( X, Y, Z, N, )

The strut closest to the position specified is removed from the environment

and put in the robot's gripper. The environment recomputes intermediate

steps around tetrahedra and triangles.

• JOINTS ( thetal, theta2, ... , thetaDOF)

Sets the robot's joints to the joint vector specified. Units are in degrees for

revolute joints and meters for prismatic joints.

• UNGRASP ( xl, yl, zl, x2, y2, z2)

UNGRASP ( X, Y, Z, N)

The payload is released and added to the environment at the specified position.

The environment recomputes intermediate steps.

• UNGRASP

Unlike the other two UNGRASP commands, the payload is released at the

exact location the robot has brought it to.
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• ADD_STRUT ( xl, yl, zl, x2, y2, z2)

ADD_STRUT ( X, Y, Z, N)

A strut is added to the environment at the indicated position.

• REMOVE_STRUT ( xl, yl, 7.1, x2, y2, z2)

REMOVE_STRUT ( X, Y, Z, N)

The strut closest to the indicated position is removed from the environment.

• VIEW

If SUN_GRAPHICS is defined, then execution of the command sequence stops

and the user can use the mouse to change the orientation of the display. Exe-

cution resumes when the user presses the middle mouse button.

• LEFT..ARM, RIGHT_ARM

Selects which robot arm will be effected by all subsequent commands.

• QUIT

Denotes the end of the command sequence.

Appendix B lists a typical input file. The input commands can be in either

large or small case.



CHAPTER 6

CIRSSE TESTBED

6.1 Physical Plant

At the center of CIRSSE's testbed are two, nine DOF robotic manipulators,

each consists of a PUMA, six DOF articulated arm, mounted on a three DOF cart.

The two carts are mounted on a single linear track (see Figure 6.1). The manip-

ulators are controlled by a host of single board computers mounted on a VME

cage running VXWORKS, a real-time operating system. The VME cage is then

connected by ethernet to several UNIX based Sun 3's and Sun Sparcstations, a Dat-

acube vision system, the PUMA arm controllers, and the Aronson cart controllers.

The manipulators are also aided by several sensors: a pair of stereoscopic cam-

eras and a laser are mounted in the ceiling while the manipulator's wrist carries a

force/torque sensor and another camera. A good introduction to the robotic testbed

is Nicewarner's Tech Memo #22.

6.2 CIRSSE Planner Requirements

The current goal of the CIRSSE system's demonstration is to autonomously

build the triangular base of a tetrahedron. This requires the planner to be able to

plan paths from the rack which holds the struts to the table where the triangle will

be assembled. The paths must avoid three obstacles: the table, the strut rack, and

the struts in the strut rack.

In the future, a planner will be needed to coordinate the two arms so they can

jointly build a tetrahedron. This is beyond the current capability of our planner.

6.3 Software Architecture

66
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Figure 6.1: CIRSSE Testbed Robots
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Figure 6.3: Nodes and Transitions

At CIRSSE, the pathplanner is just one of many "tasks" working together

in an "application". The pathplanner algorithms were described in Chapter 5.

This section will describe the planner's implementation within a CTOS application.

CTOS ( CIRSSE Testbed Operating System) was developed to handle multi-task

applications. For a full description of CTOS, see Tech Memo #5, Tech Report #97,

and Tech Report #128.

Each task is a separate program with its own string of execution. Tasks can run

on different CPU's, or even, different computer systems. A group of tasks working

on a job, called an application, communicate their work via "messages". CTOS

messages contain two important pieces of data: a message identification number

and a data block. CTOS makes it possible for complex jobs to be broken up into

manageable pieces, which can be programmed and debugged separately by separate

programmers.

Figure 6.2 shows how the path planner fits in with the other tasks at CIRSSE.



69

The dispatcher is implemented in the form of a petri-net, a token-based flow-

chart which is designed to organize command flow. There are two basic units to a

petri-net: nodes and transitions. Nodes hold data, while transitions are programs

that use the data from the node. Referring to Figure 6.3, if the two nodes A and

B are occupied by a token then the transition will fire and a token will be put in

nodes C and D. Firing a transition is equivalent to executing a program, the output

tokens are the products of the program.

The petri-net is a large, CTOS application executive. The it is like a director:

when the script says that the robot needs to move, the dispatcher asks the planner

for a path. After the planner returns a path, the dispatcher notifies the motion

controller, and finally, the motion controller moves the robot.

All commands are all passed by CTOS messages. Therefore, each task must

have access to the other tasks' message commands. By convention, the message

identification numbers are defined in a Lib.h file, while the messages themselves

are sent by a procedure in the corresponding Lib. ¢ file. For example, when the

dispatcher wants a path planned, it calls ppPl_mPath() from the ppLib, c library.

Then ppPl_mPath() will send the CTOS message MSG_PP_PL_PATH, which is de-

fined in ppLib, h, and other necessary data to PatbPlam_er. ¢ by invoking the CTOS

command asgBuildSe,,d(). The path planner will return the path by invoking the

command ugReply(), see details of these CTOS commands in Tech Report #128.

The path planner's defined messages, their calling procedures, and actions are:

MSG_PP_INITIALIZE--ppInitialize() initializes the planner; must be called be-

fore the planner is used for the first time.

MSG_PP_SHUTDOWN--ppShutdovn() frees the data in lists, var's, and graphics.

MSG..PP_STARTPATH--ppStartPath() setsthe planner'sinternalrobot'sjointvector.

MSG_PP_PLANPATH--ppPIanPath() executes path planning algorithm; returns a list
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of joint angle knot points in a file.

MSG..PP_P,EPLANPATIt--ppRepltmPath() re-executes path planning algorithm with

the same data as in the most recent ppPlanPath(); returns the next A* algo-

rithm path.

MSG_PPALTPLANPATH--ppAltPlanPath() calls an alternate path planning strategy

(see Lefebvre [29]).

MSG_PP_INVKIN--ppPotInvKin solves inverse kinematics problems by using the path

planner; returns the goal's joint vector.

MSG..PP_DEM0_£XEC--none This message is sent by a stand-alone test program named

AppExec; it is used to execute Munger's simulation input files.

PathPlanner. c is commonly called an event handler. When a message is

sent to the path planner, CTOS calls a function PathPlanner() and passes it

the message's identification number and a pointer to the message's data block.

PathPlanaer() then decodes the message, using a case statement, and calls the

proper functions in ppmaln.c (see Figure 5.1 and Section 5.2.16).

6.4 Compiling the PathPlanner Using CMKMF

As described in Chapter 5 the path planner can be compiled by typing cmkmf

PathPlaaaer from within the directory which contains an Imakefile describing the

planner's hierarchy (currently: /home/tseng/CIRSSE/pathplanner/graphicstest.

That directory also includes the definition of CIRSSE's robot testbed in robot, def.

Thus after the path planner is compiled it will only plan paths for CIRSSE's robot.

In Chapter 7 when we want to plan paths for the NASA Langley robot, we will have

to change the robot, def file to define the Langley robot.
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6.5 Executing CTOS Applications

After the application is built using cmkmf, it is almost ready to be executed.

First, a confguration file is needed to define the hardware involved in the application,

the tasks which will run in the application, and the CPU each task will run on.

Tech Memo #16 describes how to build the necessary configuration files. A sample

configuration file is listed in Appendix C.

The hardware then needs to be prepped by setting up "application servers"

for each machine involved in the application (app_vin machine.haste). Finally, the

configuration file is bootstrapped by invoking app_bts configFileName, which gets

the application running on all the chassis.

The path planner can be run in one of three modes, each of which has its own

directory, Imakefile file, configuration file, and execution procedure.

° CIRSSE Demo 1. Autonomous part extraction and insertion; full CIRSSE

testbed demonstration. Directory:/home/tseng/CIRSSE/pathplan/ctos. Con-

figuration file: demol.cfg. Execution: app_bts demol .cfg.

° CTOS Planner Test. Execute auxiliary input file; planner demonstration.

Directory: /home/tseng/CIRSSE/pathplan/graphicstcst. Configuration file:

pp_config. Execution: app_bts pp_config; application executive queries "in-

put file?".

, UNIX Planner Test. Stand-Alone planner demonstration using input file. Di-

rectory: /home/tseng/CIRSSE/pathplan/unix. Configuration file: none. Ex-

ecution: pp inputFileName.

6.6 Demonstration #1 Paths

The path planner has been tested for all paths in the CIRSSE triangle building

demonstration. Two example paths are shown here. Figure 6.4 shows the robot's
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motion from the home (safe) position to the position above the node where the

camera will be used to acquire the triangle structure location accurately. Figure 6.5

shows the path from the strut pick-up point at the rack to the insertion point above

the triangle. These paths are plannable for all rack and triangle poses in the robot's

workspace.

Although the current CIRSSE demonstration's paths are simple, uncluttered

free space moves, the planner is capable of producing more complicated paths. Fig-

ure 6.6 shows the CIRSSE robot inserting the last strut into a tetrahedron. In this

example, the local planner cannot find a direct path from the start to the goal,

because the obstacle creates an unavoidable local minimum (b). After the local

planner fails (four times), the global planner creates a subgoal near the obstacle.

The local planner reaches this subgoal (c). Then it is called one final time and

reaches the original goal (d).
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Figure 6.6: Global Subgoal Assists Local Planner



CHAPTER 7

NASA LANGLEY TESTBED

7.1 Physical Plant

Langley Space Center's robot consistsof a Merlin 6000 six-DOF articulated

arm mounted on a two-DOF cartesiancarriage,see Figure 7.1. Another one-DOF

rotating platform holds the truss structure assembly. Since the platform does not

move during the strut insertionprocess, it is not modeled by our path planner.

The path planner's model of the eight-DOF robot is stored in a definitionfile

lhomeltsenglLangley/ pathplan/ctos/robot.def, see Section 5.2.13 and Ap-

pendix D.

7.2 Langley Planner Requirements

Currently,the planner must move a strutfrom a bin intoa truss assembly. This

trussstructure ismore complicated than the current CIRSSE structure. Figure 7.2

shows a "cell"unit. It isan octahedron, an eight sided figure.By placing cellssicle

by side as in Figure 7.3 [3],we can make arbitrarilylargestructures.

Figure 7.3 is currently being test assembled at Langley Space Center. The

planner must plan paths for each strut without collision.The main obstacles are

the robot itself,the strutsalready in the structure,and 12 triangular panels which

are laidabove and below the number I,2, and 3 ceils(forming a pentagon).

7.3 Software

The planner has not been implemented on the Langley Space Center's com-

puter systems. Our path planner for the Langley arm runs on the CIRSSE com-

puter system using CTOS. Therefore, the discussion in Chapter 5 and 6 on CTOS

76



77

Platform

Gdpper

Carriage

Figure 7.1: Langley Testbed Robots (model)

I ", °' I

Sha_ Eds¢
./......- ......\_,I -"

"" "" Bouom F_.A_

Figure 7.2: A Unit Cell



78

12
6_

Figure 7.3: Langley Truss Structure with Sequence Numbers



79

programming stil! _pplies. We compile the planner by running cmlmf in the direc-

tory which contains the Langley robot's definition in its robot.def file (currently:

/home/l: seng/Langley/pathplan/ct os ).

Presently,there axe only two ways to run the planner:

1. CTOS Planner Test. Execute auxiliary input file; planner demonstration.

Directory: /home/tseng/Langley/pathplan/ctos. Compile: cmkmf AppExec

PathPlanner. Configuration file: pp_config. Execution: app_bts pp_config;

application executive queries "input file?".

, UNIX Planner Test. Stand-Alone planner demonstration using input file. Di-

rectory: /home/tseng/Langley/pathplan/ctos. Compile: cmkmfpp. Configu-

ration file:none. Execution: pp inputFileName.

Both methods of execution produce an output file (*.slm) which is readable

by Silma, a professional, graphic robotic engineering package.

7.4 Truss Structure Paths

Our experiments show that the path planner can plan most of the paths for

the Langley testbed. Figure 7.4 shows the path from the strut pick-up point in the

rack to the insertionpoint above the tetrahedron.

It works fast: most paths axe computed in lessthan fifteenseconds with an

accuracy of plus or minus Imm. Table 7.4 shows the number of callsto the local

planner and the total time that the path planner needed in order to insert the

Langley struts shown in Figure 7.3. If the required accuracy is reduced to plus

or minus Icm, then the computation time drops by approximately 7 seconds (see

Table 7.4). It does not speed up by ten times as one may be led to believe in

Section 3.4.1because the lessaccurate paths stillmust traverse the same amount
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Table 7.1: Paths for Langley Robot (lmm accuracy)

Seq.# Strut#

I I

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

24 61

Time (s)

ii

17

I0

60

14

19

13

21

23

29

22

12

75

#calls

1

I

1

I

2

2

1

I

6

comments

local plan collides 3 times.

near-collision with strut# 1.

near-collision with strut#5.

had hard time acquiring pose.

path#1 had a collision.

path#1 had oscillations.

near a singularity.

failure, see Section 8.2.

Table 7.2: Paths for Langley Robot (for lcm accuracy)

Seq.# Strut# (s) #calls comments

not 10x faster due to free space.i

2

3

4

5

6

7

8

9

I0

II

12

24

6

7

8

9

10

11

12

61

Time

1 4

2 9

3 4

4 21

5 7

11

6

13

18

20

15

6

75

I

I

i

3

1

1

I

I

2

2

I

i

6

succeeds on third try.

near-collisionwith strut# 1.

near-collisionwith strut#5.

had hard time acquiring pose.
collision.

oscillations.

near a singularity.

failure, see Section 8.2.
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Figure 7.4: Path from Rack to Langley Structure Insertion
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of free space as the more accurate paths: only the last centimeter of the path is ten

times faster.

Figure 7.5 demonstrates the robustness of our local planner. This insertion

into the Langley assembly has very tight tolerances. Munger's planner either would

have collided with the structure, if his repulsion constant was too small, or it would

have been repulsed by the very large cluster of obstacles, if his repulsion was made

too strong. With the combination of flexible fields and object clustering, our planner

had no problem finding this path.

Unfortunately, not all paths are plannable for the Langley structure. Figure 7.6

shows the final position of the six failed paths for Langley Strut #61. Attempts

numbered 1, 4, and 6 fail due to local minima (which cause oscillations in #4).

Attempt #2 collides due to a combination of factors. The largest of which is that

the Langley gripper is so large that small steps can move the end of the gripper

farther than the THRESHOLD adaptive field (Section 3.2.3). Attempt #3 flips

the orientation of the goal's end points and is also rotating the long way around

the axis of rotation; the path is simply too long, so the planner quits. Finally,

in Attempt #5, the robot has been caught in a shoulder-elbow-wrist singularity

(reducing the DOF to only 5). With no obstacles nearby to influence it, the path

stagnates, and the planner quits. Chapter 8, Section 8.2 discusses our flexible field

algorithm's failure to find a path for this example and future improvements which

may allow it to find a solution.
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CHAPTER 8

RESULTS AND CONCLUSIONS

The performance of the path planning algorithm has been tested for the two testbeds

presented in the previous chapters. Our results and conclusions are presented in this

chapter.

8.1 Computational Complexity

Munger computed the worst case computational complexity of his algorithm

to be O(n3), our improvements' worst case complexity is also O(n3), therefore we

have not raised the order of complexity.

Let us look at the complexity of our major improvements. First, we reduced

the jacobian matrix to full rank in Section 3.2.1, the gaussian elimination is O(n3).

Next, keeping the joints in range, Section 3.2.2, requires us to recompute the at-

traction joint vector each time a joint exceeds its range, since there are n joints,

the complexity is O(n). Section 3.2.3.1, clustering, has a worst case complexity

O(nrn2), where n is the robot's DOF and rn is the number of obstacles. Finally,

our flexible-field, repulsion-control factor, and variable step-size computations have

constant computation times.

Let us note that since n, the robot's DOF, is constant and usually small,

this parameter is not usually critical, m, on the other hand, is variable and can

be quite large (Langley's structure has 102 struts and 12 planar panels). Thus, at

first glance, the clustering's O(nm _) complexity seems to be a problem. However,

two factors significantly lower its complexity. First, we ignore obstacles which are

farther than a threshold distance. Thus, m is lowered to a much more manageable

number, an almost constant number that we could call the environment's obstacle

density (number of obstacles per cubic meter). Second, the O(m _) complexity is due

85
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Figure 8.1: Example: Unattainable by Potential Field Method

to direction vector comparisons, a task which is many orders of magnitude faster

than computing obstacle distances (which is only O(m)).

Our experience indicates that in practice, once the robot's DOF and the en-

vironment's obstacle density are given, the local path planner is fairly constant,

computationally. A far more vexing problem is that the local planner is called on by

the global planner to establish the visibility of graph edges. In the worst case, it is

called O(n 2) times where n is the number of subgoals. Since at worst, the number of

subgoals equals twice the number of obstacles, this is very bad indeed. To eliminate

the worst case, we have set a maximum number of calls to the local path planner

(currently at 6). A better way might be to quit when any global path contains more

than a certain number of nodes, assuming that too many nodes implies that the

path is too contorted.

Finally, Munger's subgoal extraction algorithm is O(rn 2) where m is the num-

ber of struts. Our closest-failure-strut approach has a constant computation time.

8.2 Weaknesses
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Our refinements to the local path planning algorithm have not completely

solved the fundamental problem of localminima. Figure 8.1 shows a Langley truss

structureintowhich our planner could not insertthe strut (seeFigure 7.6,Table 7.4,

Strut #61). The insertion would not be dif[icultif the approach direction was

not pointing from the interiorof the structure,outward. This insertion,however,

requiresthe strutto be slidinto the interiorof the structureand then rotated to the

correctorientation.Thus the strut must riseagainst the gradient before itcan ride

down to the globalminimum; thisthe localplanner willnever do. Our subgoals are

ineffectiveaids because they are parallelto the existing strutsand are exterior to

the cell.

Lozano-Perez [6] and Schwartz-Sharir [25] have tried to solve this type of

problem with subgoals at the local minima, but they have had problems because

the attraction well of the local minimum is too large. Barraquand uses random

motions to solve this problem [16]. If speed of computation is not necessary, a

global method may be used; this particular problem has been solved by Weaver's

Divide and Conquer Planner [4].

The local path planner is an iterative algorithm which converges slowly on

the required accuracy. Comparing the execution times in Table 7.4 and Table 7.4,

the maximum difference between plans with only one call to the local planner is
P

8 seconds. One way to save most of these 8 seconds would be to use an inverse

kinematics routine once the local planner had found the goal to within some rough

approximation (lcm). We would thus forgo the many iterations needed to converge

on an accurate solution.

One feature that our algorithm does not provide is the ability to choose the

final configuration of the robot. For reasons of safety, load bearing, and appearance,

the operator may wish to choose the wrist flip, elbow up-down, or shoulder left-right

configuration. These goals could be accomplished by using an attractive force to
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the goal configuration instead of the goal EE pose, or by limiting the joint ranges

of the robot.

This concludes the discussion of the proposed path planning algorithm.
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APPENDIX A

Imakeflle File Example

/* In,to, Lie for making PathPlanner. lppEze¢, and pp (UBII vorsion) */

/* path pluner includos e/

CPPFLAGS *= -Ilusr21tostbed/ezp/uiz/taclude

CPPIeLAG$ ,= -I/usr/old

CPPFLAG$ *= -L/usr/old

/* path planner libraries */
LDLIBS += -lcore

LDLIBS +n -lsuntool

LDLIBS += -lsungindog

LDLIB5 4_ -lpizrect

LDLIBS += -lpp

LDLIBS +- -lmm I -lbt8 -lrec -lctoa
LDLIBS += -lcli_Cltent

LDLIBS += -lkntpt

LDLIBS += -lconfig
LDLIBS +8 -lkin

LDLIBS += -Itrus

LDLIBS ÷= -ItranParem8

LDLIBS += -lm

OBJS = als.o anv.o |lob_.o K'raph.o Kraphtca.oKpath.o lpath.o lst.o

model.o paraar.o robot.o apec.o 8tach.o vector.o

AllTarget(libpp.a PathPluner ppm_in.o ipphec)

UBIXBlnTe_-Ket(PathPlmsaer. PathPl_nnar.o ppmain.o

UJlXBinTarsat(ippKxec. ipphec.o)

UBIIBtnTarKet(pp , main.o ppmain.o $(OBJS))

UIlXLibTarset(libpp.a, ppLlb.o)

$(0BJS))

92



APPENDIX B

Simulation Input File

{ C_oud soquonc, : 8ulld • totrLkodron

)

St a_-t

{ first strut }

move (1.79, -0.8, 1.0, 0.9, -0.8, 1.0, 0.0, 0.0, -1.0)

Srssp (1.79, -0.8, 1.0, 0.9, -0.8, 1.0)

move (0, O, O, 1, 0.0, 0.0, -1.0)

ungrup (0, O, O, 1)
{ second StrUt }

move (1.79, -0.8, 0.9, 0.9, -0.8° 0.9, 0.0, 0.0, -1.0)

grup (1.79, -0.8, 0.9, 0.9, -0.8, 0.9)

move (0, O, O, 2, 0.0, 0.0, -1.0)

unsrts P (0, O, O, 2)

{ third strut }

move (1.79, -0.8, 0.8, 0.9, -0.8, 0.8, 0.0, 0.0, -1.0)

srauwp (1.79, -0.8, 0.8, 0.9, -0.8, 0.8)

move (0, O, O, 3, 0.0, 0.0, -1.0)

unsru p (0, O, O, 3)

{ fourth strut }

move (1.79, -0.8, 0.7, 0.9, -0.8, 0.7, 0.0, 0.0, -1.0)

Krup (1.79, -0.8, 0.7, 0.9, -0.8, 0.7)

move (0, O, O, 4, 1.0, 0.0, 0.0)

ul;rup (0, O, O, 4)
{ fifth etret }

move (1.79, -0.8, 0.0, 0.9, -0.8, 0.6, 0.0, 0.0, -1.0)

IP'up (1.79, -0.8, 0.6, 0.9, -0.8, 0.6)

move (0, O, O, 6, 0.0, 1.0, -1.0)

uasru p (0, O, O, S)

{ sixth strut }

move (1.79, -0.8, 0.6, 0.9, -0.8, O.S, 0.0, 0.0, -1.0)

grup (1.79, -0.8, 0.5, 0.9, -0.8, 0.$)

move (0, O, O, 6, 1.0, 0.0, -1.0)

uai_u p (0, O, O, 8)

quit

{ Environment tnfo

)

Dtq_nesttcs

etrutleuSth (0.89)

structure.lee (0.8, -0.1, 1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0)

strut (1.79,

strut (1.79,

strut (1.79,

strut (1.79,

strut (1.79,

strut (1.79,

-0.8, 1.0, 0.9, -0.8, 1.0)

-0.8, 0.9, 0.9, -0.8, 0.9)

-0.8, 0.8, 0.9, -0.8, 0.8)

-0.8, 0.7, 0.9, -0.8, 0.7)

-0.8, 0.6, 0.9, -0.8, 0.6)

-0.8, O.S, 0.9, -0.8, O.S)

tetra (2, 1, O)
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APPENDIX C

CTOS Application Cqnfiguration File

ch-=sls m_rs

Example Config file for Planner tad GSR_s Vioeor

8 'mars _ is the machine name

ssqnen¢or mars

PEEFIZ Seqngost O

arp recSvr

arks recSvr

IEC.OFTIOIS = -rv -SecmetrySOOneOO4,0-nmDmJo_!

XCTOS.DISIK.AY = murs:O.O

PJJtlrlX 8iars O

chdtr IhomeltsonglClESSZlpathpltalgrephicstost

ttak PathPltanor PsthPlannor

ttak AppExoc AppExoc

CHDII lusr2/testbedlstablo/uniz/bin/iu4

ttak pmServer gmLqorver

systtak vieuer lusr21testbodlstablelunizlbinlsun41xctosParsnt

arks vtover xc'ros.P_ • /usr2/testbed/stab2eluniz/bin/sun4/fxc_osviouer

arks vteeer XCTOS.DISPLAY - mnrs:O.O e display vioeer on mars' screen

| put the fo21ogin K tasks on mars
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APPENDIX D

Robot Definition Files

CIRSSE 9-DOF Robotic Testbed Definition (/home/tseng/CIRSSE/pathplan/ctos/robot.def

file):

/e robot paremotsrs for ¢IUSE 9 DOF I_MA e_nm plus pl•tforu (loft arm) */
/Ill II [ I In I Ill/

/* Thin fil• contains all parmtorsof the robot •sod in th• usembly

es tank. It's 8includod into robet.c.

• . robot.c is sonars1 in the s•nso that •11 information •boat • specific
es robot is in robot.def.

• * robot.c assumes a oi•|le chain robot vith prionatic or revel•to joints

ee ud • minim•s of 6 DOF.

05 ....... ------------------ .......... ------ ......... ....oo....----..o--. .... .----........e/

8ifndofROBOT.CODK

/e dosree• of freedom: o/
8d•fi•o DOF 9

e•lso

/, robot is •on syumotric due to Iripper p•ounatic cords */

• ud•f S_IC.SOJOT

/e Joint typos. First ostr 7 is Joint clos•st t• the base. PRISM or EKV. e/

static in• j_typ•[DOl r] • (PRISM, IKV. EKV, EKV, EEV, REV, REV, ILEV, ILEV};

/* kinematic parsmet•rs on nodified Do•avit Baz_enbsr K form.

o, lrrays for a, d, alpkaud thorn.

os Unit•: meters for • sad d, doKrooo for alpha and thorn.

es Indices: a[O] = •0 alpha[O] =alpk•O d[O]• dl thst•[O] • thot•l

** I• a roy•late Joint thoU• is the variable in q. ohors•s i• • prismatic

** joint d is the variable in the joint vector q. Enter • 'q' if ths

ee corrospoadin s v_luo is p&rt of the q vector.

0/

static float e[DOF] = (.32, .0, .0, .0, .0, .43182, -.02031, .0, .0};

static float d[DOF] = (Q, .S44, .0, .828, .243, -.09391, .433, .0, .0};

static float alpha[DOF] = (-90., 90.,-90., 90.,-90., .0, 90.,-90., 90.};

static float thett[DOJ_ m (.0, q , q , Q , Q , Q , q , q , Q };

/s end et_octornatrtx.

ee This kemoseaoouamatriz describes the tranmformatton frel the lut link

ee to the frippor. I• this cane this is a simple translation ales s the

so a-ui•.

*e INI_RTAIIT! The vectors in the 3z3 matrix in the co•stun definition bolos

0* .......... us COLOl_lvoctors, eves though they look like roe vectors!
*/

static H.Matrix trl • (((1.0, 0.0, 0.0},

(o.o, t.o, o.o),
(0.0, 0.0, 1.0}}, {0.0, 0.0, 0.24}};

/* Joint value ranKos for loft arm. First entries are closer to the bus.
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ee Units are motors for prismatic and doKrooo for rovoluto joints.
-/

static float ql.min[DOF] =

{-1.3216 ,-leO. ,-46. ,-251. ,-216. ,-$5. ,-121. ,-9S.,-284. };

static float ql_nu[DOF] •

{ 0.609_, 160., 46., 74., 34., 241., 144., 95., 284.);

/* Joint ranges for rtsht urn el

static float qr.nln[DOF] •

{-0.6096,- 150.,-46. ,-248.,-215. ,-SO. ,-129. ,-gfl.,-284. };

static float qr.,,u[DOF] =

{ 1.3716, 150., 45., 78., 37.,238., 148., 98., 284.);

/* Joint uoishto used for 8olvtn K the Ja©obian equation. The values of this

ee vector define • dta_onalnatriz Q gith the elements of PJoint_uetpt' on

ee the diagonal. Thn (in |snsral redudant) Jacobin• equation is solved such

so that q_Qq is minimized. (q' i8 the truepone of q).

*/

static joint.weIsht[DOF] = {16.0, 16.0, 32.0, 4.0, 6.0, 4.0, 2.0, 1.0, 1.0);

/s constants for definition of picture and model e/

• define 110 0.S4

,define RYO 1.8

I_loflno Ula 0.17

8define ILXlb -0.36

Ikloftno RY1 -0.2

Iklofino |Z1 0.36

tkioftno iLK3

8doflno !13b

Odofino EY3a

#define EY3b

0.09

0.2

-O. 1683

-0.1683- 0.6604

• define 114

Ik/eftne 1Y4

0.09

0.2

Odsftn•

8dnftnn

,define

,define

Sdnftns

8<lofino

#do_ino

US•

IJ[Sb

USe

IYSu

RYSb

17,St

IZSb

-0.15

0.08

0.482

0.15

O. 07

-0.043

0.05

_dsftno

Ikiofino

8define

8define

Ikieftne

edefino
8doftno

8define

_doftno

Idofino

ILl6•

lU[6b

U6c

U6d

U_m

SY6u

nY6b

IZ6u

17£b

-0.09

0.05

-0.06

0.02

-0.02

0.07

0.08 /e nan .07 */

-0. 423

0.0S091

-0.04

•define

Odo_tno

8define

Sdofine

8define

117

st7•

KX7b

tZ7•

tZTb

0.04

0.08

-0.08

0.11

O. 23

Ikioftno tZ9•

8deftne KZgb

SdoftnsilL9

0.106

0.14

0.03
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/* 'Link_lodeZ' uoumes a cylindricLX link model. The first 6 porutetere

** are the cylindor'8 endpoints, the 7oh i8 the cylinderJs radius ud the
so lsat one is the link number.

*/
e_ntic void Got_Link.Rodols ()

{
|eg.Link.Rodel (IX0/2.0, -EYO, 0.0, 110/2.0, |YO, 0.0, ILXO/2.0, 0);

leg_Link_Hodel (111o, |T1, 0.0, 111b, IY1, 0.0, 1Z1, 1);

leg.Link.Nodel (0.0, IY3a, 0.0, 0.0, |Yeb, 0.0, 113, 3);

]Jeg.Link.Plodel (11St, 0.0, 0.0, USc, 0.0, 0.0, ItYSn, S);

llgg.Liak.Plodel (11_, RYe4., 0.0, 114b8, |TGb, 0.0, !16, 6);

|ew.Link_Rodol (ILXTn, 0.0. ILZTn. IX?'o. 0.0, IL_Tn, ILK7. 7);

Jeg_Link.Nodel (0.0, 0.0, EZJa, 0.0, 0.0, l_UJb, 119, 9);

/e The definition of the robot's picture on the screen. The picture is

** a wire freme - every line of this frame is defined here. The six

0, first parumetero of the 'Link.Line' procedure are the tug endpoints
0, of the ling in the lOCi1 frame. Unit: motors.

e, The last parameter is the link number, lone: outdated SUB sraphicn.
*/
static void Gnt.Link.Pi©turee ()

{
log.Link.Line (0.0, -|YO, 0.0, 0.0, IYO, 0.0, 0);

los_Link.Ling (110, -EYO, 0.0, EXO, IYO, 0.0, 0);

leg_Link.Line (lilt, IY1, 111, EXlb, IY1, kZI, 1);

leg.Link.Line (Kiln, 1Y1, -IZ1, Ulb, IY1, -171, 1);

leg.Link_Line (111o, IY1, IZI, Uln, 1Y1, -RZI, 1);

log.Link.Line (111b, kY1, EZI, JJ(lb, 1Y1, -EZ1, 1);

leg_Link_Line (-tR3b, |Y3o, -113b, U3b, kY3a, -U3b, 3);

Jew.Link.Line (-U3b, IY3a, U3b, 113b, EY3n, U3b, 3);

log.Link.Line (-U3b, IY3n, -113b, -U3b, IY3a, U3b, 3);

log.Link.Line ( tlL3b. IY3&, -ElL3b, ElL3b. EY3n, 113b. 3);

leg.Link.Line (-t13, kY3a, -113, 113, IY3a, -nIL3, 3);

leg_Link_Line (-813, lY3a, LK3, 113. IY3a. R13, 3);

Jew.Link_Line (-JUt3. IY3a, -113. -ldL3, |Y3a. RE3. 3);

hu.Link.Lino ( 113, kY3n, -113, 1K3. IY34. t13, 3);

hg.Link_Line (-Bit3, KY3b, -IIL3, 113, kY3b, -BIL3, 3);

leg_Link.Line (-BJt3, kY3b, 113, U3, IY3b, .BJt3, 3);

Egg_Link.Line (-U3, EY3b, -113, -U3, |Y3b, U3, 3);

Jew_Link_Line ( U3, EY3b, -U3, U3, IY3b. U3, 3);

leg.Link.Line (-JJt3, EY3a, -113, -113, 1Y3b, -tit3, 3);

log_Link.Line (-BIL3, RY3a, IIL3, -U3, EY3b, U3, 3);

leg.Link.Ling ( IIL3, |Y3a, -JLI3, BE3, EY3b, -JdL3, 3);

log.Link.Line ( U3, RY3a, 113, Jdt3, IY3b, 113, 3);

Bee.Link.Line (-114, -U4, -114, U4, -114, -114, 4) ;

leg.Link.Ling (-U4. -U4. 114. El4, -U4, 114. 4);

leo.Link.Line (-ILI4, -UA, -U4, -U4, -U4, 114, 4);

Jew_Link.Line ( U4, -114, -114, U4, -114, 114, 4);

leg_Link.Line (-114, BY4, -114, U4, EY4, -EI4, 4);

leg.Link.Line (-114, kY4, 114, 114, kV4, 114, 4);

leo.Link.Line (-114, 1Y4, -114, -114, EY4, 114, 4);

Jew_Link_Line ( 114, EY4, -114, 114, IY4, 114, 4);

leg.Link.Line (-114, -JJt4, -JJt4, -114, lY4, -114, 4);

Beg.Link.Line (-114, -114, 114, -114, EY4, 114, 4);
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log.Link_Line ( 114,

log.Link.Line ( il4,

|el.Link.Line (USa,

leg.Link.Line (USa,

log_Link.Line (ILISa,

|el.Link.Line (liSa,

log_Link.Line (ILXSa,

log.Link.Line (ILISa,

hE_Link.Line (USa,

log_Link.Line (USa,

log.Link.Line (USb,

hE_Link_Line (l_Sb,

log_Link.Line (ILISb,

Jog_Link.Line (lU[Sb,

leg_Link_Line (US©,

Iou.Link.Llno (USe,

leg.Link.Line (kXSc,

log_Link.Line (US©,

-el4, -114, 114, |Y4, -114, 4);

-114, 114, 114, |Y4, 114, 4);

-|YSn, EZSa, US•, |YSa. EZSa, S);

-EYSg, lZSb, USa, EYSa, J_Sb, 5);

-|YEa, IZSa, USa, -|YEn. |ZSb. S);

lynn, IZSn. USa, lynn. lZSb, 6);

-EYEs, |ZSa, USb, -|YEn, RZSn, 6);

1YEa, EZSa, ILZSb, |TEa, IZSa, S);

-|TEa, EZSb. ILlSb, -ETSa, USb, 6);

|YEa, lZSb, USb, |YSa, J_Sb, S);

-|YEn, tZSn, KXSc, -|YSb, IZSn, S);

lynn, I_Sn, trSc, |TSb, ntis, 6);

-|YEa, 17_b, 1Inc, -ITSb, tZSb, 6);

|YEt, KT_b, USe, ITSb, tZSb, 6);

-lTSb, EZSg, J_S¢, IYSb, EZSa, S);

-lYSb, USb, USe, lTSb, tZSb, S);

-lYSb, |ZSa, IXSc, -IYSb, IZSb, S);

RYSb, KZSo, IXSc, ITSb, EZSb. S);

leg.Link_Line (USa, |Y6a, 17.68,

leg_Link.Ling (USa, IYEa, IZ6b,

log.Link.Ling (USa, |YEa, iZEa,

log.Link.Ling (UEb, IY6I, 17..6a,

leg.Link_Line (ILX6a, EY6I, l_.6n,

log.Link_Line (UEb, iYEa, lZ6a,

log.Link_Line (DEn, EYEs, IZ45b,

hg_Llnk.Lin• (SrEb, lY6n, tZ6b,

l•g_Llnk.Lin• (EI6¢, lY6b, IZ6I,

leg.Link.Line (sT(k:, lY6b, tZ6b,

log.Link.Line (ILIEc, IYEb, EZ6n,

lee.Llnk.Line (IU[Ed, lY6b, EZ6a,

ILI6b, IY6g, lZEn, 6);

lU[Eb, lY6a, lZ6b, 6);

ILX6e, IT6I, EZ6b, 6);

lLIEb, |¥6a, |Z6b, 6);

U6c, lYEb, ILZ6a, 6);

IX6d. |YEb, tZEa, 6);

U6c, IYEb, IZ6b, 6);

U6d, |YEb, lZEb, 6);

L_Ed, lTEb, ILZEa, 6);

U6d, lY6b, iZEb, 6);

IL_6c, EYEb, kZEb, 6);

U6d, EY6b, L_.6b, 6);

leg_Link_Line (-11T, -11T, |ZTI, U7, -117, EZII, 7);

l•g_Llnk.Lin• (-11T, 117, |Z7o, UT, 117, EZ7•, 7);

leg.Llnk_LLno (-117, -117, kZTa, -ILlt7, 117, EZ7•, 7);

leg_Link_Line ( 117, -117, EZTa, 117, 117, EZTa, 7);

leg_Link_Line (-117, -117, tZTa, -so7, -117, lZ7b, 7);

log.Link.L/no ( 117, -117, IZ7a, 117, -117, EZ7b, 7);

leg.Link.Line (-liT, liT, l_?n, -117, liT, EZTb, T);

log_Link.Line ( liT, 117, l_7a, 117, 117, IZTb, 7);

log_Link_Line (-liT, -117, tZTb, 117, -ILI7, lZ7b. 7);

log_Link_Line (-117, 117, lZ7b, 117, ]LET, iZ7b, 7);

leg_Lid.Line (UTI,

leg_Link.Line (ILITb,

0.0, EZTn-O.04, ILX7•, 0.0, |Z7o+0.04, 7);

0.0, l_7n-0.04, ILX7b, 0.0. IZ7n_O.04, 7);

/* The £o110gin s infomtion deals oith collision ovoiduco between link•.
so It)| • table gtth dimension (DOF+I)*(DOF+I). Insert a TIUK If a

ee colIinton botgoon the column and the roe link is possible; then the

so prosTm gill do collision avoiduco on this particulnr link-link pair.

oo This table is clearly 8_trtc - so the prosrua ut11 on1 7 consider the

so upper risht side o£ Eke diaKonsl (diqonal elements Ire of course FALSE).

,/

BOOLK&I I_I_¢heck[DOF÷I][DOF+I] •

{{FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TIUE, TIUE, FALSE, TIUE },
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{FALSE, FALSE. FALSE, FALSE, FALSE, FALSE, _, TIUI,

{FALSE

{FALSE

{FALSE,

{FALSE,

{FALSE

{FALSE

{F_.SE,

{FALSE,

/. 0

Oendtf

FALSE, TRUE }.

FALSE, FAlsE , FALSE, FALSE, FALSE, _, FALSE, FALSE, FALSE}.

FALSE, FALSE, FAlsE, FALSE, FALSE, FALSE, TIrOl, FALSE, TIUE },

FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE},

FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE },

FALSE, FALSE, FALSE, FALSE, FILSE, FALSE, TIU_, FAI,SE, FALSE }.

FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE},

FALSE, FALSE, FALSE, FALSE, FM.SE, FALSE, FALSE, FILSE, FALSE},

FALSE, FALSE, FILSE. FALSE, FALSE, FJJ, SE, FALSE, FALSE, FALSE}};

1 2 3 4 S 6 ? 8 9 */
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NASA Langley 8-DOF Robot Definition (/home/tseng/Langley/pathplan/ctos/robot.def

file):

/e robot parameters for Lugley's 6 DOF ann plus 2 DOF platform e/

/e mmmuu_a__sm_m_mm=mmmm e/

/e This file contains all parameters of the robot used in the anlmbly

-- task. It's 8included into robot.c.

ee robot.c is general in the sense that all information about a specific

ee robot is in robot.def.

-- robot.c ansumeu u single chain robot utah prismatic or revolute Joints

oe and a minimm of 8 DOF.

oo ./

IifndefMgOT_CODg /e this stuff included in ltbruay, .h files e/

/o degrees of freedom: e/
Idefine DOF 8

/e #define DOF 6o/

#define LAIGLEY

|else /e this stuff only for robot.c */

/o single arm system, as opposed to dual arms, used for gem slot update size e/

;kleflne SIBQL__AIN

/e robot is not sTumetrtc due to gripper pneumatic cords e/

8define SYHRKTRXC_ItOBOT

/e joint types. First entr7 is joint closest to the bus. PEXSN or IIl_. e/

static inn j_type[DOl_ • {P|ISR. PEXSR, J_V, J_V. J_V, KEV, IKV. 1IV};

/, Arrays for a, d, alpha and thorn.

ee gineamtic parameters in modified Denavit Hartenbeq form. (is, DH except

ee that the order is: rot(z), irene(x), tress(z), rot(z), to go from frame i-I

*e to frame i. (start at frame 0). Thus, frame i is moved by joint i,
ee and link i in connected to link i. (is. much nicer thu OH) ).

so Units: meters for a and d, degrees for alpha and theta.

eo Indices: a[O] - aO alpha[O] n alphaO d[O] = dl theta[O] = thorax

e* In a revolute Joint theta is the variable in q, whereas in a prismatic

"" joint d is the variable in the joint vector q. Enter a 'Q' if the

-- corresponding value in part of the q vector.
./

static float alpha[DOl_ = {-90., -90., 90., -90., 0.0, -90., 90., -90.};

static float a[DOF] - { 0.0, 0.0, 0.0, 0.0, .4394, 0.0, 0.0, 0.0};

static float dCDOF] - { Q, q, ._33, 0.0, -0.3048, 1.0338, 0.0, 0.0};

static float thetn[DOl_ • {-90., 90., Q , Q , Q , Q , Q , Q };

/e end e_rectornatriz.

-- This homogeneous matrix describes the transformation from the last link

ee to the gripper. In this cue this is a simple translation along the
e* Z-anlS.

0* IRPORTArr! The vectors in the 3z3 matrix in the constaat definition bolou

o, .......... are COLUNi vectors, even though they look like rou vectors!
o/
static Lhtriz are = (((0.0, 1.0, 0.0},

{-t.o, o.o, o.o),
(o.o, o.o, 1.o}}, (o.o.o.o, o.4oo}};

/* Joint value ranges for loft tFJ. First entries are closer to the base.
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ee Units are meters for prismatic and daEroes for revolute Joints.
,/

static float ql.nta[DOF] •

{-3.0734, -5.373, -l&O., -240., -240., -720., -90., -720. };

static float ql_maz[DOF] •

{ 2.8448, 0.0, 180., 60., 60., 720., 90., 720. };

/e Joint ranges for ri|ht ann e/

/e currently non-existent, boEus ambers s/

static float qr_nln[901_ •

{333. ,333., -4E.,-2EO.,-22E.,-48.,-110.,-lO0.};

static float qr_mLt[OOlr] •

{222. ,222., 45., 70., 48.,22S., 170., 100.};

/e Joint uoishts used for salvia K the Jacobtan equation. The ve2ue8 of this

ee vector define a dtaKoaK1 matrix Q sink the elements of 'Joint_oat|ha' on
es the diasonal. The (in |snore1 rodudaat) Jncebian equation is solved such

os that q'Qq is nininised. (q' is the transpose of q).
./
static Joint.ueiSht[DOJ_ • {120.0,48.0, 6.0, 6.0, 2.0, 1.0, 2.0, 1.0);

/s ¢onstlutts

./
for definition of picture and s_dol

8dofinaLt2 0.7

Ikioftno U2 2.7

Iklofine U2b -2.8S

Ikloftno |Y2 .998

8<Saline mnq 0.20 /o oztra 1essay o/

edaftna 17,3 0.0

8define |Z3b -0.80 /e fudge don't out collision oith 'cart' plane s/

OdeftaelUt4 0.19

Odaftne U4 -0.21

8dsftno U4b 0.249

Ikioftne 17.4 -0.089

#doftnoRR5 0.10

Odoftne IYS -0.12

8define hYSb 1.033

8define !17 0.08

Sdofino IY? 0.0

Sdofima 1YTb 0.20

8define 118 O.OS

8define |Y8 0.93

#define |YSb -0.93

8deltas IZ8 0.23

Iklsftas R28b 0.38

/s 'log_Link.Node1' uslmes a cylindrica/ link model. The first 6 parmtsrs

oe are the ©ylinder's oadpolats, the 7th ts the cylinder's radius _sd the
so lot one is the link number.

so 'leo_Ltnk.Trtan_Nodel' assumes a trtansllar plane sesnent node1. 9 endpts,
es the radios, and the link number are the parmters.

./
static void Oet_Link.Rodols ()

{

(void)len_Link..Rodsl (U2, IY2, 0.0, U2b, |T2, 0.0, 112, 2);
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Bog.Link.Node1 (0.0, 0.0, EZ3, 0.0, 0.0, IZ3b, 113, 3);

Sen_Link_Rods1 (ILW4, 0.0, IZ4. U4b, 0.0, IZ4, 114, 4);

Bee_Link_Rode1 (0.0, EYS, 0.0, 0.0, lYSb, 0.0, ILKS, 8);

Set.Link_Rode1 (0.0, IT'r, 0.0, 0.0, nYTb, 0.0, ILKS, 7);

(void)Eev_Link_Trita.Rodel (O.O,EYS,EZS, O.O,|YSb,tZ8, O.O,O.O,EZ8b, 118, 8);

/, The definition of the robot's picture on the screen. The picture is

00 a nero frame - every 1the of thin frame is defined hero. The six

0* first ptre,,eters of the 'Link_Ltne' procedure are the tee ondpeintn

*0 of the line in the IOCL1 frm. Omit: meters.

,0 The 1ut parameter is the link number.

0/
static void Get.Link_Pictures ()

(
/.
h SUgcore picture defined.

e/
}

/* The follogin s inforuation deals seth collision svoidtmce betessn links.
*e It's s table seth dimension (DOF+I)e(9OF+I). Insert a TIUE if a

e. collision between the column ud the roe link is possible; then the

** proKremuill do collision avoiduce on this particular link-link pair.

*e This table is cleaurly s]mmetric - no the proKrem vilI only consider the

,e upper risht side of the dial;oat1 (diagonal elements are of course FALSE).

*/

BOOLEJUI l_l_check[DOF÷l] [DOF+I] -

((FALSE

(FALSE

(FALSE

{FJLSI

(FALSE

(FALSE

{FA£SI

(FALSE

{FALSE

/e 0

FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE ),

FALSE, FJUIE, FJ_SE, FALSE, TRUE, FALSE, FALSE, TItOK },

FALSE, FALSE, FALSE, FALSE, 1101, FALSE, FALSE, TILUK },

FILSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, _ },

FALSE, FALSE, FALSE, FILES, FALSE, FILSE, FALSE, TII_ },

FILSE, FALSE, FILSK, FALSE, FALSE, FALSE, FALSE, FALSE },

FALSE, FALSE, FJU.SE, FALSE, FALSE, FALSE, FALSE, FALSE },

FiLSE, FALSE, FALSE, FJkLSE, FALSE, FALSE, FALSE, FALSE },

FALSE, FALSE, FILES, FALSE, FALSE, FALSE, FALSE, FALSE }};

1 2 3 4 S 6 7 8 */

hndtf
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Planar Model

Our triangular planar model is defined by three vectors and a radius. It models

the volume of space swept by a sphere of radius r over the entire area of a triangle

defined by the three points a, b, and c, see Figure E.1. It can also be defined

mathematically as the set of points S where S is defined as follows.

S(a,b,c,r) = {p[P - a + t,x + t2y + R, Vtl,t2_ [0..I],VlRI- ,}

where

and

x_-bma

y--c-a

Adding thisplanar model, henceforth calleda "triangle",to the planner's line

segment, called "segment', requiresus to make distance calculationsfor two more

cases: distance from segment to triangle and distance from triangleto triangle.

Munger has already calculated the distance from lineto line,so we willuse his work

without repeating the derivation (seeMunger [i]p. 7-13).

E.1 Distance from Segment to Triangle

We shall develop this calculation in the form of an algorithm outline. Words

starting with capital letters are keywords (functions, variables).

Segmen' _o Triangle Distance Algorithm:

1. Pr ect the End Points of the Segment onto the plane of the Triangle; calculate

the Distances from the end points to the plane, and calculate the Half-Planes
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Figure E.I: Triangular Planar Model

which each end point is in.

2. if both end points are in the same Half-Plane then goto Step #3 else Find the

Intersection of the Segment with the plane defined by the Triangle.

(a) if the Intersection is In-The-Triangle then Report a collision.

(b) else calculate the distance from the Segment to each of the three segments

constructible from the Triangle's three verticies and Report the shortest

distance, closest points, and vector.

3. if the both end points' projections are In-The-Triangle, then the closer of the

two endpoints and its projection are the closest points on the Segment and the

Triangle. Report these points, their distance, and the vector between them.

4. else calculate the distance from the Segment to each of the three segments con-

structible from the Triangle's three verticies and Report the shortest distance,

closest points, and vector.
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--end of algorithm--

There are three key procedures which are worth discussion, details can be

found in module vaetor, c. The first procedure is the Projection of the endpoints

onto the plane of the Triangle. This is done by finding the normal to the plane

(again let a, b, and c be the points of the triangle):

normal -- (a - b) x (a - c)

Then the matrix

T = (a- b [ a- c [ normal) -1

is the transform from the world frame to the coordinate frame of the triangle plane

ab and ac, and the normal to the plane. Hence the product

Td

where

d=a-p

and p is an endpoint of the segment, transforms the point p into the plane's coor-

dinate system. From there the world coordinates can easily be recovered.

The second important procedure, In-The-Plane, determines if a co-planar point

p is inside the triangle abc. See Figure E.2, if ap is in the shaded region then its

cross products with ab and ac will have the same sign, ie. their dot product will be

positive. If ap is in the interior of the vectors ab and ac then the cross products

ab x ap and ab x ac will have the same sign (dot product). Thus we have a test

for one vector ap's inclusion between two other vectors ab and ac. Finally, if p is

between two pairs of vectors of a triangle ( ab and ac and bc and ba), then it is

interior to the triangle.

The last procedure, calculating the distance from a segment to another segment

has been described by Munger in his paper [1].
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Figure E.2: In-The-Triangle()

E.2 Distance from Triangle to Triangle

This calculation draws heavily from the procedures already described. The

following algorithm calls the Segment to Triangle Distance Algorithm five times,

therefore this algorithm is at best five times slower than the previous algorithm,

which in turn is slower than the segment to segment distance calculation. In sum,

adding the triangle model has slowed down distance calculations considerably.

Triangle to Triangle Distance Algorithm:

1. Let the planes, pl and p2, be defined as points (a,b,c) and (d,e,f), with radii,

rl and r2.

2. Find the closest segment-plane pair among the following pairs: ab-p2, ac-

p2, bc-p2, de-p1, and df-pl, by calling the Segment to Triangle Distance

Algorithm five times. Name the closest points point1 and point2, and name

the distance dl.
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3. Return the closest points pointl and point2. Return the closest distance

dl - rl - r2.

--end of algorithm--



APPENDIX F

Header File Listings

Module alg ( linear algebra ):

Data types

typedef struct vat

(
doable so ;

int r, c;

Let size;

} vat;

A variable (matrix, vector, or scalar). 'r' rows, '¢' columns, ud 'size'

number of elements (rec). 's' is a pointer to a Iinear array of 'size'

doubles. The order is left to right, then top to bottom.

Procedure description
................. 00--.

void Init.Var8 ()

This procedure initializes the '°ALG" module ud must be called before doing

anything else.

void Exit.rare ()

Cu be called in order to free all u_mory space used by the module. Be function

should be called after 'Exit.Vats'.

V11 *hg.Var ()

Assigns a pointer to u tniti_ized matriz to 6pointer variable. Every pointer

variable mast be initialized this nay before using i_.

After initialization the variable is empty (z OxO matrix).

BOOLEA| Pu_ (a, b)

V&l ca;

VA| *b;
........... 00 ........

Puts the value of 'a' which cu be a variable or u expression, into 'b'

This function must be used for every usi_nment operation!

VA1 -VO (r, c)

int r;

tnt c;

meturns u rec matrix with all elements equal to zero. Typed: "yes-oh".

ViE SVOnes (r, c)

int r;

int c;

108
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Returns an re¢ matrix uith all elements equal to one.

VA1 oVI (dim)

inn dim;

Jteturns a dimedim unit matrix.

VAI eVuser (r, c, vl, v2, v3, ...)

Int r ;

int c ;

'rec _ doubles;

Returns u rec matrix oitk user defined contents. The doubles in the parmneter

list _e filled in the matrix from loft to right Lid from top to bottom.

The uler must supply rec doubles in the p_|metsr list.

Example :

Voser (2, 3, 1.0, 2.0, 3.0, [ I 2 3 ]

$.0, 4.0, 3.0); creates [ S 4 3 ]

V£1 eVscmult (v, s)

V11 ev;

double s;

leturns 'v* multiplied elementuieo otth's _ .

Example:

[ I 2 3 ] multiplied uith 2.0 i8 [ 2 4 6 ].

double Vuctorolorn(v)

VAR ev;
------..o..--.. ...... .on.on.

|otuzla the "too" norm (lunCh) of variable v. 'v' mast be a vector, i. e.
'v * most have either one rug or one columm.

V£R oVodd (o, b)

VAI Ca;

VAR eb;

returns the elementoisu addition of variables 'a' and 'b'. 'e' and Pb' must

have the same dimensions.

VAR eVoub (a, b)

V11 el;

VA1 eb;

leturns the elementoloo subtraction of vorinbleu 'a' and _b*. 'a' and 'b' most
have the uamedimension8.

V£1 eVmalt (o, b)

VeRsa;

¥11eb;

1arums the product of variables 'a' and 'b'. The number of rugs of 'a' mast

equLl the number of colume of Ibl.

double Vdot (a, b)

VAE ca;

VA| eb;
.--.oo..0_00 .... 0--00

1mourns the dot product of column variables 'u' and 'b'

(Compatibility required)
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VAI *Vtrnnspose (v)

VLI ev;

hturns the transpose of variable v.

VA| erosive (s, b, q, success)

VA| we;

VAI sb;

VAI .q;

JJOOIEiJ ojuccoee;

Returns the solution of the linear system aozub. 'u' and 'b' must have the

sam number of rugs. If 'a _ is square, PVJolvo' returns the solution, if

one exists (if 'a' il noasinplar) or the solution to the uderdotormined

reduced set of equations (if 'a' i8 JtnKular). If 'a' humors FOgS thu

toluene (Jylt4dn il overdetarninod), then 'Vsolve' returns the least squire

approximation. If ta' ham lens rugs tbu columns (system is udordetornined),

then the • minimtzis| z'Q• (P denotes the truspose) is returned. Q is the

IBVI3Lq| of a diagonal matrix with the elements of vector 'q' on the diasonal,

thus 'q_ and 'x' have the same dinonsion. If 'q' is BULL, then QnI

(unity matrix) is assumed ud thus the ninimnorn solution is returned.

If a solution was found, 'success' is sot to TIUE, otherwise to FALSS.

Vll eVisv (a)

VAIt eu;

returns the inverse of variable 'u'. 'a' must be squared.

ins Bb_Cole (v)

Valtsv;

Ioturns the number of colmms of variable 'v p .

ins lb.lows (v)

VA| sv ;

goturns the number of rugs Of variable Jv t .

BOOLE&| Fi11.Var (v, r, c, nun, vt, v2, v3, ...)

V11 sv;

int r;

let c;

ins nun;

'sum _ doubles;

This procedure is used to fill part of matrix 'v' with user defined values.

It staz_s filling at the element at roe 'r' ud column 'c' and fills up

from left to right and from top to bottom. It grates 'nem' values into

the matrix. It is the user's responsibility to supply 'hem' doubles after

the 'nun' parsmeter. If the natrix would overflow over the bottem right

corner, as error occurs and as values are written at all.

double 1sad.El (v, r, c)

VA1 ev;

ins r;

ins c;

geturns the element at roe 'r' ud colwm 'c' in variable 'v'.

start at r = 0 asd ¢ = O.

Elements



IIi

BOOLKA| Vrite.E1 (v, r, c, val)

Y&l ev;

int r;

int c;

double va_;
........... ....----.--..--...--....._

Vrttoe 'vsl' to the element at roe 'r' ud columm 'c' in variable 'v'. The

first element i8 (r,c) u (0,0).

VAi eVcut (8rc, r.src, c.src, r.size, c.size)

VAI Cart;

inn r_lrC;

Let c_erc;

inn r.size;

tnt c_size;

Returns • piece of variable '8rc'. The top left corner of this piece i8 the

element at roe 'r.src' ud colomn 'c.src' in variable 'src', The piece

hu 'r_size' rose ud 'CoSine' C01n"'e. An error occurs, if the specified

piece is not part of utriz 'arc'. If r_size or e.ltze are zero then

the rest of the elements in the row or column, respectively, zro ttken.

BOOIJL4| Puts (src, dose, r_deet, c_dolt)

VA| sere;

VAR odest;

izt r.dost;

int c.deet;

Puree vuiable Zero' into va, riable 'doer'. 'erc's top loft corner Sole
to roe 'r_dest' ud colum 'c.delt' in veritble 'dolt'. An error occurs

if there is not enough room in _dsst' to complete the operation.

BOOLEA|Sutp.Eogs (v, rl, r2)

VAl ev;

int rl;

izt r2;

1owe Jr1 ud 'r2' in variable iv' ere oxchu|od.

BOOLLt| Slap.Cole (v, el, c2)

VA| or;

int el;

int c2;

Columns 'cl ud 'c2' in veri&ble 'v' are ezchu|ed.

BOOr,KAJPrint.Vtr (v)

VAI ev;

Variable 'v' is printed to the screen. 'Print_Vat' doesn't cero about the

screen size, so nares mmtricesm_y be hard to reed.

void Kill_Vat (v)

VAE ev;

The nooox7 space of variable 'v' is freed. Pointer 'v' is invalid after

'Eill_Ver'.
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Module env ( environment ):

Procedure description

void Init.hv (source)

LIST *source;

|oadu the Xocatiouu of all struts that aru present in the environment at

initialization time lad the 2oni_Ch of the struts in use. Both input file sad
CIUSK interface are road. Then totrahodra are extracted ud intermediate

stops are generated.

double Out_Strut_Lehigh ()
............... ..*o*oo*--**.

loturuu the strut loulFth.

BOOL][II S)lmetric ()

Beturno TRUE if the struts are symmetric in the sense that the endpointe csa

be oxchnmKod for assnmbXy. If this is not the ¢sao, FALSE is returned.

BOOIJLi| Out_Tetra_Pus (st, yr, st, nb, pt, p2)

int xt;

tat yt;

Jut st;

int nb;

Vector up1;

Vector up2;

Transforms t strut position siven in tutrahodron coordinates to carteaiu

coordinates of its ondpointu pl sad p2. (xt, yt, st) denote t tstrahodron

in the structure ud 'rib' denotes the number of the strut in this totrshodron
(l..e).

NODKI. oOet.Ftrst.Strut.lqodol (lp)

LIST_ELeeIp;

RODE. oGet_hxt.Strut.Nod,l (lp)

LIST_ELeeIp;

RODIn. eGet_Firut.Thtnl_t,l (lp)

LIST.ELoe2p;

RODIK. *6et_|ext.ThinK_Nodol (lp)

LIST_ELoelp;

NODm .6*t.Firut_Intor_Step.Rod.l (1p)

LIST.KLoelp;

NODev eOot_gozt.Intor.Stup_NodoX (lp)

LIST.ELeoIp;

Those prucoduruu uru used to read the XiJt of strut models, thing models

(struts sad planes) ud intermediate atop models ud are equivalent to

the standard list readout procedures deucribed in the list modulo.

BOOLKAB Add_Strut (pl, p2, strutld)
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Vector pl;

Vector p2;

int strmtld;

Adds a strut to the environment. Its ondpoints are st 'pl' _nd 'p2'. Its id

is 'strutld' (for Ksm). lateruediate stops are deleted, totrehodre rooxtractod

and intermediate stops ro¢ommputod.

BOOLK£I 1shove_Strut (pl, p2, red, str_tld)

Vector opl;

Vector ep2;

double or&d;

tat ostrutld;

hooves the strut closest to is iaqin_strut with ondpeintsat Pope, end

_op2*. The closest strut is the strut niece center is closest to the center

of the _in_ strut botuanm '*pl' and ,.p2'. This strut's endpotnts,

radius, ud GSR identity number is rotunlod in ,epl', _ep2', 'red' ud

'strutId', respectively. It is VaT II_0|T£1IT that Ironers.Strut is ¢_led

before grup.Pax_ so that Grup_Par_ will inforu ps correctly.
FALSE is returned if there is no strut in the environment.

IntermNdiate stops uro deleted, tetrlhedrs reextracted ud intermediate stops

rocompnted.

RODW. eGet.Closoet_Strut.Rodol (pl, p2, dmin)

Vector pl;

Vector p2;

double edmin;

|eturue the model of the strut frogs strutlist closest to the position

definod by 'dl' and 'd2'. The distance is returuod in 'dais'. If there
is no strut in the strutlist, 'dmin P takes a negative veins, othoruise

Pdmin' is the distance bergson the centers of the struts.
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Module global :

Procedure description

void Uarning (procnana, nag)

char *procnm;

char snag;
----_o ................ o ........

Prints the callin s procodursDo name (_procn_me') and a oarntn s meooqo ('mss')
and returns.

void Error (procname, ms K)

char *procnsme;

char sumS;

Prints the ca111ng procedure's nm ('procname') and an error meosa4go ('mss')
and returns.

void Fatal (procnsme, am s)

char eprocnsme;

char enoS;

Prints the calltn| procedure's name ('procnsme') and an error messaSo ('naS')

and exits the pro|rsmgtth exit code 1.

void Ytts1_Ntlloc (procnsme)

char *procnm;

Prints the calltn| procedure's name ('procnsme') and the standard error

moooqa "loner 7 allocation failed" and exits the program.

This procedure is provided for convenience since ever 7 manor 7 allocation
must be checked for failure.

It also returns gith exit code 1.

double Anon2 (x, y)

double x, y;
.................. _o

Like the built in sutth faction anon2, bat Itu2 (0.0, 0.0) - 0.0



115

Module gpath ( global path planner algorithm ):

Procedure description

void Init.Pnth ()

Hunt be called once before calling 'FindoPath _ for initialisation.

LIST OPind.Ptth (path, pl, p2, dir, doprt, appr,

LIST vpathl;

Vector pl;

Vector p2;

Vnctor dir;

Int attempt_me;

attempt_nnm)

Planma path loading from the current joint vector found in the robot module

to a position defined using the endpoints of the goal strut 'pl and Pp2'

and the direction from ghich the goal in to be approached 'dir'.

The path in returned in list Ppath _ . The elements are joint vectors (type VII).

If attempt_sum is not 1 then planning starts at last global graph state

uith the black lists and iJtepliJt and "rotation insertion number" saved

from the previous call to Find.Path.
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Module graph ( graph theory ):

Dan• types

typedef struts graph
(

LIST e•odelist;

double (*Weigbt) ();
BQOLKA! directed;

} OlAPn;

/e the nodes (vez_cices) of the graph e/

/* fuctto• returning u edgeJe weight e/

/e TIUK if Jl"aph t• directed e/

Procedure description

QKAPS elee.Qr•ph (Weight, directed)

double (sgeight) ();

BOOLEA| directed;

Creates i now graph data struct•ru. The user must provide the function 'Weight'

which returns the geisha of an edge to the graph nodule. It is declared as
follows:

double Weight (•odel, node2, edge)

char enedel, node2, edge;

If the graph is directed, the module expects the eeight of the edge going from

'nodei' to 'node2'. If parsmeter 'directed' is TILUE, then a directed graph is
created.

void Connect (graph, nodel, node2, edge)

GIIPH Seraph;

char enodel;

char enode2;

char sedge;

'nodel' ud 'node2' are couected by 'edge'. Any graph structure cu be build

by just •sing this one procedure. If o•e of the nodes hu been used in a

previous call of 'Connect', the• the neu edge t• added to it, otherwise a

hen •ode Is created automatically. In a directedgr•ph an edge pointing from
'nodel' to 'node2' is created.

void Ceuect.All (graph, •odeliet, Get.Kdge)

QJt£PB seraph;
LIST enodeli•t;

chlur e(eQet_Kd_l) ();

This procedure is useful for treatise graphs in nhich every •ode is con•ected

to every other •ode. '•edeliet' cent•in• the nodes of the graph and 'Get.Edge'

is a user provided procedure th•t iS declared an follose:

char eGet.Edge (nodet, •ede2)

char enodel, enode2;

This function must return the data associated to the edge between 'nodel Pud

'node2'. This can be a gULL psi•net shich means that this edge doesn't have

u equivtle•t data structure in the user's module. In fact, the 'Get_Edge'

pLruJeter can be • IRILL pointer, too. Thin is the case ehen the edges in the

graph nodule generally don't have an equivalent data structure in the user's

module. In a directed graph every pair of nodes gill receive two edges

pointi•g in opposite directio•s.
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void Connect_All_Goad (l_aph, uodelist, Get_Kdge, Condition)

QIAPH egrapb;

LIST on.delian ;

char *(*Qot.Kdp) () ;

BOOLEI/ (eCoudttton) () ;

This procedure uorks like 'Connect_C.rid', the only difference is the

additional parsmeter POoudttion' uhich must be declared as fell.on:
B00LEAI Condition (nodal, nodei)

char on.de1, enodoi;

Before creation of u ec_ 'Connect.All_tend' gill ceil this function. If it

returls TII_, the edge in created, othorvteo it isn't. This feature is useful

to sot up visibilitYl_rSpks: 'Condition' mist return TlUE If 'nodol' is visible

from 'uedei' tad FALSK othorvtso.

BOOLKAB Disconnect (l_raph, nodol, nodei, edge)

QIIPH eSrapb;

char on.de1;

char enodei;

char sedge;

This procedure is used to remove u single edge from the graph. 'edge* beteeen

'nodal' ud 'node2' is removed. TRUE is returned if this edge existed, FALSE

othervise.

void Disconnect.All (_raph)

GELPH esraph;

This procedure removes -11 edges free the graph. The nodes remain in the

graph!

LIST eA.St_r (graph, i_Jtisutte, start, goal, edge.path)

GJAPN eKruph;
double (ebtilutte) ();

char estaz_;

char *seA1;

LIST eeodge_ptth;

The A-Star algorithm tries to find the ,pains1 path from 'start' to 'goal'

0ptis._ nouns min_ sum of edge oeishts alonK the path.

'Estimate' is up.inter to a user provided function:

double Estimate (node)

char suede;

It smut return ta estimate of the cost to K. from _node' to 'goal'. If

this estimate is Lleays l,get the the actual COlt, A-Star sill find the

optim_path.

If u park exists, £-Star sill find it and return a list of the nodes it

posed. In parameter 'edge.path' it returns a list of the edges it gent

through. The too lists have the some lon_h. The first edge is the edge

betuoon the first and the second node, so the last entry in the edge list

is aluayu a gULL. If no path exists, lULL Is returned,

void [ill.Qruph (graph)

OILAPH oSrapb;

Deletes the nodes, edges tad the graph data structure making 'graph'

invalid. The usorJs data for the nodes tad edges are of course left intact.
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Module graphics ( SUNcore and X Windows interface ):

8define BLACI[ 0

8dsfins WHITE I

edefins trn 2

8define Yl_OW 3

8define BLUE 4

Sdsfino 0 urru 5

Sdefine GRAY 6

Sdsftae I_GRAPHICS 2

8define SUE.GRAPHICS 1

8define lO.GtiPlICS 0

Data types

typedef strnct line

{
Vector pl ;

Vector p2;

inn color;

inn style ;

} LIII[;

LIIK is a line on the SUBcore screen. '¢olor' i8 deftned above. )style' is

either SOLID, DJSlmiD, or DOTTY.

tTpedef stFuct character

{
char c ;

Vector poe ;

inn color;

}c_1;

CHAR represents a SlnJcore character on the screen.

type<Jef struct so g

{
LIST elineliet;

LIST echarlint;

inn sep"m;

BOOLKAJactive;

} S_;

SEO represents a se6uent that contains a number of lines ud characters. The

lists (LIME) are stored in 'linelist' ud the characters (CIA1) in Jcharlist'

)8epm' is the SUBcors 8esnent number. Pactive' is TE_ if the 8epent is

nonumpt 7 ud must be included in updates ud rotations.

Procedure description

void Init.araphtc8 (source)

LIST *source;

Initializes S_cors in the current nindon tad displays n coordinate system.
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P•rmtor 'so•roe _ is • lint of •xpro•sto_from the parser. If oxpro•sion

'I_g' is found, the graphics •re displayed in black and ghats, eve• o• •

color screen. Thin cu be ••eful for seres•dumps.

If a 'ZOOM (x)' expression is found, the• the display is e•l•r|ed or

shrnk according to x.

void Init.T•zt (source)

LIST ,source;

Initieli•es • nee SuTIKIf utndo• so that ••dour I_d Jtdi• l• I_ppod to i

PnrJmotor 'so•rc• } is • list of expressions from the parser. If expression

_DialplOStlCS j is fond the• the dtlqptositlcs linden iS displayed.

BOOLIU! Ornphics.lcttve ()

Return• TRUK tf SUBcore hu bee• successfully initialized, PILSS other•lee.

void Exit_Oraphtcs ()

Should be culled before exiting the prosrn.

void Spim.Ornphics ()

Enables the nor to rotate the picture around the vertical or the horizontal

screen uis by movin S the mouse her/Ion•Lily or vorticLlly respectively.

This procedure ends in the current orientation •hen the user presses the
middle mouse button.

KEg egos_Segment ()

leturis • new sepbsmt.

void Kill.Sesment (so S)

KEG oneS;

Kills SOllment 'sos'.

void Opdate.Segment (sen)

Si_ eKeS;

|edrnns sesment 'sos'. This is needed •hen there are chusos in certain lines

or characters in the lesment that are not yet reflected on the screen.

void Update.All_Sosmemts ()

ledrnns ell seKmeat8 at on©o.

void Io._pclato ()

"After this procedure is called, the scream is not updated uhon primitives are

inserted i• or deleted from a soSmemt. This is useful uhe• deletimSmuy

primitives at once to avoid repeated reconstrnc_ioa of the sesmo•t.

Updatim K is turned back o• by cLlli•g 'Update_Sesment' on uy sesment.

LIIK egel.Line (color. style)

inn color;

int style;

Returns • ae• line uith saves color ud style (SOLID, DOTTED, DASHES).

void Kill.Line (1)

LI|E el;
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|ills lime '1'

void Set.Line_Pus (1, pl, p2)

LIBE el;

Vector pl;

Vector p2;
.... ...o......... ...... ..00. ....

Changes line '1'8 position.

void Got_LinooPo8 (1, pl, p2)

LIH el;

Vector pl;

Vector p2;

|etarlmS line'l'8 positioN.

void Insert.Line (se|, 1)

SKG nooK;

LIJE el;

Inserts line '1' into eepent 'so s ' and displays it inmediatoly, if there

was an previous '|o.Update'.

BOOLEA! Delete_Line (seg, 1)

SEG SeeK;
Lille el;

Dolotem line '1' frees soonest 'oog' and reflects the change immediately, if

there san no previous J|o.Update'.

CHAR OBey.Char ()
...... .oo--o._o.o.o_

leturne a neu character.

void lOll.Char (c)

CHil c;

Kills character 'c'.

voldchuse.char ()

CHAt ec;

Vector poe;

int color;

char oh;

Chugo8 position, color ud letter of characte[ 'c'

void Insert.Char ()

sr_ sees;

CHAIt ec;

Inserts character 'c' into eepent 'sag' and displays it imdiately, if there

vu no previous '|oogpdate'.

BQOLJUUI Delete_Char (ses, c)

$KQ enos;

CHAEec;

Deletes character 'c' from 8oSment 'on K' and reflects the chuge immediately,

if there gas no previous 'Be.Update'

void Flush_Text ()

Allege the SuaVXK'd system toy utndou to prtatf. This is a necessary step

because SunCOU oomehou disables the SunVIEM sindosing environment...
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void Moro_Text ()

X_ 'stop_text' is TlOl thou the text i8 FXuohod ud exocution uluitl uy

house button. Othorwioo. the tox_ ts just Flushed
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Module lpath ( local path planner algorithm ):

Procedure description

void Init_LPath ()

Nust be c•llod before the first call of PLoco,l_Path_Plu'.

void Prap.L•ctl.Path_Pltt ()

Called before each cell to 'Local.Path_Pitt' so th•t Sot1 tolerances are set.

void gornnlisa_A_Vactor (pl, p2, dir)

Vector pl;

Vector p2;

Vector edir;
................. 00.0°.0.0 .... . .........

Makes vector 'dir' lenlrth ! tad orthogonal to the line defined by 'pl _ and

'p2 P. _dtr' mill remain i• the plane defined by the line throush Jpl' and

'p2' and the line alan s the old 'dir'.

NODEL eGet_Nin_Obet•cl, ()
........ 0. .......... .000.°°

rut•ms s pointer to the model of the closest object to the robot.

BOOLEAS Valid.Strnt (pl, p2)

Vector pl;

Vector p2;

Returns TRUE if 'pl' and 'p2' is • valid position for an interwediate step.

BOOLEA| Locnl_Patk_Plu (q, pl, p2, d, path, pica, so S, rot.semi, _nn,

daprt, appr)

VAI eq;

Vector pl;

Vector p2;

Vector d;

LIST epath;

LIST up/ca;

SK(] seeK;

BOOLEan rot_normL1;
AIH_TYPKarm;

double daprt, appr;

Plats a path unin E • potential field method. The initial joint vector 'q'

is assumed and the path sin lead the (real or inaSinary) payload strut to

endpoint positions Jpl j tad Jp2'. The pal gill be approached in direction

'd*. The path gill be returned in list 'path' ehich mill contain a joint

vector (V11) for each step. List 'pica' gill contain the linen to display

the path tad se6ment 'JeS_ sill be used. If 'rot.hem1' is ThU][, then the

uEle lass thu 180 dog •ill be •led to rotate the 8Tipper from its start

to its Ko_l orientation, uhich is normally better. If it is FALSE, the other

sense of rot•tion nil1 be used. uhich involves an angle of rot•tion of more

than 180 de S .
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void len_Stnrt.Dir (dir)

Vector dir;

Nust be called before _Local.Path_Pliua' if tho path must leave the start

position in • particular direction. This direction is lalI|ST ths vector

'dir', so 'dir' is nonsa/ly the approach vector of the robot's srippor in

start position.
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Module 1st ( list data structure ):

Data typos

typodef •truce li•t.elti.nt
{

• truce list_element enoxt;

char edntn;

} LIST_EL;

/o point•r to the next list •lement e/

/e pointer to the data e/

Element• of type LIST_EL faro the chain of list element•. '•ant' point• to the

next element in the list, 'data' point• to the n••r data repr••eatod by this
li•t •lement.

typ•d•_ •truce list

{
struct llst_eXomont *first, elast; /e pointer• to boKinnlng and and of lists/

inn l•nl_h; /e numb•r of element• in th• list e/

char eeind•z; /* pointer to index array e/

} LIST;

LIST i• the main list data •tructurs. 'first' and 'last' point to the first

and th• 1ant •1smear in the LIST_EL chain. :loa_h' •tore• the number of

elements cnrr•ntly in the list. 'index' has a pointer to an array of user

data pointer• that e/log fast random list access. If an index doesn't exist,

'index' in gULL.

Procodur• dancrtpti•n

LIST else_List ()

Create• • new l/st (a]locatan and initialize• • LIST data structure) and

returns n pointer to it.

BOOLKIE In•ore (lst, data)

LIST else;

char edata;

BOOLJ_I Insert.As.First (let, data)

LIST else;

char edatn;

:Insert' and 'Inner,_As_First' are the tun procedures to build a list. 'Insert'

adds the element 'data' at the end, 'Inser_.is.First' at the beKinnin s of the

list. Kit•tin K indecos are destroyed by both procedures.

BOOIJrJUIDeleto (let, data)

LIST else;

char edata;

Deletes element 'data: from the list 'lot'. Returns TIt_ if 'data' us• found

in the list, FALSE othorstso. An oxt•ttn 8 index is destroyed.

BOOLKIE Is.In_List (lst, date)

LIST else;
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char edatn;

leturnsTIUK if 'data ) is found in 'lst', FALSE othervise.

char sOar.First (1st, current)

LIST elst;

LIST.ELeecurrut;

char eget_|ezt (current)

LIST_moocurrnnt;

'Got_First' ud 'get_|ext _ _loo soqneatio_ access to the list. A procedure

usin K these functions typically looks u follogs:

void Sequsntial_i©cess.kuple (lot)

LIST *lst;

(
LIST.ELelp;

DATA_ITEM ednta;

data = (DATA.ITEM *)got.First (lst, tip);

vhile (1p)
{

Process.Data_Item (data);

data 8 (DATA_ITl_e)Oot_|ext (alp);

}

In this example the list holds elements of type DATA.ITSH. Since both

'Get_First' ud 'Qet.|ext' return pointers to type char, a type cut is

necessary in most cues. The pointer variable Jlp ) points to the current

list element. It is initialized to the first list element by 'get_First'

tad updated to the next olamoat by POet_lent'. Uhon the end of the list

is roached, 'lp _ is usi_ted IKJLL, so loop control cu be done oniu S 'lp'.

If a prosram contains nested loops, it is Lnpor_ut to declare t sep_rnte

element pointer variable for every loop that sees throush • list.

Iota that _lp m does JOT point to the data almost of type DATA_ITEN, but to

the list element of type LIST.lU. thnt represents this data element!

char eget_Bth (lst, n)

LIST elst;

int n;

This ruction is used for rudomnccess. If u index ozists, the n-th element

is returned vary quickly, otherwise the faction stops throuKh the list

soquonti_l 7 ud thus takes a little leaker if 'n' is largo.

nee returns the first element. If 'n' is too largo, IPULL is returned.

char egetoThts (currant)

LIST_lH. eecurrent;

returns the dntn element represented by the 1Let element thst 'current' points

to. 'current' is loft uchamKod.

char egot_Lut (lst)

LIST elst;

|etnrns the last data element of list 'lst'.

void Build.Index (lst)

LIST elst;
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Creates an array of pointers to the data elements in the list. Once this index

exists, random accesses usia K function 'Qet.Jth' become ouch lunar. Any

function that chanKos the list sill destroy the index automatically!

BOOLKAI Append (let, let2)

LIST elst;

LIST elst2;

Appends the elements of 'lst2' to 'let'. The list elements are duplicated in

this process, so chassis| 'let2' after 'Append' hu no effect on 'let'

TEUK is returned if 'append' van successful, FALSK othervise.

An extsttn S index of 'lst' is destroyed automatically!

int List.Len_h (let)

LIST olst;

leturns the number of elements in the list 'lst'.

void Empty.List (lst)

LIST elst;

lemoves all list elements from list 'lst' leavin E just the LIST data structure.

Any existin| index is destroyed autoeJatically.

Sots that the data elements themselves are SOT affected in this process!

void List.Apply_P (let, Function)

LIST elst;

void (*Function) ();

Applies the user defined function 'Function' to all elements of the list 'lst'

This function oust be declared as folloes:

void User_Function (data)

char odata;

'data' is the current data element in the list.

void lill.Llst (let)

LIST elan;

lemoves all list elements and the LIST data structure itself, so 'let' is

invalid after '|ill.List'. Any existin| index is of course deleted too.

Sots that the data eles_Jnts themselves are JOT affected in this process!
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Module model ( strut and plane obstacle definitions ):

Couetute

Sdefino STRUT.TYPe O

Idol•no TIlAI.TYP| I

Data types

typedef s_ruct model
{

in• type;

Vector pl, p2, p3;
Vector di::

double r;

in• td;

} ROD|L;

RDDI_ repreoenlu either a suupt sphere line segment or pluar triangular

segment |oometrtc_nodel. The volume Is the volume

that • sphere of radius Pr P suoepo •hen having •rum point 'pl' to point 'p2'

on a straight line, or batuaun the triugle defined by 'pl', 'p2',ud Pp3'.

/, type of node1; triu|le or olrut 0/

/e vector rap (from uorld) of verticius of sodal ,/

/e direction of approach to model (if used as subsoil)e/

/o radiuo of seep• sphere model ,/

/e frame id number for Ksm identi_ication e/

Procedures

NODKI. e|eu_Rodul ()

Ioturns a nag instuce of J model.

void Set_Nodal_Parameters (m, pl, p2, p3, r)

RODU. am;

Vector pl;

Vector p2;

Vector p3;

double r;

Chuges •11 parmtex_ of u_del 'm'.

void Set_Nodal_Strut_Poe (m, pi, p2)

RODEL on;

Vector pl;

Vector p2;

Chugeu the endpoints of model 'm' leavin K its radius unaffected.

void Set.Rodol.lbulijs (n, r)

NODEL on;

double r;

Chugesnodel _m's radius leaving its ondpoints unaffected.

void Set.Rodel_Dir (m, dir)

RODEL am:

double dir;

Chugesnodel 'o's direction leavin K its • )ants unaffected.

void Sut_Rodel_Id (m, id)
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NODEL *u;

int id;

Sots model Pm's frme id.

double Nodel.Distance (nl, hi, pl, pi)
NODEL eml;

NODEL eni;

Vector epl;

Vector ep2;

Computes the shortest distuce between models *ml* and *m2'. Xt returns the

distance and the tgo closest points on the line se6meats inside the swept

sphere cylinder or triangle (parameters *pl j, *pi').

void Qot.Nodol_Strnt.Pos (m, pl, pi)

NODKL em;

Vector opl;

Vector epi;

le_urns the model ondpoints in *pl* ud *p2'.

void Get_Rodel.JLadius (m, r)

NODEL we;

doubie or;

Returns the model r&di18 in *r*.

void Qet_Nodel_Dir (m, dir)

RODKL em;

double edit;

leturns the model direction in *dtr*.

void Qet.Rodel_Xd (m, id)

flODEL om;

Int *id;

Returns model 'n's frame td.

void Swap.Strnt_Eadpoints (m)

flODEL em;

EzchanKes the model's ondpoints.

void EiIl.Rodel (m)

NODEL em;

[ills model }l I (frees its memory space).
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Module parser :

Data typos

typodef struct expression

(
chsJrekeyvord;

LIST spar_list;
) UP:

EZP roprnneuU exprossioss in u inpu_ file. An expression consists of a

keygo_! ud option_ly • number of l_rmmotern in parentheses, 8eptrated

by conmu, r_nmple8:

keyvord

keyvord (paremoter)

keyvord (paremeterl, parmmezer2, pnrwmeter3, pnrumeter4)

'keygord' points to the keygord string converted to eppercue. 'par.list'

contains • list of strings thnt represent the parlumetor8. They ere ills

converted to uppercuo.

Procedure
.... ._0----

LIST slow.Source (fnmme)

ch_rfnumG ;

This procedure opens the text file Pfmeme Iud parses it according to the

nodwlols Stemmer. If the file doesn't exist or there trn 8ywtu errors, then

• NULL pointer is returned, otherwise • list of expressions u found in the
file is returned.

It is possible to sot 'fnmme j to lULL. In this cue, an empty expression list

will be returned without error nessqo.

EXP eQot.First_Exp (source, lp, koygord)

LIST esource;

LIST_ELoolp;

char ekeyvord;

tYp eQet_gext_Kxp (lp, koyuord)

LISToELOolp;

char ekoygord;

'Oot.Firnt_Kxp ) ud DGot.Jext.lLzp_ are very s_mtlmJr to 'OetoPirnt p ud

'Get.Bent 1 in the list nodule. In fact, if 'koyword' is nULL, they are

equiv_owt. If 'keyuord' is n strin K, then 'OOtoPirst.Kxp' gill return

the first expression with this koyvord ud 'Qot.loxt.Kxp' gill return the

next occurrence of u expression with this keyword from the csrront point

in the list. The m_tcktn S is cue insensitive. The readout procedures ire

compatible to the list modulo in the sense that I part of the expression

list cu be reed with the procedures in the list modulo _ then n particular

koyvord cu be sesrchod from thst poin_ using JGot.Jsxt.J_p*. If no nntchin S

koygord is fond, lULL is returnod ud 'lp' is set to gULL.

char oGot.Keyuord (ezp)

KIP eoxp;

Returns the upporcuo keyvord string of expression 'enp'.

inn gb_Pnr (exp)

EZP eoxp;
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Returns the number of paremeters of expression 'exp j

char eQet.Par (uxp, rib)

I_P *ezp;

int nb;

Returln uppercue paremeter saris| number 'rib' in expression 'exp'. The first

parumsler has 'rib' • O. If 'rib' in too ILrKe, IK/LL is returned.

BOOLEAJ Get.Double (par, v)

char spar;

double *v;
----.....o ........ o.--....o.....

Converts string 'par _ into double 'v'. |stuns TIUE if succesxful,
FILSE otherviss.

BOOLKAg Oet.Int (l_r, v)

char opLr;

ant ev;
.----ooooo..o .... so ....... o--

Converts saris K 'par' into int _v'. |sturne TItUE if successful,
FALSE othervise.

void EilloSourcs (source)

LIST *source;
......... _ ......... oo..o.--

li111 the source list 'source _. iills all expressions in it and the

llst Itself.
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Module ppLib ( path planner CTOS message library ):

CODStidtt 8

........-

IRiofine NSG.PP (NSO_USlm+300)

8define NSG.PP.INITIALTZK (NSO.PP+ 1)

Sdeftno NSfl_PP_SHUTDObl (/LSQ_PP+ 2)

8define NSG.PP.STLETPATE (NSQ_PP+ 3)

$dofine NSG.PP_PLAJPATH (NH.PP+ 4)

• define NSG_PP.EKPLIJPAT1 (NSG.PP+ 6)

ldefino RSQ.pP.ALTPLtBP&TT (NN_PP+ 6)

8def/ne NSG_PP.DKNO.KXEC (NSG.PP+ T)

I_lefine NSG.PP.IBVKII (NSG_PP+ 8)

#define PP.MAI_ "PathPluaez _'

8define ALT.PP.B/d_ "lltPathPlannex _'

I_ioftmo PP_TI_PDI! "/usr2/tost bed/t_p/"

8dofLne pp_[ITPT. FIUDIMIE "pathsoK"

/, SdofLno STIUT.L_JGTH 0.89 ,/

8define PP.DEFAULT_SP mm 0.30

8defLno PP_DEFAULT_BIJDrD O. SO

8define I_OFFSET (0.32)

Odeftno S.OFFSET (0.1491)

8define I.NII (0.60)

8doftno Y.RI1 (-1.301)

Sdoftne Y.NAX (0.60)

Data Types
....------...

tTpodof 8t ruct
{
AlIq_TYPE am ;

JOIBT_V£CT019 Jnts ;

}
STAETPATI.TYPI ;

holds • Joint vectoF and the arm it belonls to.

typedef lit z_ct

{
AUI.TTPI am ;

T1LAESFOEH pos ;

double speed ;

double t/me ;

BOOL st z_l¢ ;

double depz_ ;

double appr ;

)
PLMIPATN.TYPE ;

Data block to be pused by CTOS meJsaKo to PtthPluner, for plannin S paths.

Procedures
--....o..--.

ppIntti_ize - initttlizo pork plunor
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ZETUJJJS : O[ or KI101 indicatin K success in initiLlizin_ path planner

PAIARKTELq: TID.TYPE tid - TID of task cLllia S ppStartPath

char efilsasme - environment confipration file

,****o,oee,m,e,oeeeeoe,eoeee**eeeees**eoeoeeeeeee*mmo*eooeeeeeee*eooeeeo*mee**/

*******************************************************************************

ppShntdown - shut down path planner

UTURMS: (none)

PAILtI_TlflI3: TID_TYPK tLd - TID of tub callin 6 ppStartPath

ppStaFtPath - sot robot Joint position to start of path

i_'YOIJS: OK if joint positions sere not.

E!101 if not set. e. K. if Joint value is out of ranoo

PlJLt_: TID.TYP| aid - TID of talk calltn s ppStartPath

ARM.TYPE arm - LEFT_JlRor IIaHT.kllq

JOIFr.VECTOIt9 oJvec - vector of joint positions

pplesutPosition - roads current joint positions and calls ppStartPath

]LETIYEIS: chafe to file name. or _ if error occurred

PAILARETKIS: TID_TYPE aid - TID of task callin K pplesetPosition

ARM_TYPE arm - LEFT_ARMor EIGHT.ARM

*******************************************************************************

ppPluPsth - plua path ud urits to file

IIFruIUIS: char* to file name, or rOLL if error occurred

PAI2uqrrlDLS: TID.TYPK aid - TID of task callin 8 ppPlanPath

ARMoTYPK arm - LEFT.AIM or |IGHT.IRM

TIlISFORN edostPos - destination position of gripper

double speed - notion speed [ratio of full speed]

double time - t/me to conplste path sesment [seconds]

BOOL Otl_t - TItUE if carryln S Otrltt

double deprt - lon_b of depart sosment

double appr - lon_h of approach sosnont

|oto: speed 01 time should be specified, ud the other set to zero.
*******************************************************************************

ppEeplanPath - request alternate path for previous destination

IETUIUIS : chafe to file name, or gULL if error occurred

Pl_: TID.TYPE aid - TID of auk callin S ppPlanPath

ARM.TYPe arm - LEFT.ARMor EIGHT_ARM
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Module ppmain

Constllmte

ldofino DU)AI.LEI 0.20

Idoflno APPI.LEI O.IS

( path planning procedures ):

/e instructions conetuts thul cu be returned to tttn e/

/oOdoftnolflLtOI Oo/ /o i11o8al inuJtruction received m skip
Ikiofine NOVE 1 /e

8<lsfino GIL&SP 2 /o

8define OBOnaSP 3 /e

I_lofino OBGnaSPoP3Jm4 /o

SdofineADD.STIU/T S

8define UNOVK.STIOTO

Odofino JoIrrs ?

Odofiao VIEU 8

Odefino QUIT.PP 9

edofiue AILq_I.iITT 10

edofino AEH.IIOIT 11

0/

start path pgantq e/

add payload to robot, remove a strut from onv o/

remove payload, add strut to onv e/

lame without position specification. Place

s_rut whore robot lift it. o/

/+ ; strut to onvtronmmt o/

/e _ove strut free environment e/

/e +,,: Joint vector directly e/

/* e_op ud display for user (graphicsnodo only)e/

/e quit this program 0/
/e sets to loft arm. e/

/e sets to right urn. e/

ProclKIwros

void Ioit_Instructions (arcLst)

LIST esrcLst) ;

Prepares the 'srcl.ot' for parsing.

int Strut_Parameters

UP eozpr;

Vector opl;

Vector op2;

int obp_r;

int retcode;

(expr, plo p2, sbpar, rstcodo)

leads the strut position from Jsxpr'. 'ozpr ) must have 4 or 6 p_rametors

depending on the rerooentnttonmethod. There should be 'nbpnr* more pnrumtors

in Jozpr j . If no errors occur, then the strut position is returned in +pl'

ud 'p2'. Else, KIROI is returned.

int Oat.Instruction (pl, p2, dir, qv, ann)

Vector epi;

Vector op2;

Vector edit;

Vl1 oqv;

AEN.TYPKant;

Oats the nezt tnstructiemfram a file or from the CXISSE interface. The

instruction parameters are ultKned to )pt', 'p2', 'dir', 'qv'. The procedure
returns the instruction code amber.

void OutputoPath (filonum, pathLst, ann)

char efilename;

LZST opathl.st;

fIR_I'll ann;

Mrltes the path to a file, either in a Silma readable file, or a CIUSE kntpt
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depondinl_ upon CTOS.ACTIVE flq and PIETIEb_I flq.

STATUS Inititltzo.Ptth_PXuner (configFtlo)

char ocoufigYilo;

InitiLlizos all path piuner modules, must be called before pXLnnor is invoked.

void Shutdovn.Puth_Pla_nor (void)

Cleans up humor7 in planer's stack. hits grnphics routines.

STATUS Demo.Exoc (void)

Roads instructions frog u input file for ootup ud ezecution.
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Procedures

void Iuit_lobot (source)

LIST *source;

The robot in initialinodud orientod accordin K to the ROBOT commmd in the

input file. If no ROBOT coemumd exists, the robot coordinate system is equal

to the world coordinate system. (This is the case at CIgSS|)

ROOLILL! Jointe_In.lamgu (qq)

VAI eqq;

luturnsTIUg if all Joint values in 'qq' are within range. FALSK othurvise.

Inserts Joint values into the list 'out.of_rtn_'.

BOOLgAllSot.POSoJointe (now.q)

VA1 snow_q;

Sots the robot to the pose defined by Joint vector _noe_q P and updates the
truoformatiounmtricas.

V11 oQet°Pos.Joints ()

leturns a Buu_Var to the current robot.c state of the joint vector.

int Qua.First.Locked.Joint (current)

LIST_KLoecurront;
.................... 0..--_. ...... ..o.

Returns the first Joint which in OUt of ruKu.

Lot Got.Jozt.Locked.Joint (current)

LIST_KLoocurrunt;

Iotuz_o the next Joint.

voidKmpt7oLOCkOdoJOint.Liet ()

Empties the list 'ont_of_ruKoP.

int Lenffth_Lockod_JoiJtt_List ()

Eeturns the number of Joints which are out of ramge.

void Update_Nuclei ()

Updates the ouopt sphere models of the links to the current joint vector.

void Update_Picture ()

Updates the sire frlmo picture of the robot to the current Joint vector.

ROOLEIi Is_hvoluteoJoint (nb)

Let nb;

tenures _ io llnk _nb _ let rovolu%o Joint, FALSE othorulso. The first

llnk is link i.

NODELoLtnkoROdel (ub)

int rib;
................. ....o..o
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1sterns the model of link 'nb' or lULL if there is no sunpt sphere model of

this link. If the model ou not up to date, it is automatically updated.
The first link is link 1.

BOOI.KI| Consider.For_Self.Collision (rib1, rib2)

tot nbl;

inn nb2;

Returns TIUE if link 'nbl' and link 'rib2' could collide and thus have to be

considered in the collision avoidance procedure.

The first link is link 1.

DOOLKII Considor.Yor_Aru.CoUtston (nb)

inn nb;

Eeturns TRITE if link Job' could collide gith an obstacle in the environment

and thus has to be considered in the collision avoidance procedure.
The first link is link 1.

Vector Origin (nb)

inn nb;

Returns the orisin of the coordinate frule of link 'nb'. 0risin (0) returns

the oriKin of the robot's coordinate system.

void Axis (nb, oriKin, dir)
inn nb;

Vector eorigin;

Vector *dir;

Ioturnn the axis of rotation (revolute) or the direction of motion (prismatic)

of Joint Job _ . The orisin is Iloo returned.

double Joint.Value (nb)

inn nb;

returns the current Joint vllun of Joint 'nb'. The first joint is number 1.

void Joint.ltnse (rib, loger, upper)

inn rib;

double ologor;

double supper;

leturnn the logeot and the hiKhest possible value of joint 'nb'. The first

joint is number 1.

double Joint.Wei|ht (nb)

inn nb;

leturns the weight of joint 'nb' used for solving the Jacobias equation.

HiKb VILlUOS load to hiKb velocities of that joint.

The first Joint is number I.

void Grasp.Part (pl, p2, rid, strutId)

Vector pl;

Vector p2;

double red;

inn strutId;

Puts a suept sphere cylinder an described by Jpl' and 'p2' and 'red' in the

robot's gripper. The positions of the nndpoints gill chan|u in this process,

but the lunK_h of the cylinder gill be retained. Connects gem frame to tool.

void Uugrasp.Par_ (pl, p2, strutId)

Vector epl;

Vector ep2;



in¢ mtrutld;

Empties the robot's sripper and reruns the lest ondpoint positions of the

payload. Disconnects stntId's fromo from tool.

BOOLEA| lobot_Carryin K ()

hturno TIUE if the robot is currently c_rryin f • payload, FALSE otharviso.

void Set.Pea.To.Payload (m)

NODAL em;
_--o.ooo ..... _o--.oooo----._o_--.

Sots the endpoint pool•ions of model JRj to the poll•loam they mould h•vo,

if the model ou abe payload of the robot.

void Sot_Poe.To_Gripper (m)

NODKL era;

Sets the endpoint poll•ions of model in' to the pool•iota they vould have,

if the model gas the robot's Krippor.
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Module spec ( CIRSSE/RAL machine specifications ):

Sdefine KAETH 0x2300S•06

8define RAILS 0x13004882

IKIofine NKICURY 0x1700c7_5

Sdefine JUPITE1 OxlTOOcdd7

8define SOL 0x21000411

8defineVIWUS OxS24OdfeS

8defin•gl_ OxSlOO4ee6

Sdeft•e ROOB OxS1001e30

Precod•re description

BOQLKAB Qrephics_OI ()

Eeturns TltUK if the machine on which the program is running has a gr•phics

screen and encore is available.

BOOLKAI Color.O[ ()

let•ms _ if the machine on which the program is running has • color screen.
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Module stack :

Data types

t]rpodef str_act stack_el

(
street stick.el eprov;

ckeJ[" odata;

) STICK_EL;

STICI.KI. represents an entry of a stack. 'prey' is a pointer to abe previous

entry and _data _ points to the user data represented by this stack element.

Procedure description

void |an_Stack (sp)

STAC[_EL **sp;

Nust be called before using a stack Co initialize stack pointer *sp _
declared an follows:

• 'sp _ is

Definition:

STACK.EL *sp;

Initialisatioa:

Beg.Stack (&sp);

void Punk (sp, data)

STICK.EL eesp;
char edata;

Places 'data _ on stack _lp _.

char ,Pop (sp)

STACK.KL eejp;
.... .oo*._ ..... .o_ooo-

geturns the lant data natty and removes it from the stack.

char oRead_Top (8p)

STACK.EL oeep;

Returns the lane data entry eithout changing the stack.
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Module usrFlags ( compiler directives ):

Cerise an¢ F].qn

8deftno

Sdoftnn

Odefine

Odefino

lundef

RA|.II.LOOP /* comment out to remove nan from the loop */

STEP.BY.ST_ /* prompt for viener ale/neon? e/

CTOS.A_FIVI/e indicates that PathPlannor.c, not main.c, is active */
DIiG|OSTI_

PREVIEUilR /e we are in previngamde, not current display node */
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Module vector :

Data types

typodef •truce
(

float z, y, z;

Vector;

RepreleBtl • 3z1 vector gtth el•moots 'Z P, 'yJ, ud Jz'.

typodef stz_ct

{
Vector vl, v2, v3;

} R&trtz;

hprennts • 3z3 natrtz with column vectors 'vl ) , 'v2', end 'v3'.

typedof |truce
{

R&triz m;

Vector v;

} B.Natriz;

teprosomts • 4z4 homo|on•on trumformsti•numtriz. :m j L• the 3z3 natriz

for rotation in the upper loft corner. 'v' is the truelatiom vector in

the upper right corner. The lut rot is not stored, it is assumed to be

[0 0 0 1].

Procedure description

Vector Voc (z, y, z)

double z;

double y;

double z;

Cre•toe • vector with element• x, y, • ud returns it.

Ha•fix Rat (vl, v2, v3)

Vector vl;

Vector v2;

Vector v3;

Creates &matrtz gith column vector• el, v2, v3 and returns it.

B.Natriz E.Nat (n, v)

Natriz m;

Vocto_ v;

Cre•toe ud returns a homo|one•us matriz vith matrtz• 8_d 4Oh column vector v.

Vector Add (a, b)

Vector e;

Vector b;

Eeturns the sum of vectors • and b. (•lementuise)
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Vector Sub (a, b)

Vector n;

Vector b;

hturns the difference a-b. (wlemwntuise)

Vector Rul (a, s)

Vector a;

double s;

Nultipltos the oleeNJatw of u with • and roturms the re•ult.

Vector Div (n, s)

Vector t;

double •;

Divides the element• of a by • and returns the result.

Vector hs (n)
Vector K;

Eeturnm the elementuimo negation of vector a.

Vector gull_Vector ()

EeturnJ the null vector [0 0 0].

double Dot_Prod (n, b)

Vector o;

Vector h;

leturns the scalar or dot product of vectors • and b.

Vector Cross.Prnd (n, b)

Vector u;

Vector b;

Eeturns the cross product of vectors a and h.

Ratrix 1_Tad.Prod (u, b)

Vector u;

Vector b;

Eeturnn the outer or dyadic product of vectors a and b.

double Lwnl_ch (n)

Vector u;

teturns the lwuKth (absolute value) of vector a.

Vector Scale (u, los)

Vector a;

double leo;

ChuKss the lenK_h of vector • to 'leo' and returns the result.

Prints u orrorusstww if 'u' is a null vector.
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Vector SeiZe.If.LooKer (a, los, limit)

Vector a;

double leo ;

double limit ;
------0--00.o_ ....... _ .... o----oo----.o_o--.ooo--

If the lenK_h ot vector • is lonEer the Jlimit' then its lenK_h is chanKod

to 'Ion', othorgioo it tl returned uchusod.

Vector |orneJ. (a, b)

Vector a;

Vector h;

Eeturns vector 'a' projected on n plue norntl to vector 'b'.

Vector Con_or (a, b)

Vector a;

Vector b;
----_ooooooo ....... oo ....

Eeturns n vector whose endpoint is in the center between the endpointo of the

vectors • and h.

BOOLKJUI PtrLXlel (a, b)

Vector n;

Vector b;

Returns _ if vectors • and b are parnllel, FALSE othernime.

double Dintuce_Poimt_Line (point, line.pl, lineop2, lineoreswlt)

Vector point;

Vector limo.pl;

Vector lime.p2;

Vector eli•cop, result;

Eoturns the shortest diotuco betoeen 'point' and the line hooded by the

points 'limoopl' and Dlimo_p2'. 'line_result p gill cont•im the point on the

line ghicb in clement to _point _ .

Vector NzV.Prod (m, v)

N•trix m;

Vector v;

Keturn• the product of s_trix • and vector v.

Voczor laLzV_Prod (hm, v)

|o8_triz hm;

Vector • ;

Eeturns the product o2 the homoKonoous matrix hat and vector v. The 4th element
of 'v' ud the result are omitted and uoumed to be 1.

H•trix RxR.Prod (ml, m2)

Ratrix ml;

Natriz m2;
.... ooooo--o ....... .oo.oo.oo

Returns the product o2 matrices ml ud m2.
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K.Nutrix HNxHN_Pred (hmi, tun2)

B.Natrix lutl;

H_Natrixbm2;

koturns the product of the homogeneous matrices hml and hm2.

double Dot (n)

Natrix m;

Ioturns the dotorminut of matrix n.

Natriz Truspoao (m)

Rutrtz m;

leturns the trusposo of matrix m.

Natrix Inv (m, ok)

Ratriz m;

BOOLEII *ok;

returns the inverse of matrix m. If inversion uus possible, 'ok' is sot to

TIUI, othorviso to FALSE.

Nttrix I_Nttrix 0

Imturla tbe idontit7 matriz [100
010

oo13

BOOLILLE P1Lno_Linn.Intorsoction (plano.p,plane_dl,plane_d2, line_p,line_d,

t_planol, t.pltne2, t.line, distance)

Vector pltne.p;

Vector plLne.dl;

Vector plsno_d2;

Vector line_p;

Vector line.d;

double et.pl&nel;

double et.plue2;

double on.line;

double edistuco;

Intersects the plus defined b7 locution vector 'plue_p' msd direction

vectors 'plane.d1' ud 'plumed2' nith the line defined by locution vector

'lino.p' ud direction vector 'lino.d'. If this intersection is possible,

TIUK is returned ud the ptremetsrs of the intersection point for both

the pleas and the line are returned. The the equations for the intersection

point as'e:
ip - pluo_p + t.pluol • pltne.dl + t.plue2 * plus.d2

ip m lino.p ÷ t_line • lino.d

If intersection is not possible (line is pLrtllol to the plus) then FALSE

is returned ud the distucs bergson the plus ud the line is returned in

'distuce'.

double Distuce.L4"o_Lino (ul, u2, bl, b2, a_result, b_rosult)

Vector tl;

Vector a2;

Vector bl;

Vector b2;

Vector on.result;

Vector oh.result;
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|sturas tke dtstaaco betgosn the ltne boudedby al and at and the line

bounded by bl and b2. The points o2 closest distemco on the lines are

returned in _n_resnlt _ ud _b.roeultJ.

Distemco.SoK_Plano (pl, p2, n, b, c, s.rosult, p_rosult)

Vector pl;

Vector p2;

Vector n;

Vector b;

Vector c;

Vector On.result;

Vector op.rosult;

letnrus the distance betgeen the sepent bonded by pl and p2

and the planar trtaaslebouded by the verttcies a, b, and c.

The points closest on the eesment and the plane are returned

in s_result and p.result, respectively.

Vector landom_Vector (len)

double lea;

Eetuz_s n random vector o2 naxtmum length 'len'.

void Print.Vector (t)

Vector u;

Prints vector a to the screen.

void Print.Kaffir (n)

Natriz n;

Prints matriz • to the screen.

void Prlnt.H_Nutriz (ha)

i.Nutrlz is;

Prints tke homegeaeeanmatriz ha to the screen.
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Abstract

A method has been developed to plan feasible and obstacle-avoiding paths for

two spatial robots working cooperatively in a known static environment. Cooperat-

ing spatial robots as referred to herein are robots which work in 6D task space while

simultaneously grasping and manipulating a common, rigid payload. The approach

is configuration space (c-space) based and performs selective rather than exhaustive

c-space mapping. No expensive precomputations are required. A novel, divide-

and-conquer type of heuristic is used to guide the selective mapping process. The

heuristic does not involve any robot, environment, or task specific assumptions. A

technique has also been developed which enables solution of the cooperating redun-

dant robot path planning problem without requiring the use of inverse kinematics

for a redundant robot.

The path planning strategy involves first attempting to traverse along the

configuration space vector from the start point towards the goal point. If an un-

safe region is encountered, an intermediate via point is identified by conducting a

systematic search in the hyperplane orthogonal to and bisecting the unsafe region

of the vector. This process is repeatedly applied until a solution to the global path

planning problem is obtained. The basic concept behind this strategy is that better

local decisions at the beginning of the trouble region may be made if a possible way

around the "center" of the trouble region is known. Thus, rather than attempting

paths which look promising locally (at the beginning of a trouble region) but which

may not yield overall results, the heuristic attempts local strategies that appear

promising for circumventing the unsafe region.

Although this method cannot guarantee finding a solution even if one exists,

and in spite of its O(k n-l) (where k = 2 or 3 as implemented) complexity for

n degree of freedom problems, it has demonstrated the ability to solve a variety of

practical yet potentially difficult path planning problems within a reasonable amount
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of computation. The method inherently handles singularities and is applicable to

robots having any number and type of joints. Parallel processing could be used to

greatly reduce solution time.

Because the main emphasis of the path planning method is to produce a fea-

sible path without regard to any type of optimality, the paths developed are often

rather inefficient. Thus, a configuration space based algorithm was developed to

modify any feasible path found by the planner into a more efficient one, where

efficiency is measured by the length of the c-space trajectories.

Although the key motivation behind this work was to address the path plan-

ning problem for two cooperating robots, the methods developed are directly appli-

cable to single robots as well. The path planner is implemented in C and utilizes

polytope models of the robots and obstacles for purposes of interference detection.

The path planner is demonstrated via computer graphics simulation on a Sun Spare-

Station 1 for several single and cooperating robot cases, including cooperating nine

degree of freedom (1P-SR) robots.

xi



CHAPTER 1

Introduction

1.1 Motivation

Robotics is a technology with a promising future. The explosion of knowledge

resulting from past and present research efforts will manifest itself in robotic systems

capable of emulating the human attributes of mobility, dexterity, intelligence, and

sensory perception. There will be mobile bases with multiple cooperating arms

having extensive sensing capability which are able to receive high level instructions

and translate those instructions into a specific sequence of low level actions required

to execute the desired task. Robotic systems of the near future will strive for

increased flexibility, improved reliability, and greater autonomy.

One issue which arises in attempts to develop more autonomous robotic sys-

tems is the path planning problem. The path planning problem involves determining

if a continuous and obstacle avoiding path exists between a robot's start and goal

positions, and, if so, to determine such a path. If the mathematical space of concern

is considered to be the configuration space (c-space) of the robot, then the problem

is effectively that of finding a connected graph through c-space between the start

and goal positions which traverses only feasible and collision free points. This path

planning problem can become very computationally intensive. In fact, an upper

bound on the complexity of the n degree of freedom (dof) path planning problem is

O(n n), i.e., complexity of the path planning problem is exponential in the number

of dof [1-3]. To illustrate the rapid growth in complexity with number of dof, note

that a six dof problem would be more complex than a two dof problem by a factor

of 66 /22 , or 11,664.

A subset of the general path planning problem just described is the path
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planning problem for two cooperating robots. Robotic cooperation herein refers to

the scenario whereby both robots simultaneously grip and manipulate a common,

rigid, payload. Since the two arms grasp the object rigidly, the relative position

and orientation of the two grippers must be invariant during the motion. As an

example of two arm cooperation, refer to Figure 1.1, where two nine degree of

freedom robots are shown cooperatively manipulating a long, cylindrical payload.

Figure 1.1: Two 9-DOF Robots Working Cooperatively

The effective number of degrees of freedom or mobility, rn, for two spatial robots

working cooperatively in six dimensional task space can be simply computed from:

rn=n 1 +n2-6 (1.1)

where nl represents the number of degrees of freedom for robot i, and the '-6' term

results from the closure constraint imposed by cooperation.

There are many potential applications for two arm cooperation. For example,

a space station will most likely be built using robots to minimize the expense and

risk of putting humans into space. In order to be most effective, the robot arms



would likely cooperateand be autonomousor at least semi-autonomous. The at-

tractivenessof lightweight robots for spaceapplications increasesthe likelihood that

robotic cooperation would be necessaryto manipulate large or massivepayloads.

In industry, robotic cooperation might be employedfor moving very large or very

flexible payloads which exceedthe capacity of a single arm or require support at

more than one point. Cooperating robots could also be used to manipulate two

parts with mating surfacesbut which are not fastenedto eachother.

The addition of a secondmanipulator for cooperativework leadsto an inher-

ently complex system. One key researchissueand open problem associatedwith a

system of cooperating robots is the path planning problem. The cooperatingrobot

path planning problemmust considernot only collision avoidancebut alsothe kine-

matic closurerequirement that both robots areable to reachtheir respectivegrasp

positionsat all times. Dooley [4]showshowthe closureconstraint plus obstacle con-

straints for cooperating planar robots can combine to produce a configuration space

containing many unusually shaped unsafe regions and relatively little safe space.

One can conclude both intuitively and from Dooley's work that the path planning

problem in the cooperating robot case will typically be more difficult than in the

single robot case.

Numerous approaches to the general single arm path planning problem have

appeared in the literature. Most do not appear directly suited to the case of two

cooperating robot arms. Many of these approaches do, however, attempt to find a

path while applying some heuristic to selectively search configuration space. The

only practi,'al planners to date for a general six degree of freedom (dof) robot in-

volve simplifications or heuristics and are not complete, i.e., they cannot guarantee

finding a solution even if one may exist. Many of the approaches in the literature

which do address path planning for cooperating robots consider only planar sys-

tems and cannot be practically extended to the case of two robots having six or



more dof each. Some researchers have solved the cooperating arm path planning

problem with multi-dof spatial (working in 6D task space) robots but they present

results only for relatively (or completely) obstacle-free environments. The difficulty

which researchers have experienced in trying to solve the general cooperating robot

path planning problem is evidence of the inherent complexity of the problem and

highlights the need for further study.

The work presented herein was funded by the Center for Intelligent Robotic

Systems for Space Exploration (CIRSSE), a NASA sponsored research center at

Rensselaer Polytechnic Institute (RPI), and is part of CIRSSE's efforts to develop

autonomous and teleoperated single and cooperating robot systems for use in space.

The CIRSSE testbed, a computer graphics representation of which is shown in Fig-

ure 1.2, includes two nine dof robots which may work independently or cooperatively.

Figure 1.2: The CIRSSE Testbed
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Each nine dof robot consists of a 6 dof (6R) Puma 560 mounted to a 3 dof (1P-

2R) platform. As shown in the figure, each platform has a translate, a rotate, and

a tilt axis. The testbed has extensive sensing capabilities, including various CCD

cameras, laser range finding, and force/torque sensing end effectors. The principle

motivation for this work was the desire to develop a practical and potentially useful

path planner for cooperating robot scenarios on the CIRSSE testbed. Nonetheless,

the strategy herein is completely general and no assumptions are made which would

limit the usefulness of the approach to specific robots, environments, or tasks.

1.2 Direction of this Work

This section briefly summarizes the assumptions, goals, strategy, and results

of the work presented in this thesis.

1.2.1 Assumptions

This work assumes the following:

1. Forward kinematic models of tile robots are available.

2. Inverse kinematic models of the robots are available for six dof robots or for

the final six links of redundant robots.

3. Geometric models of the robots, payload, and obstacles are available.

4. Obstacles in the workspace are static.

5. Feasible and collision free start and goal joint configurations of the robots are

known, as are the start and goal positions of the payload.

6. Motion between the specified start and goal positions may be arbitrary.

7. The planner may ignore robot dynamics.



1.2.2 Goals

The goalsof this work are to develop a planner capable of solving the cooper-

ating robot path planning problem while satisfying the following:

1. The planner shall locate reasonable collision-free paths in a time frame suitable

for off-line path planning.

2. The planner shall be capable of modifying a feasible path into a more efficient

one.

3. The planner shall be applicable to various robotic systems and various tasks.

4. The planner shall be practical for cooperating six dof manipulators as a min-

imum, and ideally for cooperating redundant robots.

5. The planner output shall be a sequential listing of closely spaced knot points

in joint space which represent the discretization of a continuous, feasible, and

obstacle avoiding path connecting the start and goal configurations.

1.2.3 Strategy

This thesis presents a new method for performing global path planning for

two cooperating spatial robots in a static environment. Like the single arm planner

presented by Dupont [5], the principle strategy is to minimize the computationally

expensive mapping of configuration space by performing mapping on an as required

basis. The planner satisfies the goals outlined in Subsection 1.2.2. The approach

is based around a novel, divide-and-conquer stvle heuristic for traversing through

c-space. This c-space traversal heuristic is directly applicable to the single robot path

planning problem and can be easily tailored to the case of two cooperating robots.

In all cases the dimensionality of the c-space considered is an accurate reflection of

the actual problem complexity. Computationally expensive precomputations and



exhaustive c-space mappings are avoided. This thesis also presents a technique

which allows the path planning method to be applied to cooperating redundant

robots without requiring the use of inverse kinematics for a redundant robot. The

path planning method is applicable regardless of the number and type of joints in

the robot and for any number of obstacles in the workspace. A strin9 tightening

algorithm is presented to modify any safe path found by the planner into a more

efficient one, where efficiency is measured by the length of the joint space trajectory.

The path planning method involves first attempting to traverse a c-space vector

from the start to the goal of one of the robots. If this vector passes through unsafe

space, the hyperspace orthogonal to and bisecting the unsafe segment of the vector is

systematically searched to identify an intermediate goal point for consideration as a

via point. An attempt is made to traverse from the last safe point to the intermediate

goal point. This process is repeated as necessary until the attempted traversal to

the newest intermediate goal point is entirely safe. At that point, progression is

attempted toward all previous guide points in the opposite order in which they were

found, where guide points include not only previous intermediate goal points but

also the safe points found on the goal end of each unsafe region which invoked a

search. When progression to a particular guide point is not entirely safe, that point

is permanently dismissed and progression is attempted toward the next guide point

in the specified sequence. The progression continues until an attempt has been made

to progress to the global goal point. If that attempted progression is not entirely

successful the overall process is repeated until the global goal point has been safely

traversed to.

Unfortunately, the path planning method presented herein is not complete,

i.e., it cannot guarantee finding a solution even if one exists. Though certainly

undesirable, this lack of completeness does not seem unreasonable since researchers

have thus far been unable to develop algorithms which achieve both completeness



and practicality for reasonablydifficult yet practical path planning problems for

more than a few degreesof freedom. Sinceour emphasiswas toward achieving a

potentially useful path planner for cooperatingrobots with at least six dof each,we

sacrificedcompletenessin exchangefor the possibility of solving somepractical yet

potentially difficult problemsasquickly as possible.

Unlike somepath planning techniqueswhich are geometricmodel data struc-

ture specific,our planner may be usedwith any geometricmodeling schemewhich

allows for interferencedetection. Our implementation utilizes polytope representa-

tions of the links of the robots and of the obstaclesin the workspaceaspresentedby

Schima [6]. The polytope schemewaschosenbecauseit allowsfor detailed modeling

of objects while enabling relatively fast interferencechecking. The potential speed

of the collisiondetection is enhancedby the fact that the method simply needsa yes

or a no regarding collisions and does not require distance or direction information.

Mapping a particular point in c-space involves verifying that the closure constraint

can be met, updating polytope models of the robot links and payload, and perform-

ing two phase interference detection calculations on the resulting polytopes. The

first phase of interference detection simply checks for interference between spheres

which bound each polytope. If the spheres intersect indicating possible collision

then the second phase of interference detection must be invoked. The second phase

accurately determines whether or not two polytope models intersect.

1.2.4 Results

Despite its simplicity, the methodology presented herein appears to solve the

cooperating robot path planning problem better than other approaches presented

in the literature. The method is also applicable to the single robot path planning

problem. The approach does, however, suffer from one drawback currently afflicting

all practical motion planners which can handle six or more dof, namely that it may



fail to find a solution even if one exists. An upper bound on the complexity of the

planner is O(k n- 1) for an n dof problem, where k < n. For our implementation,

k = 3 for all cases except cooperating redundant manipulators for which k = 2. This

compares favorably to the actual problem complexity which has an upper bound of

Sample results are included for a single six dof robot, a single nine dof robot,

cooperating six dof robots, and cooperating nine dof robots. The results illus-

trate the planner's ability to solve practical yet potentially difficult problems. The

path planner was implemented in the C programming language and runs on a Sun

SparcStation 1. Paths found by the planner are animated using CimStation, a com-

mercially available computer graphics robot simulation package [7]. Typical time

required to find a feasible path for cooperating nine dof robots (the most complex

scenario considered) with several workspace obstacles is less than 30 minutes. After

finding a feasible path, the string tightening process for cooperating nine dof robots

typically requires about 15 minutes of computation. Parallel processing could be

used to significantly reduce execution times for both the path planning and string

tightening routines since both involve a large number of independent calculations.

1.3 Overview of Thesis

The remainder of this thesis is presented in seven main chapters:

• Literature Review

• Problem Statement

• Divide-and-Conquer C-Space Traversal Heuristic

• Utilizing the Heuristic for Robot Path Planning

• Implementation and Results
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• Discussionof the Path Planning Strategy

• Conclusionsand Future Work

A literature review on published techniquesfor single and cooperating robot

path planning is discussedin Chapter 2. The path planning problem is formally

definedin Chapter3. Chapters4 and 5presentthe central contribution of this thesis,

namely a new c-space traversal heuristic and means for utilizing the heuristic to solve

single and cooperating robot path planning problems. In Chapter 6, implementation

details and results are presented for application of the path planning strategy with

string tightening to four cases: a single six dof robot, a single nine dof robot, two

cooperating six dof robots, and two cooperating nine dof robots. A discussion of

the path planning strategy is given in Chapter 7. Finally, Chapter 8 presents some

conclusions and some areas for future work.



CHAPTER 2

Literature Review

This chapter presents a literature review on the subject of robot path planning. The

chapter is organized into the following main sections:

• Path Planning for Single Robots

• Path Planning for Cooperating Robots

• Other Related Areas of Research

• Summary of the Literature Review

While we are specifically interested in path planning for cooperating robots,

an understanding of current methods for a single robot is pertinent to determining

the possible suitability of extending those methods to consider cooperating robots.

Hence, the discussion below includes methods for both single robots, presented in

Section 2.1, as well as for cooperating robots, presented in Section 2.2. Other re-

lated areas of path planning research are briefly discussed in Section 2.3. Finally,

a brief summary of the literature review is presented in Section 2.4. A brief re-

view of literature regarding algorithms for string tightening is presented later in

Section 5.3.1.

2.1 Path Planning for Single Robots

Published approaches to the single robot path planning problem are discussed

in this section. Most of these approaches can be characterized as one of the following

three types:

• A graph search approach

11



12

• A potential fields approach

• A human assisted approach

These categorizations are not mutually exclusive, and a combination of them is often

used in a path planning strategy. These approaches are discussed below.

2.1.1 The Graph Search Approach

One approach to solving the path planning problem could be referred to as the

graph search type approach. Such an approach will work directly in the configuration

space (c-space) in attempt to find a connectivity graph of safe points between an

initial configuration and a goal configuration [5,8-33].

Configuration space as first suggested by Lozano-Perez and Wesley [33] refers

to the n-dimensional space formed by the n values of the joint variables of a robot

with n degrees of freedom (dof). Thus, each possible configuration which the robot

can assume is represented by a point in the configuration space. The robot path

planning problem is thus equivalent to the motion planning problem of a point in

c-space. The concept of c-space is illustrated in Figure 2.1. Consider the 2R planar

manipulator shown in Figure 2.1a. If it is assumed that each joint has both upper

and lower limits then the resulting c-space is rectangular as shown in Figure 2.lb.

If there were no joint limits the resulting c-space would be toroidal.

C-space can be divided into two regions: safe and unsafe. Safe space refers to

the locus of all points in configuration space which represent feasible and collision

free configurations. All space which is not safe for any reason is simply categorized

as unsafe space.

A path planning technique is considered complete if it can either guarantee

finding a solution if one exists or prove that one does not exist. Early efforts at

developing complete graph search techniques indicate that path planning in this

fashion is exponential in the number of degrees of freedom. For example, Reif [1]
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Figure 2.1: A 2D Planar Robot and its Configuration Space

examined the 3D generalized mover's problem. The mover's problem (often referred

to as the piano mover's problem) involves path planning for a single solid object.

The generalized mover's problem involves path planning for an object which may

consist of multiple objects kinematically linked together (such as a robot arm). The

fact that Reif could show this generalized problem is PSPACE-hard is evidence

that the computational bounds for robot motion planning problems in fact grow

exponentially with degrees of freedom. An explanation of PSPACE-hardness may

be found in [34]. An upper bound on complexity of the robot path planning problem

is O(n n) for an n dof robot [2, 3].

Most graph search techniques utilize global world knowledge. In addition,

many use an A* type of heuristic search to find a feasible path. The A* algorithm is

a common search procedure whereby paths to the goal are built and compared based
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on a heuristic estimate of the cost remaining to reach the goal. The algorithm con-

tinually expands the most promising path until a solution is found. Unfortunately,

searching for the optimal path has led most researchers to transform all obstacles

into c-space [9,17-19,21-25,28,30,31]. Because of the higher order complexity of such

a technique, the more successful works involved simplifications to reduce problem

dimensionality [12, 17, 18, 26]. The basic shortcoming of the A* type searches is the

fact that they tend to exhaustively map out concavities encountered in trying to go

between the start and the goal. A 2D example of this phenomenon is illustrated in

Figure 2.2. The likely computational expense of such an approach makes it imprac-

tical for motion planning for robots with more than a few dof. The A* algorithm

can also be applied bidirectionally by considering extending the path from both

the start and the goal positions. Bidirectional searching can be effective since it is

generally easier to move from a cluttered space to an open space than vice versa.

(a)
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Figure 2.2: Exhaustive Mapping of Concavities Using A* Heuristic

Other complete techniques which are not computationally practical for higher

degrees of freedom are presented by Branicky [351, Canny [13], and Paden [36].

Kondo [37] has reported a fast and complete algorithm for six dof robots, but the

algorithm's speed is only demonstrated for apparently simple problems.

Chen and Hwang [38] present a complete solution technique with performance
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commensurate with task difficulty. Essentially, they use a global planner to select

regions of collision free space which connect the start and goal and then use a local

planner to solve the path planning problem within each region. The resolution of

the regions is only as fine as necessary to find a solution using a heuristic to select

promising regions for further subdivision. In this way, easy problems may be solved

relatively quickly and yet an extremely difficult problem may be resolved to whatever

level is required to obtain a solution or conclude one does not exist. Their algorithm

solves a relatively simple yet practical disassembly task for a five dof Adept robot

in three minutes on a 16 MIPS workstation.

Sharir [32] notes the mathematical complexity and size of the general com-

plete solution of robot motion planning in an n-dimensional c-space and presents a

graph search algorithm aimed at solving it. Sharir develops an algorithm which is

conceptually applicable to a system of arbitrary dimension. His algorithms can be

most easily described by considering the 2D problem of planning the movement of

a line segment in a planar space containing polygonal obstacles. The line segment

is free to translate but may not rotate. Sharir's algorithm groups the 2D c-space

into closed polygonal regions which are homogeneous (completely safe or unsafe).

Then the problem of motion planning becomes that of searching for a connectivity

graph between the initial and final positions in the polygon which contains those

points. While this approach is interesting and successful in 2D, Sharir acknowledges

that both the breaking down of regions in configuration space and the graph search

suffer from higher order explosion; to the point of intractability.

The mathematical complexity of the general motion planning problem has

resulted in many techniques which reduce the problem dimensionality via sim-

plifications. Some such simplifications have included allowing only cartesian ma-

nipulators [24], requiring arm seperability (small wrists which orient a spherical

payload) [15,17,18,23,26,28,39-41], or allowing only certain motions and obstacle
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types [12, 20, 26, 42]. Noneof theseconstraints can be used for path planning for

two cooperating robot arms.

Gupta [43] presentsa sequentialsearch strategy which plans the motion of

eachrobot link successivelystarting from the base. While not completefor robots

with threeor more links, this techniqueis veryefficientand may beusefulfor quickly

solving somesimpleproblems.

One techniquewhich hasbeenusedfor path planning in c-spaceinvolveshy-

pothesizinga path and then testing it at a finite number of intermediate points for

collisions. The path is repeatedly modified heuristically until a solution is found.

Lewis [44] suggestedprecomputing commonly used path segmentsreferred to as

freewaysand recommendedthe useof intermediate safe points to avoid detected

collisions. However,he presentedno mechanismbv which to determine theseinter-

mediatesafepoints.

Pieper [45]applied variouscartesianheuristics to attempt to bypassobstacles.

The arm could fold to movein front of or abovedetected obstacles. Pieper found

that certain obstaclearrangementsresulted in the manipulator oscillating between

obstacles.In addition, the algorithm generally failed if the only acceptablepath led

betweentwo obstacles.

Glavina [46] presentsa heuristic path planning method which combinesgoal-

directed searcheswith randomized searchesas needed. The algorithm proceeds

straight in c-spacefrom start towardsgoaluntil anobstacleboundary isencountered.

At that point, the point slidesalong the obstacleboundary if and only if suchmotion

will reducethe distanceto the goal. In 2D, sliding is attempted by searchingfor a

safepoint along a line orthogonal to the desireddirection passingthrough the first

point which violated anobstacleboundary. This conceptis illustrated in Figure 2.3.

If this sliding alone is not sufficient to clear the obstacle,a new subgoal is created

at random and the processis repeateduntil a feasiblepath to the goal is found.
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Figure 2.3: Goal Directed Sliding

Glavina has results for a 2D prototype and hopes to extend the procedure to a six

dof general purpose manipulator. For the six dof problem, Glavina proposes perhaps

checking 10 possible sliding directions corresponding to each direction of the basis

axes of the 5D hyperplane along which sliding can be attempted. Further research

is planned to determine if it is necessary to expand the set of test vectors beyond

this set.

Many papers have dealt with the motion planning of polygons or polyhedral

objects [8, 11. 13, 15, 18, 24, 47]. While this is the simplest form of the motion

planning problem, this research is useful for mobile robot path planning and forms

a foundation for planning problems of higher dimensionality. The actual methods

used, however, have generally not extended into higher dimensions easily due to the

added complexity of that space. Mobile robot path planning has been an attractive
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researchareabecauseof the low dimensionalityinvolvedand becauseof the practical

applications of mobile robots [9, 21, 22].

Lozano-Perez and Wesley [26, 33] present a visibility graph (vgraph) technique

for polygonal and polyhedral objects. Vgraphs are graphs whose nodes are the

vertices of polyhedral c-space obstacles. Nodes which are visible to each other are

linked and assigned a weight proportional to the distance between them. The graph

is then searched for the optimal path. It is difficult to effectively apply vgraphs to

problems in more than two dimensions. For example, the vgraphs can be constructed

from the vertices of polyhedra, but the shortest path no longer lies in the visibility

graph.

Rovetta [48] presents a more recent variation on the vgraph method whereby

all obstacles which impede the traversal straight from start to goal are grouped

into a single monoobstacle consisting of the convex hull of the individual problem

obstacles. Such an approach reduces computation and produces more efficient paths

but it may convert a solvable problem into an unsolvable one.

Two other free space searching techniques include generalized cones [49] and

voronoi diagrams [8, 50, 51]. The first technique produces a safe path by piecing to-

gether the centerlines of generalized cones whose sides are the faces of the obstacles.

The generalized cone algorithm translates a polygonal moving body along the axes

of the generalized cones and rotates it at cone intersections. This algorithm may

fail when an object must translate and rotate simultaneously to avoid obstacles. A

voronoi diagram is a collection of surfaces that are equidistant from two or more

obstacles. A sa¢-' path is found by traversing appropriate regions of these surfaces.

These two techniques have the desirable feature of keeping the robot as far from

obstacles as possible. In a narrow corridor, this is a desirable feature. In cases

which much open space, however, it may yield a much longer path than necessary.

It is difficult to apply either of these techniques in more than 2D.
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An interesting path planning technique is presented by Lumelsky [52-56]. He

makes three assumptions: (1) The arm endpoint can move through a simple curve,

(2) when the arm hits an obstacle, it can identify the contact point on the arm,

and (3) the robot can follow an obstacle boundary. While only local information

is used, Lumelsky's algorithm is complete. He reduces planning a path for a robot

to planning a path for a point on the surface of some manifold. In two dimensions

he is able to apply his algorithm using the "same turn first" strategy for traversing

the surface of any obstacles encountered in the straight line path from start to goal.

His work has yet to be implemented for more than two degrees of freedom since,

in that case, there are an infinite number of possible directions to follow on the

obstacle boundary. To simplify this situation, Petroz and Sirota [57] suggest cutting

the obstacles in the higher dimensional c-space with planes to limit the boundary

following directions to right and left. The difficulties with this approach are that

an infinite number of such planes exist and that a solution will typically need to

employ more than one such plane.

Lozano-Perez and Wesley [24, 25, 33] describe an approach for motion plan-

ning which is based on the idea of expanding obstacles. This approach essentially

involves the expansion of the obstacles in such a manner as to reduce the path

planning problem for an n-dimensional shape to an equivalent problem for a sin-

gle point in that n-dimensional space, where it is the expansion of the obstacles

that allows the equivalence. Computational complexity becomes excessively bur-

densome for cases of dimensionality greater than two. Very little is known about

how to apply Lozano-Perez's _lgorithm to systems with three or more degrees of

freedom, although Lozano-Perez has expanded the procedure to consider cartesian

manipulators (robots with three prismatic joints).

Warren [58] presents a vector based algorithm currently being developed for

planning the path of a robot among irregularly shaped obstacles. In this technique,
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a c-spacevector is createdfrom the start position to the goalposition. If this vector

crossesunsafespace,a secondvector is usedto determine a new intermediate goal

and the previousgoal is stored for later use. This secondvector is drawn from the

centroidof the obstaclethoughthe midpoint of the unsafepotion of the initial vector

and continuesuntil reachinga point in safespace.The overall procedureis applied

repeatedlyuntil the ultimate goalcanbe reached.A 2D illustration of this approach

is shownin Figure 2.4. This techniquehasa divide-and-conquerflavor to it but has

safe space

t

start

Figure 2.4: Vector Based Divide-and-Conquer

drawbacks which limit its effectiveness to only a few dof. These drawbacks include

requiring exhaustive mapping of obstacles and having no guarantee of finding a safe

point along the vector from the centroid through the midpoint of the unsafe region.

A recent divide-and-conquer based approach is a heuristic approach for carte-

sian manipulators presented by Lee [59]. Lee divides the cartesian robot pick-and-

place task into a vertical departure motion, an intermediate planar motion, and a

vertical approach motion. The 2D vgraph algorithm is used to solve each phase of

the problem using heuristics to address part rotation about a vertical axis. This
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approachcannot be practically applied to spatial manipulato: _tthplanning prob-

lems.

Dupont [5] addressesthe path planning problem for kinematically redundant

manipulators. The basic philosophyemployedby Dupont is that of performing se-

lective rather than exhaustive mapping of configuration spacethereby minimizing

the exponential growth problemsassociatedwith completegraph searchtechniques.

The strategy which Dupont follows involvesfirst creating a path which is linear in

joint space(c-space)betweenthe start and goal positions. This path is discretized

and checkedfor collisionsat eachpoint along the path. Dupont attempts to traverse

around regionsalong the initial path wherecollisionsoccur by applying someheuris-

tics to choosea cartesianstrategy direction that will likely allow circumvention of

the trouble regions.Tile Jacobianis then usedto determinethe possiblesafec-space

movesthat achievethe desired task spacestrategy directions. Octree representa-

tions are used to determine if collisionsoccur for a given configuration. Dupont's

algorithm successfullyplanned obstacle avoiding paths for a sevendof redundant

manipulator.

A somewhatsimilar approachis taken by Kondo et al [60]. Although Kondo's

intended application is the movementof parts and assemblieswithin CAD sys-

tem representations(this type of problem is often referred to asthe piano mover's

problem), the nature of that problem directly parallels the robot motion planning

problem. Kondo's basic approachis similar to Dupont's in that he tries to restrict

the amount of c-spacereferred to during a path search (by selectively mapping

c-space)in order to avoid executing unnecessarycollision detections. Kondo uses

octreesand combinesa global strategy with a local strategy. The global strategy

finds the limits of free spacewhich are encounteredin going from the start toward

the goal and from the goal toward the start. The local strategy then enumerates

only cellsalong the boundary of the freespacewhich wasencounteredin attempting
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to traverse directly between the start and goal positions. It is in this manner that

Kondo's algorithm greatly reduces the typically burdensome amounts of computa-

tion and storage required to fully define an octree representation of the workspace.

In addition, by looking only from the start towards the goal (and vice versa) until a

collision occurs, Kondo is avoiding searching potentially large islands of safe space

which are unreachable. Using the piano mover's analogy and trying to move the

piano from the hallway to the dining room, Kondo's algorithm will avoid searching

the bedroom if there is no possible way the piano could have gotten into the bed-

room. Kondo applied his algorithm to determine a collision free path for moving a

heat exchanger between two positions in a CAD model of a nuclear power plant.

2.1.2 The Potential Fields Approach

An alternate type of approach is based on the use of artificial potential fields.

Such an approach typically regards obstacles as a source of repelling potential field,

while the desired goal position represents a strong attractor [61]. The hope is that

the moving body can safely traverse from its initial position to the desired goal

position simply by following the potential gradient of the resulting field. The square

of the inverse of distance to obstacles and the negative of the inverse of distance

to the goal are commonly used obstacle and goal potentials, respectively. The

potential fields approach is typically implemented in task space [62, 63] although

some researchers have examined implementing it in configuration space [64, 65].

Some advantages and disadvantages of potential fields approach are noted below.

2.1.2.1 Advantages of the Potential Fields Approach

1. They are faster than other algorithmic methods developed to date.

2. They are readily' extended to systems of higher dimensionality.
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3. They inherently tend to producepaths which avoid obstacleswith significant

clearances.

2.1.2.2 Disadvantages of the Potential Fields Approach

1. They tend to have difficulty with local minima, particularly for systemsof

higher dimensionality.

2. It is difficult to maintain a global nature sincethe strength of the attractors

and repellorsgenerally is significantonly over small distances.

3. They canhave difficulty dealingwith arbitrarily shapedobstacles.

4. Implementation in c-spacerequiresknowledgeof c-spaceobstacles.

5. The expressionfor the obstaclepotential becomescumbersomewhenthereare

many concaveobjects.

6. They are not as thorough asgraph searchtechniques.

7. The solutions which are found are not generallynot optimal.

8. They require robot to obstacle distance and direction information, a more

computationally expensive requirement than a simple yes or no regarding in-

terference.

9. They typically disallow motion very near or along obstacle surfaces, yet dock-

ing, parts mating, and other common tasks require navigation near or along

the boundary of the safe configuration space.

Hirukawa and Kitamura [66] claim to avoid the deadlocks at local minima by

forming a graph in cartesian space of the positions farthest from obstacles. The

end effector tries to follow this graph to the goal while the robot links are attracted



24

toward the lines of the graph. The formation of the graph involves global world

knowledge.

Some researchers' efforts to address the local minima problem involve combin-

ing the potential fields planning approach with a higher level global planner [65,67-

70].

Warren [65, 71, 72] presents several techniques for global path planning using

potential fields. One approach is to first choose a trial path and then to modify that

path by the addition of intermediate points until it represents an acceptable solution.

The intermediate points are found using the potential function. By choosing the

trial path as a series of more closely spaced points than the entire global problem,

Warren greatly reduces (but does not eliminate) the possibility of being caught in

local extrema of the field. Another approach utilizes the penalty function simply to

modify the unsafe regions of a trajectory initially proposed by the planner. The

result is that the path is modified only where it intersects an obstacle thereby

reducing global sensitivity to the local minima problem. Warren illustrates his

techniques for several cases: a 2D revolute manipulator, a mobile robot capable of

translation only, and a mobile robot capable of translation and rotation.

Munger [70] takes an approach much like Warren's described above in that he

divides the global problem into a series of shorter problems which go through some

number of safe intermediate points. The idea then is to solve a series of shorter prob-

lems which can be combined to yield a global solution. Munger applies his algorithm

to a nine degree of freedom manipulator assembling struts to form a tetrahedron.

The workcell for Munger's application is relatively uncluttered. Applying thi_ tech-

nique to general robot path planning problems is potentially troublesome due to

the difficulty in identi_,ing the intermediate points appropriately so as to enable a

solution to be found.
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Kim and Khosla [73] propose a different means to handle the local minima

problem. Their approach uses harmonic function based potential functions with the

property that they are free from local minima in a singularity free space. The panel

method, a tool from computational fluid mechanics, is used to solve the potential

flow problem. For point mobile robots this ensures well behaved potential functions

which can be solved quickly even with complex and concave obstacles. For nonpoint

robots the geometry introduces structural local minima which are positions where the

robot can no longer safely move along the potential's gradient. Kim and Khosla have

applied this method to a bar shaped mobile robot and a 3 dof planar manipulator.

They note that it should be possible to extend their technique to 3D problems by

using 3D harmonic functions. Their work also illustrates that the local minima

problem still persists even with obstacles having simple shape.

Other means of addressing the local minima problem include generalized po-

tentials [74], a Laplacian approach [75], and a local minima free technique for gen-

eralized disc obstacles in a generalized sphere world [76].

Faverjon et al [77] address the problem of having the potential function dis-

courage paths near obstacles by basing the potential function on the object approach

velocity.

Barraquand and Latombe [78] present an algorithm which is geometrically

similar to Glavina's (see Section 2.1.1). Barraquand combines potential functions

and graph search techniques to solve problems with a high number of dof. The

algorithm builds a graph connecting local minima of a potential function in c-space

and searches this graph for sequences which will produce a solution. Local minimum

are connected to each other using a Monte-Carlo randomized motion as needed to

escape the first local minimum followed by a gradient motion based on the potential

function. The local minima graph is searched depth first with random backtracking.

The algorithm is complete since, given due computation time, an exhaustive search
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would eventually result. Barraquand presents results for a relatively simple problem

with a 31 dof manipulator which was solved in 15 minutes. The planner's ability to

quickly solve more difficult but practical problems is not demonstrated in [78].

Lozano-Perez [79] present a task-level approach which involves both potential

fields and c-space graph search methods. Lozano-Perez solves the pick-and-place

problem by decomposing it into nearly independent, computationally feasible, sub-

problems. The two main subproblems are the grasp locations and approaches thereto

(at both the pick and place ends of the motion) and the gross translational motion

from the general locality of the pick location to the general locality of the place

location. A grasp position is determined by transforming the obstacles at the place

location to their equivalently limiting positions at the pick location and searching

the resulting c-space for a feasible grasp position. Having determined the grasp

points, Lozano-Perez uses a potential fields approach (and some trial and error) to

determine an arbitrary free approach/departure point in the vicinity of both the pick

and the place locations. The final phase of Lozano-Perez's task planning is then to

plan the free motion plan between the departure point and the approach point. This

is done using c-space obstacle mapping and includes the assumptions that orienta-

tion may be neglected and that the first three robot joints invoke 3D translation.

Exhaustive mapping of the resulting 3D c-space is avoided by progressing in 2D

slices within that space until a solution is found.

2.1.3 The Human Assisted Approach

The mathematical complexity of a computed complete (even if suboptimal)

solution to the general motion problem apparently make it intractable for more than

a few degrees of freedom. Humans seem to possess some natural abilities to "see"

solutions to many motion planning problems for which computing a solution is still

difficult or excessively computationally intensive. It is precisely this apparent human



27

ability that the human assistedapproach to path planning attempts to capitalize

on.

In its simplest form, human assisted path planning is accomplished on-line.

This usually involves moving the robot using a teach pendant and storing a series

of points along a collision-free path. The points can later be re-played in sequence

to execute the desired task.

More typically, the human assisted approach employs computer graphics mod-

els of the robot and its environment. The user can then perform the motion planning

in an off-line graphical manner. It is usually possible to display multiple views to

allow the user to detect any potential collisions. More advanced systems can au-

tomatically perform the collision checking. Systems which can compute estimated

task execution time can also allow the user to search for a very efficient path. As

the number of times a particular task is to be repeated increases, the benefits of

obtaining a very efficient path become more pronounced.

Some systems presented in the literature which are suitable for the human

assisted approach to off-line path planning are presented by Derby [80], Hornick

and Ravini [81], Stobart [82], and Han [83].

More recently, advances in telerobotics has produced systems in which people

may be employed as on-line path planners. Telerobotics, as described by Weis-

bin [84], includes three main paradigms of control:

1. Teleoperation, in which a human directly controls the remote device in real

time

2. Robotics - in which the remote device is preprogrammed

3. Supervisory Control- in which the human controller gives high level commands

which are decomposed and executed by the machine under human supervision.

Human assisted path planning would typically be involved in paradigm (1), whereas
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autonomous path planning could be integrated into paradigm (3) to eliminate some

of the burden on the operator.

2.2 Path Planning for Cooperating Robots

While they are inherently similar, there are some key differences between mo-

tion planning for single manipulators and for cooperating robots. Some of these

differences are shown in Table 2.1. These differences are discussed later in Sec-

tion 4.1.

Single Robot

Path Planning

Typically relatively large amounts

of free space available.
Translations and rotations may

often be decoupled.

Task space heuristics often

effective for path planning.

C-space approaches inherently

handle multiple arm configurations.

Cooperating Robot

Path Planning

Closure constraint leads to compar-

atively little free space.
End effector orientation important

for maintenance of feasible

configurations.
Second robot makes effective use of

,ask space heuristics very difficult.

Configuration of second robot must

be considered explicitly.

Table 2.1: Single Robot vs Cooperating Robot Path Planning

In comparison to the single robot path planning problem, the cooperating

robot path planning problem has thus far received relatively little attention in the

research community. Perhaps this is because an efficient exact algorithm for single

robot planning is yet to be developed. Nonetheless, several researchers have specif-

ically considered the cooperating robot path planning problem. Their efforts are

summarized below.

Chien [85] presents a path planning technique for two cooperating planar

robots each having two links and three revolute joints. Chien's solution process
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involvesdividing the subspaceinto two 2D subspaces,one for eachof the two pos-

sible configurations of the secondrobot given a specifiedconfiguration of the first.

These two subspacesareconnectedby transition configurations for which the con-

figuration in eachof the two subspacesis the same.The "sameturn first" strategy,

an algorithm which guaranteesfinding a solution if one exists, is usedto searchfor

a sequenceof moveswithin and betweenthe two 2D subspaceswhich will connect

the start and goal configurations. While this techniqueis complete,its practicality

is apparently limited to planar robots.

Koga and Latombe [86]presenta completeplanning techniquefor cooperating

arms with only a few degreesof freedom. The technique is basedupon systematic

searchesof c-spacegrids. They presentanother planner which is not completebut

is practical for more dof. This techniqueusesrandomizedpotential fields planning

techniquessimilar to Latombe's prior singlearm work [78]discussedin Section2.1.2.

The technique has beenimplemented for redundant planar manipulators. Unlike

other researchdiscussedherein, Koga and Latombe allow the the grasp positions

of the robots to be altered during a manipulation by temporarily halting motion

of the payload and repositioning an end effector. Thus far, their potential fields

planner requiressomeassumptionswhich significantly affect the planner's reliability.

Difficulty wasalso experiencedwith more than a few obstacles.

An analytical techniquefor singlerobot path planning involvesthe useof kine-

matic constraints to posethe path planning problemas an analytical optimization

problem. Seereeramand Wen[87]presentanexampleof sucha techniqueby posing

the path planning problem as a finite time nonlinear control problem and solving

it using a Newton Raphsontype algorithm. This approachrepresentsthe require-

ment of obstacleavoidancewith a set of inequalitieson the configuration variables.

Suchapproachesare still under developmentand may proveuseful in the future for

solving practical problems for robots with many dof. Lira and Chyung [88] apply
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a similar technique to the cooperating robot path planning problem by reformulat-

ing the problem as a non-linear optimization problem. Their methodology essen-

tially involves determining an admissible trajectory for the object being grasped,

where admissibility involves reachability by both robots. This method determines

a feasible path by employing optimization methods to modify the cartesian straight

line/constant rotation path of the object. Since the feasibility of an object path is

investigated at the joint level, the resulting solution is in joint space. No provisions

are made for collision detection or obstacle avoidance. Lim presents results for de-

termination of a simple trajectory for two cooperating five degree of freedom RHINO

robot arms. It is unclear whether Lim's methodology would be applicable to more

difficult problems requiring obstacle avoidance and arm configuration changes.

Hu [89] presents an approach to control multiple cooperating redundant ma-

nipulators. While control rather than path planning is Hu's primary concern, the

approach allows use of the redundancy to avoid collisions between the robots and

obstacles while traversing a specified task space trajectory. Determination of a suit-

able task space trajectory for the payload would still require some type of higher

level path planner.

McCarthy and Bodduluri [90] examine the design and motion planning prob-

lem for closed kinematic chains such as cooperating robots. Their motion planning

algorithm utilizes selective mapping of c-space and involves subdividing c-space into

hypercubes until a safe path may be found by traversing edges of the hypercubes. A

2D depiction of this algorithm is given in Figure 2.5. Figure 2.5a shows a bounded

2D space, some circular obstacles, and prescribed start and goal points (S and G,

respectively). The space is subdivided at the start point (Figure 2.5b), and fur-

ther subdivided at the goal point (Figure 2.5c). Finally, all non-empty regions with

reachable vertices are subdivided until a solution is found (Figure 2.5d). This type

of approach is referred to as cell decomposition. McCarthy and Bodduluri solve
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Figure 2.5: Hypercube Subdivision Algorithm

the cooperating Puma problem for several cases for which maintaining closure and

avoiding collisions between the robots appear to be the main concerns. The closure

constraint utilized is simplified by modeling each puma as a 3R-1S robot and then

requiring a constant length between the S joints of each robot.

Chen and Duffy [91] also present a path planner for two cooperative Puma

robots. Their approach is to find a feasible position for the first three links of one

of the robots along a discretized path from start to goal. For each point along this

discretized oath the possible closure configurations (cones) are investigated to find

a feasible and collision free configuration for the second robot. Because of some

simplifications and assumptions it does not appear as though their approach would

be successful for problems much more difficult than the relatively simple example

illustrated in [91].
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2.3 Other Related Areas of Research

Other related areas of path planning research which will not be discussed in

depth in this thesis include:

• Mobile robot path planning

• Coordination of multiple robots

• Piano Mover's problem

• Nonholonomic motion planning

These areas of research are briefly discussed below.

2.;3.1 Mobile Robot Path Planning

While all robot path planning problems have inherent similarities, mobile

robot path planning differs in many ways from path planning for general manip-

ulators. Some of the key differences as identified by McKerrow [92] are summarized

in Table 2.2. These differences result in path planning for manipulators being more

complex than path planning for mobile robots. The path planning problem for a

2D mobile robot in the presence of known stationary obstacles has many real-time

optimal (minimum time or minimum distance) solutions. Many researchers of the

mobile robot path planning problem have also considered dynamic obstacles and/or

unknown environments. Such results are made possible by the limited dimensional-

ity of the mobile robot path planning problem. Since we are concerned with path

planning for manipulators, no detailed discussions will be given to path planning

techniques suitable only for mobile robots. Areas where the algorithms used to

solve mobile robot path planning problems may impact the general manipulator

path planning problem have been included in earlier discussion.
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Mobile Robot

Path Planning

Movement restricted to 3D.

Whole robot moves from start to

_:oal.

Robot typically occupies a fixed

volume.

Model of environment typically

incomplete.

Dead-reckoning control of a mobile

robot is subject to significant errors
which accumulate.

Manipulator

Path Planning

End effector may move in 6D.

End effector and payload move from

start to goal.

Volume occupied by robot changes

as joints move.

Exact location and description of

objects in the workspace are

typically known.

Typically assume high accuracy

and repeatability of joint motions.

Table 2.2: Mobile Robot vs Manipulator Path Planning

2.3.2 Coordination of Multiple Robots

Coordination of robots is typically done assuming the individual paths of the

robots are known with the timing to be determined so as to avoid collisions. Research

into the coordination of multiple robots will not be discussed herein since it does

not appear that cooperating robot path planning research will benefit directly from

it at this time.

2.3.3 Piano Mover's Problem

As mentioned earlier, the nature of the robot path planning problem is very

similar to the piano mover's problem. The piano mover's problem involves planning

a collision free path between two poses for a single, rigid object amongst obstacles.

Because of the inherent similarities between manipulator path planning and the

piano mover's problem, many algorithms such as vgraphs, voronoi diagrams, and

graph search methods may be applied to either. Earlier discussions include such

algorithms. There are also a number algorithms which are specific to a particu-

lar subset of mover's problems and are not applicable to the robot path planning
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problem.

A recent survey of the status of motion planning research including the mover's

problem is provided by Hwang et al [93]. Hwang suggests that, as a result of problem

complexity, future research should concentrate on heuristic algorithms that run in

a few seconds at the expense of failing to find a solution to very hard, pathological,

puzzle-like problems.

2.3.4 Nonholonomic Motion Planning

The complexity of a certain class of motion planning problems is compounded

by nonholonomic constraints. Nonholonomic constraints are constraints on the

derivatives of configuration variables which cannot be integrated. For example, a

unicycle may maneuver to achieve any position and orientation, but its direction of

motion at any one instant is constrained. Path planning for single and cooperating

robots is holonomic. The nonholonomic problem is much more difficult and efforts

for developing implementable algorithms are just beginning. A review of the current

status of motion planning with nonholonomic constraints may be found in [93].

2.4 Summary of the Literature Review

This section presents a summary of the above literature review. The summary

is presented in four sections:

• Difficulties with Complete Solutions

• Practical Incomplete Solutions

• Potential Fields Solutions

• Cooperating Robots
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2.4.1 Difficulties With Complete Solutions

Many complete algorithms have been developed for solving the motion plan-

ning problem. However, it appears as though the mathematical complexity of such

techniques renders them computationally intractable when applied to a reasonably

difficult robot motion planning with six or more dof. A general, practical, and

complete solution to the motion planning problem has not yet been developed.

There are a number of complete approaches which attempt to achieve solution

time commensurate with problem difficulty. The computational practicality of these

techniques for reasonably difficult yet practical path planning problems remains to

be demonstrated.

2.4.2 Practical Incomplete Solutions

As a result of problem complexity, practical techniques used to solve the single

robot motion planning problem for six or more dof involve some heuristics or sim-

plifying assumptions and lack completeness. Some typical simplifications include:

• Simplified models of the robots and obstacles

• Decoupling of rotations from translations

• Compact wrists and payloads

• Restrictions on allowable motions and allowable obstacles

These simplifications and heuristics are typically robot and/or task specific and

would not be expected to perform well in more general cases or for two robots

working cooperatively due to the differences presented earlier.

The speed and success of the most useful algorithms can be attributed to their

pruning of the search space by reducing problem dimensionality or by their ability

to selectively map c-space thereby avoiding intractable exhaustive mappings.
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2.4.3 Potential Fields Solutions

The potential fields approach to single arm path planning constitutes an effec-

tive way to combine the constraints resulting from several obstacles for many simple

cases, but the fact that motion planning using potential fields is based solely on local

information has led to some difficulty in achieving effective high level planning. The

most effective potentials fields approaches determine a sequence of intermediate via

points between which there are no local minima.

2.4.4 Cooperating Robots

Of the work which has been published for path planning of cooperating robots,

much of it is limited in effectiveness to planar systems. The researchers who have

addressed cooperating robots with six or more degrees of freedom have apparently

been successful only in solving problems which appear to be relatively simple.

Research pertaining to path planning for cooperating robots utilizing potential

fields appears to be still in its early stages. Results so far have been limited to

redundant planar systems with only a few obstacles.
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Statement of the Problem

This chapter presents a formal definition of the robot path planning problems being

addressed by this thesis. Some general background information is given in Sec-

tion 3.1. Sections 3.2 and 3.3 discuss assumptions and goals, respectively. Formal

definitions of the single and cooperating robot path planning problems are given in

Sections 3.4 and 3.5, respectively.

3.1 Background

A robot can be described by its forward kinematic equation

T_ n = f(O) (3.1)

where T_ E Tim represents the task space transformation (position and/or orien-

tation) of the end effector and ® = (01 .... ,On) E Ti n represents the robot's joint

configuration, where n is the number of degrees of freedom (dof). For spatial robots

with three translational and three rotational dof, rn = 6.

A robot's inverse kinematic equation

® = f(T_ n) (3.2)

identifies joint configurations O which would result in a specified task space trans-

formation T_ n. For a non-redundant robot capable of achieving any desired position

with any desired orientation (within workspace limits), n = m, and Equation 3.2

will possess only a finite number of solutions E) for a given T_ n. For redundant

robots n > m and equation 3.2 is underdetermined, indicating that an infinite num-

ber of robot configurations ® exist which produce the end effector transformation

T_ n. The problem of solving Equation 3.2 for a redundant robot is referred to as the

37
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redundancy resolution problem. A robot with n < rn has fewer dof than required to

arbitrarily position and orient its end effector in the workspace. The inverse kine-

matic equation for such a robot is overdetermined, i.e., it will have solutions only

for transformations which lie in the limited workspace of the robot.

3.2 Assumptions

This section restates the assumptions presented in Subsection 1.2.1 and pro-

vides a discussion regarding each assumption.

Assumption 1 Forward kinematic models of the robots are available.

Discussion: A robot may be represented using the Denavit-Hartenberg con-

vention from which the forward kinematic model (Equation 3.1) can be easily de-

rived [94].

Assumption 2 Closed-form inverse kinematic models of the robots are available

for six dof robots or for the final six links of redundant robots.

Discussion: This thesis addressed full spatial robots for which n > m = 6 (see

Section 3.1). Most commercial six dof robots satisfy one of the following sufficient

conditions which enables a closed-form inverse kinematic solution [94]:

1. Three adjacent joint axis intersect.

2. Three adjacent joint axis are parallel to one another.

Unimation Puma manipulators, which will be used in the case studies for this thesis,

satisfy the first condition. In general, multiple solutions will exist representing

various possible robot configurations. For redundant robots, it is assumed that the

final six links can be treated as a single six dof robot for which a closed-form inverse

kinematic model is available. The usefulness of this assumption regarding redundant

manipulators will become evident later in this thesis.
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The path planning strategy in this thesis does not require inverse kinematics

for single robot path planning problems.

Assumption 3 Geometric models of the robots, payload, and obstacles are avail

able.

Discussion: Robots and their environment may be represented by some form

of geometric model. Some typical forms of geometric modeling include boundary

representations (b-reps), constructive solid geometry (csg), and polytope represen-

tations. The geometric model will contain knowledge of the geometry, position, and

orientation of the robot links, the payload, and each obstacle in the workcell. The

only constraint regarding geometric modeling is that a facility for performing colli-

sion detection is required. Neither the source of this geometric information nor the

data structure format of the geometric model is important from the perspective of

the path planner. For static obstacle path planning purposes, the geometric model

need only consist of a geometric description of the robots, payload, and objects in

the environment.

Assumption 4 Obstacles in the workspace are static.

Discussion: The added complexity of a dynamic environment make it unlikely

that a practical planner for cooperating multi-dof robots with dynamic obstacles will

be developed anytime soon.

Assumption 5 Feasible and collision free start and goal joint configurations of the

robots are known, as are the start and goal positions of the payload.

Discussion: There are several key consequences of this assumption. First,

note that the grasp positions are inherently defined by this assumption. The deter-

mination of suitable grasp positions is highly task specific, potentially very difficult,
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and beyond the scope of this thesis. Secondly, note that specifying the start and

goal joint configurations as opposed to the start and goal task space configurations

eliminates the need for the path planner to choose particular solutions to the inverse

kinematics at the start and goal positions. It is reasonable to assume that the start

joint configurations are known since some single arm planning must have been done

to position the robots at their initial positions. Requiring that the goal joint con-

figurations be known is more demanding than simply specifying a task space goal

for the payload. Typically even non-redundant robots would have several possible

configurations (such as elbow up or elbow down) which satisfy a particular task

space goal. The solvability of the path planning problem can depend upon which

joint configuration is specified as the goal. An example where the choice of goal joint

configurations determines the solvability of a path planning problem is illustrated

in Figure 3.1. Figure 3.1a shows the start position for two cooperating 3R planar

(a)

star_

(b) (c)

unachlevabie goal

Figure 3.1: Choice of Goal Joint Angles May Affect Solvability

robots. Figure 3.1b shows a choice of goal joint configurations which result in a

solvable problem for the case illustrated. As shown in Figure 3.1c, a different choice

of goal joint configurations which produce the same task space goal can result in an
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unsolvable problem. In the case of redundant robots some form of redundancy res-

olution is required to specify the goal joint angles. Redundant robots will typically

possess one or several regions in c-space which yield a desired task space goal.

It is a clear disadvantage to require the goal joint configurations be specified

at the outset of the problem since this information must come from some higher

level source and may directly determine the existence of a solution. However, a few

incidental advantages arise from the extra knowledge required by Assumption 5:

• Path cyclicity concerns are eliminated. A path planner will often be required

to execute a task which is repetitive in task space. Path planners which do not

specify the start and goal joint angles for a particular path planning problem

often suffer from path cvclicity problems whereby the robot does not achieve

the same configuration oil subsequent repetitions of identical task space tasks.

• Path planning problems may be attacked either from start to goal or vice

versa. The ability to attempt to solve a path planning problem from either

direction (or even from both directions simultaneously) may prove to be ben-

eficial if the algorithm or heuristic being used happens to be more successful

in one direction than in the other for a particular path planning problem. For

example, planning a path to remove a peg from a hole would intuitively seem

much simpler than planning a path to put the peg in the hole. The 2-D prob-

lem illustrated earlier in Figure 2.2 is one which would have proven easier to

solve backwards if using an A '_ graph search approach. As discussed earlier in

Section -9.1.1, the ability to search bidirectionally is often valuable.

• A preferred goal robot configurat.ion may be achieved. In some cases it may

be desirable to supply the path planner with a specified goal robot configu-

ration rather than allowing the path planner to choose any which satisfy the

goal position/orientation in task space. For example, a reliability analysis or
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robot flexibility analysis might be used to prescribe a preferred goal robot

configuration.

Our needfor Assumption 5 stemsfrom the fact the our approachis configu-

ration spacebased. This will becomeclear as our solution technique is presented

later in this thesis.

Assumption 6 Motion between the specified start and goal positions may be arbi-

trary.

Discussion: This assumption illustrates that interest is solely to move from

start to goal without restriction on the path. This is the most general form of the

path planning problem and is acceptable for solving the vast majority of problems.

As an example of a task for which this assumption would not be valid, consider

two robots cooperatively manipulating a trough of water. Clearly such a task would

impose a constraint on the motion between the start and goal positions such that the

trough would remain level so as not to spill the water. Another example requiring

restricted motion involves contact between the robot/payload and its environment.

Although such cases are not considered herein, some discussion of how they might

be addressed is presented later in Section 5.4.

In cases where a specific task space path must be followed the problem becomes

one of configuration selection or redundancy resolution rather than a classical path

planning problem. For example, a nine dof robot performing arc welding along a

specified task space path is not a nine dimensional path planning problem but rather

a much simpler three dimensional redundancy resolution problem.

Assumption 7 The planner may ignore robot dynamics.

Discussion: This assumption is valid when considering only static obsta-

cles and since a time optimal trajectory is not sought. Algorithms which consider
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dynamics typically assumethat an initial path is given and dynamic optimization

is done locally along the path [95]. Under dynamic optimization, path curvature

becomesan important characteristic.

3.3 Goals

This subsectionrestatesand discussesthe goalspresentedin Subsection1.2.2.

Goal 1 The planner shall locate reasonable collision-free paths in a time frame suit-

able for off-line path planning.

Discussion: It appears as though the search for an optimal path and/or a

real time solution for non-trivial path planning problems with more than a few dof

will remain computationally intractable for some time to come (See Chapter 2).

Goal 2 The planner shall be capable of modifying a feasible path into a more effi-

cient one.

Discussion: It is typically possible to modify a suboptimal path found by a

path planner to produce a smoother, more efficient path.

Goal 3 The planner shall be applicable to various robotic systems and various tasks.

Discussion: Some path planning techniques perform well only with specific

types of robots or for certain types of tasks due to their use of simplified, case specific

assumptions or heuristics. We would like our solution technique to remain free of

a,ly assumptions which would limit its use as a general-purpose path planner.
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Goal 4 The planner shall be practical for cooperating six dof manipulators as a

minimum, and ideally for cooperating redundant robots.

Discussion: It should be noted that the practicality of a path planning tech-

nique for a robot with six or more dof is important since at least six dof are required

to arbitrarily position and orient an end effector. Many of the path planning tech-

niques discussed in Chapter 2 are not practical for robots with six or more dof.

Goal 5 The planner output shall be a sequential listing of closely spaced knot points

in joint space which represent the discretization of a continuous, feasible, and ob-

stacle avoidin 9 path connecting the start and goal configurations.

Discussion: This goal is consistent with integrating a path planner into the

CIRSSE testbed system using a traditional three-step decomposition of the move

robot problem. The three steps are path planning, trajectory generation, and motion

control. A trajectory generator may be used on the output of the path planner to

provide timing information consistent with the dynamic constraints of the system.

The knot points determined by the path planner shall be spaced closely enough

that the trajectory generator need not be concerned with maintaining the closure

requirement between knot points. Execution of the time parameterized trajectory

may be carried out by a motion control system. Some fine compliance will typically

be required due to inaccuracies in the robot model or tracking errors at the control

level. Such compliance could be either passive, such as a compliant end effector, or

active, such as compliance based on force/torque feedback. Details of the trajectory

generation and motion control steps are separate areas of research which are beyond

the scope of this thesis.
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3.4 Single Robot Path Planning Problem Statement

Per the background and assumptions stated above, the single robot path plan-

ning problem may be formally defined as follows:

Given:

1. A single robot described by its forward kinematic equation, Equation 3.1.

2. Geometric models of the robot, the payload, and workspace obstacles.

3. Start and goal joint configurations of Gs and eg, respectively.

Determine:

A closely spaced sequence of ]_"joint space knot points (®l,'",Ok), where

O 1 = Os and O k = Og, which represent a discretization of a feasible and collision

free c-space path connecting Os and Og.

3.5 Cooperating Robot Path Planning Problem Statement

Per the background and assumptions stated above, the cooperating robot path

planning problem for two cooperating spatial robots, referred to as robots 1 and 2,

may be formally defined as follows:

Given:

1. Two robots work cooperatively satisfying the closure constraint:

T.6,_r2 = T206*0_).1 (3.3)

r2
where Trl is an invariant transformation relating the relative positions of the

robot end effectors as they grasp a common, rigid object.

2. The robots are described by forward kinematic equations:

Wi 0=f(Oi) ,i=1,2 (3.4)
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where ®i = (Oil,...,Oini) representsrobot i's joint configuration, n i _> 6 is

the number of degrees of freedom (dof) of robot i.

3. The robots are described by inverse kinematic equations with at most one

solution:

®i = f(Ti 6,®i',Ciji ) , i=1,2 (3.5)

where ®i' = (0il,... ,Oini_6), and Ciji represents one of Ji possible robot

configurations for robot i, and Ji is finite and known.

4. Geometric models of the robots, the payload, and workspace obstacles.

5. Start and goal joint configurations of ®is and ei 9, respectively, where i = 1,2.

Determine:

A closely spaced sequence of/: paired joint space knot points

((®11,(_21),...,(el/:,®2].)), where _i 1 = ®is and ®i/,. = {_ig, which represent

a discretization of a feasible, continuous, and collision free path connecting

(®ls, ®2s) and (®19, _2g). Each paired knot point (E}lj,_2j) shall satisfy the

closure constraint, Equation 3.3. Also, the discretization shall be sufficiently fine

so that a trajectory planner may ignore the nonlinearities of the closure constraint

between knot points.



CHAPTER 4

Divide-and-Conquer C-Space Traversal Heuristic

This chapter presents the configuration space traversal heuristic which is the heart

of the path planning strategy presented in this thesis. This chapter merely presents

the heuristic. The utilization of the heuristic is discussed in subsequent chapters.

This chapter is organized into eight main sections:

• Motivation for a New Approach

• Conceptual Description of Heuristic

• Vector Description of Heuristic

• Computing Search Directions

• Prioritizing Search Directions

• Comparison of the Heuristic to the Literature

Section 4.1 discusses the motivation for a new path planning technique for

cooperating robots. Sections 4.2 and 4.3 present conceptual and vector descriptions

of the c-space traversal heuristic, respectively. Computation and prioritization of

search directions used by the heuristic are discussed in Sections 4.4 and 4.5, respec-

tively. Finally, a comparison of the heuristic to published path planning algorithms

and heuristics is presented in Section 4.6.

4.1 Motivation for a New Approach

This section attempts to make a case that there is sufficient motivation for this

new research in the area of path planning for cooperating robots. First, recall from

Section 2.2 that path planning approaches in the literature for cooperating robots

47
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are generally limited with regard either to the number of degrees of freedom (dof)

of the robots or to the apparent difficulty of problems which they are capable of

solving. Thus, there appears to be sufficient motivation for this research.

Due to the fact that researchers' interest in cooperating robotic systems is

relatively young compared to the much longer history of interest in single robots,

thorough consideration should be given to the application of methods developed

for single robot path planning when searching for a solution to the cooperating

robot path planning problem. There are, however, some unique elements to the

general cooperating robot path planning problem that make it unlikely that any

of the single arm path planning methodologies discussed in Chapter 2 could be

successfully applied to cooperating robots without significant modifications. These

differences were presented earlier in Table 2.1. Some of these special elements of the

cooperating arm problem and the way in which they impact the solution process

are discussed in this section.

Consider, for instance, two cooperating six degree of freedom manipulators.

The effective number of degrees of freedom for the closed kinematic chain is six

(from Equation 1.1). Hence, the problem is essentially six dimensional (almost as

if it were a single arm problem) but possesses the added closure constraint. This

restriction does not affect the dimensionality of the space in which a graph search

algorithm must perform, but does affect the validity of some of the assumptions

typically used to reduce the system to one of a lower dimensionality. For example,

a common assumption for single arm planning is to neglect orientation for large,

gross moves through space. This assumption would not likely prove effective for two

cooperating robots since the orientation of the load will usually be crucial to the

maintenance of configurations reachable by both robots.

The added difficulty induced by the closure constraint would also make it

extremely difficult to implement a planner based on task space heuristics. One
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of the difficulties with task spacebasedheuristics for single robot path planning

problems is that they often produce collisions with one obstacle while trying to

avoid another. Such difficulties could only be more severe for a closed kinematic

chain such as results during robotic cooperation. An additional difficulty which

would be magnified by the reduction in free space during cooperation is the fact

that the avoidance strategy suggested by a task space heuristic may not always be

feasible to achieve.

Although the potential fields method should, in theory, be applicable to the

cooperating robot motion planning problem, much difficulty in achieving a reliable

implementation would be anticipated. Much thought would be required to attempt

to develop potential field functions that would be well behaved for the closed kine-

matic chain which results during cooperation. Also, the practice of selecting a grid

of trial points and perturbing them or rerouting the path through a different set

of via points would be significantly more difficult for cooperating robots than for a

single robot. The basis for the preceding statement is that a far more restricted safe

space results for cooperating arms. As a result, the practice of determining safe trial

points more closely spaced than the overall global problem would be more difficult.

Also, there would be increased likelihood that some intermediate trial points would

lie in unreachable regions of safe space. Results in the literature seem to support

the premise that achieving a practical and reliable potential fields based planner for

cooperating robots would be difficult (see Section 2.2).

The human assisted approaches still maintain their advantage of capitalizing

on the natural ability of humans to solve complicated geometric problems. In fact

it is the human assisted approach by which most non-trivial collision free robot

motion planning is currently accomplished. However, the level of insight which the

user would be required to supply would clearly be much greater for two cooperating
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arms than for a single arm. This increase in difficulty may make an already poten-

tially undesirable task for a human prohibitively tedious, frustrating, and difficult.

In addition, while the human assisted approach offers the best chance for nearly im-

mediate results, it is contrary to our longer term goals of creating more autonomous

robotic systems capable of complete task planning and execution from a task level

command.

The path planning procedure being presented herein is of the graph search

type and, in a fashion similar to Dupont's approach to path planning for a single

redundant manipulator (see Section 2.1.1), the procedure involves selective mapping

of c-space on an as needed basis to reduce computational burden. Because of the

added difficulty of the cooperating arm problem, an improved heuristic was sought

to guide the mapping of c-space in a manner directed towards finding a solution with

a minimal amount of mapping. This resulted in the development of the "divide-and-

conquer" c-space traversal heuristic presented below.

4.2 Conceptual Description of Heuristic

In this section, a novel "divide-and-conquer" style heuristic is presented for

traversing an n-dimensional space consisting of safe and unsafe regions. For pur-

poses of robot path planning, the space to be traversed is c-space. The heuristic

is general in nature and, while our intended application is to solve the robot path

planning problem, this technique could be used to attempt to traverse any space

consisting of regions of safe and of unsafe points. An example of another possi-

ble application is the "piano movers' problem." Becvu__e of the impracticality of

mapping the space exhaustively for dimensionality greater than perhaps three, the

heuristic was formulated to be compatible with selective mapping of c-space with no

computationally expensive precomputations. The c-space traversal heuristic is the
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"backbone" of the path planning technique being presented in this thesis. Discus-

sion of the application of the c-space traversal heuristic to the robot path planning

problem is deferred until the next Chapter.

This section describes the heuristic conceptually using several simple 2D and

one 3D illustrative examples. A vector description of the heuristic is given in Sec-

tion 4.3. Although the pictorial examples herein are mainly 2D for simplicity of

illustration, the approach suffers no loss of generality regardless of problem dimen-

sionality (although the complexity of the searches increases with problem dimension-

ality). The vector description presented later is applicable to a space of arbitrary

dimension.

To illustrate the heuristic, consider the 2D path planning problem illustrated

in Figure 4. la, where Os and ®9 are the start and goal positions, respectively. The

following note is important:

In this example and subsequent examples herein the boundary of the

unsafe c-space is defined in the figure as though the c-space obstacle has

been mapped out. This is not the case, but the entire unsafe region is

shown a priori to provide better understanding of the subsequent steps.

First, the n-dimensional direction vector from the start point to the goal point is

calculated and an attempt is made to traverse along that vector until the first unsafe

point is found. This involves discretizing the path from the start to the goal and

mapping each successive step along that path until the first unsafe point is found.

In the example, the progression from Os is safe through point ®a (Figure 4.1b).

Points safely mapped are indicated by the solid circles in the Figure.

Next, the progression along the straight line path from start to goal is contin-

ued through the unsafe region until the first safe point is found. In the example,

this first safe point is labeled ®b in Figure 4.lb. Unsafe points mapped in this

process are indicated by the open circles. Although in this example O b lies in the
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Figure 4.1: 2D Example of C-Space Traversal Heuristic

same connected region of safe space as the start and the goal points, this will not

be true in general. Next, the intent is to find a safe point in the n-1 dimensional

space orthogonal to and bisecting the vector between the last safe point (®a in the

example) and the first safe point on the other side of the homogeneously unsafe

region (O b in the example). It is apparent that such a safe point must exist if the

problem at hand is solvable. In this example, this reduces to searching the 1D line

shown in Figure 4.1c. The search methodology depends upon whether this is an

initial search or a subsequent search:

• For an initial search, the search space is effectively searched for the safe point

nearest to the midpoint of the unsafe line segment which was mapped previ-

ously. This is done by radiating out equal amounts in all search directions

until a safe point is found.
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• For a subsequent search, the search directions are prioritized and searched non-

uniformly per the methodology discussed in Section 4.3. In 2D, a prioritized

search would first search in the search direction which has a component in the

direction of the previously successful search direction. If no safe point can be

found in that direction, the opposite direction is searched.

Since this is the initial search in the example, the line is searched discretely and

in both directions equally from the midpoint until safe point Oc is found (see Fig-

ure 4.1d). Next, an attempt is made to traverse to the safe point from the last

safe point initially found in trying to go directly fi'om the start to the goal (that

point being ®a in the example). The following steps depend upon the result of that

attempted traversal, as detailed by the following two cases:

Case 1: The Traversal to the New Safe Point is Entirely Safe

In this case it is attempted to traverse to any previously determined guide

points, where guide points are previously determined safe points such as those found

at the other side of the homogeneously unsafe region or intermediate goal points

found in any prior searches. The sequence for considering the guide points is the

opposite of the order in which they were found with the global goal point to be

considered as a final guide point. When progression to a particular guide point

is not entirely safe, that guide point is permanently dismissed and progression is

attempted toward the next guide point in the specified sequence. It is in this manner

that productive use may be made of safe points which could be in unreachable regions

of safe space. As a result, intermediate guide points may or may not be part of the

final path. The attempted progressions continue until an attempt has been made

to progress to the global goal point. If progression can be made to the global goal

point the entire path planning problem has been solved. Otherwise, the last safe

point progressed to becomes the new start point and the entire heuristic is repeated

until the global goal point has been safely progressed to.
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Note that only points which have been safely progressedto from the start

point are mandatorily included aspart of the final path but thosewhich may be in

unreachableregionsare usedto help guide the overall process.All points actually

comprising part of the path will, of course,be in the sameconnectedregionof safe

spaceasthe start point.

The 2D exampleof Figure 4.1 invoked this casesincethe attempt to traverse

from _a to ®c can beseento besuccessful(Figure 4.1e),Mter which progression is

made to guide points _b and ®g thereby completing this simple 2D path planning

problem with the resulting path shown in Figure 4.1e. The c-space points which

required mapping during the process are shown in Figure 4.1f. Note how relatively

few points were mapped by this technique.

Case 2: The Traversal to the New Safe Point is Not Entirely Safe

In this case the heuristic is recursively applied taking the last point safely

progressed to as the start point and the safe point found in the last search as the

goal point.

4.2.1 More 2D Examples

Another 2D illustration of the heuristic is given in Figure 4.2. The solution

sequence in this example is similar to that in the previous example except in this case,

following the safe traversal to the safe point Oc, no progression can be made toward

®b" Thus Ob is disregarded, progression is attempted toward the second guide point

®g resulting in the solution shown in Figure 4.2e. Note that the disregarded point

did not necessarily have to lie in the same region of safe space as the start and goal

positions (although it did in this example).

An example of a 2D task which would result in a c-space having an unreachable

safe region is shown in Figure 4.3. A 2D illustration of the c-space traversal heuristic

for a problem with two disjoint regions of safe space is illustrated in Figure 4.4. This
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Figure 4.2: Example Which Dismisses an Intermediate Point

illustration also demonstrates the inherent reversal nature of the heuristic when

a joint limit problem is encountered (the second search hits a joint limit in the

preferred direction after which reversal occurs). This example also illustrates the

heuristic for a problem requiring multiple searches.

4.2.2 A 3D example

An example of the c-space traversal heuristic applied to a 3D problem is il-

lustrated in Figure 4.5. In the 3D case, the search space is 2D (planar). For this

example eight evenly distributed search directions were considered with the search

directions prioritized into two groups (prioritization is discussed below).

4.2.3 Philosophy Behind the Heuristic

The basic idea behind the divide-and-conquer c-space traversal heuristic is

that better local decisions at the beginning of the trouble region may be made if a
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possible way around the "center" of the trouble region is known. Thus, rather than

attempting paths which look promising locally (at the beginning of a trouble region)

but which may not yield overall results, the heuristic attempts local strategies that

appear to have a possible overall solution around the trouble region. A comparison

of how this heuristic relates to the literature is given later in Section 4.6.
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Figure 4.5: 3D Example of C-Space Traversal Heuristic
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4.3 Vector Description of Heuristic

Given ®s and Og, the start and goal positions in n-dimensional space, re-

spectively, the heuristic may be described in vector notation by the following ten

step procedure:

Step 1

Compute the direction vector from start to goal and normalize:

D = ®g - Os

II®g- ®sll

Step 2

Compute the number of discrete steps along D from start to goal:

n=cll®g-® II

where c = constant which determines discretization size

Step 3

Discretize from es to ®g in the direction of D until the first unsafe point is found.

Call the last safe point Oa:
D

®a = ®s + j--
¢

where j = last integer in 1,2,...,n before an unsafe point is found

Step 4

Continue the discretization through the unsafe region until the next safe point is

found. Call that point Ob:

kD
0 b = Os +

c

where k = first integer in j+2, j+3,...,n which yields a safe point
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Step 5

Establish a set of nSD normalized search directions, OSDi, orthogonal to D:

®SD i • D = 0

where i---1,2,...,nSD and • represents the dot product operator.

Calculation of search directions is discussed in Section 4.4.

Step 6

If this is a subsequent search, prioritize the search directions by grouping them

according to their dot product with the last successful search direction. A technique

for so prioritizing the search directions is described in Section 4.5. The number of

groups used will affect the emphasis given to continuing searches in the previously

successful direction. The purpose of the prioritization is to favor search directions

based on their component in the direction of the last successful search direction.

Step 7

Search from the midpoint of the unsafe region, (®a + ®b)/2, in the (possibly prior-

itized) search directions until a safe point, designated as ®c, is found. The search

technique shall depend upon whether this is the initial search or a subsequent search.

If this is the initial search, search the entire set of search directions for the

safe point nearest to the center of the trouble region by radiating out equal discrete

steps in each search direction until a safe point is found or until all directions exceed

a joint limit and no safe point has been found.

If this is a subsequent search, search the highest priority group by radiating

out equal discrete steps in each search direction in that group until a safe point

is found or until it is determined that no safe point can be found in any of those

directions (such as a joint limit has been reached in each direction). If no safe point
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is found in the highest priority group then repeat for the next highest priority group.

Repeat until a safe point is found or until all groupings of search directions have

been exhausted and no safe point has been found.

If no safe point could be found, reinitialize the global problem as from the last

point safely progressed to the global goal point and restart the entire procedure.

Step 8

Discretize along ®a to Oc and traverse as far along this segment as is safe. If this

entire segment is safely traversed got® Step 9. Otherwise got® Step 10.

Step 9

Progress toward all previous guide points in the opposite order in which they were

found, where guide points include not only previous intermediate goal points but

also the safe points found on the goal end of each unsafe region which invoked a

search. The global goal point is added as a final guide point. When progression

to a particular guide point is not entirely safe, that point is permanently dismissed

and progression is attempted toward the next guide point in the specified sequence.

The progression continues until an attempt has been made to progress to the global

goal point. If progression to the global goal point is safe, the global path planning

problem has been solved. Otherwise, redefine Os as the last safe point in that

progression, Og as the global goal point, and go to Step 1.

Step 10

Set ®s equal to the last safe point, and Og equal to ®c, and go to Step 1.

4.3.1 Failure Condition

The heuristic fails when a call is made to Step 1 above with identical values

of Os and ®g as a previous call. This can occur by one of the following two failure

modes:
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1. Cycling occurs

2. The first searchfollowing reinitialization fails to locate a safepoint.

A 2D examplewhich results in the first failure modeis shownin Figure 4.6. In

spite of the possibility that the heuristic will fail, the results presentedlater in this

ooal
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Figure 4.6: 2D Example for which Heuristic Fails by Cycling

thesis seem to indicate that the heuristic provides the capability to solve realistic

and potentially difficult path planning problems. The example shown in Figure 4.6

does involve a concave obstacle. The heuristic does appear to perform better with

convex obstacles however the complexity and nonlinearity of the task space to c-

space mapping makes it unlikely that even simple problems will result in a c-space

with strictly convex obstacles. In addition, the ability to attack the problem from

either direction (see discussion following Assumption 5 in Section 3.2) would mean

that a problem would have to induce cycling if approached from either direction in

order to result in inability to find a solution. As the dimensionality of the space

increases, the likelihood of actual, practical robot path planning problems possessing
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deep concave cavities of safe c-space in both directions (start toward goal and vice

versa) would intuitively seem to decrease. Such a c-space shape would probably not

occur for practical problems.

The cyclic failure mode is not sufficient to rule out the existence of a solution

since this mode can occur for a problem in which the search directions on the first

search following reinitialization happens to miss all available safe space in the search

hyperplane.

4.4 Computing Search Directions

This section discusses methods for computing search directions as required for

Section 4.3 Step 5.

Recall from above that the c-space traversal heuristic involves searching the

space orthogonal to and bisecting the unsafe region encountered in an attempted

traversal. For an n-dimensional space ® = (00,... ,On), the n-1 dimensional hyper-

plane to be searched shall be orthogonal to direction vector D = (do,... ,dn) and

shall include point ®c = (0c0,..., Ocn), where ®c is the center point of the unsafe

segment. Thus, points to be considered in the search shall satisfy:

n

do(O O -OcO) + dl(O 1-0c 1) +... + dn(On -Ocn) = _ di(O i -Oc i) = O (4.1)
i=1

From Equation 4.1, it can be seen that the search directions S = (0 - 0c) must be

orthogonal to D:

dos 0 + dl s 1 + ... + dnsn =

n

dis i:S • D=0 (4.2)
i=1

Four procedures for determining search directions which satisfy Equation 4.2

were considered:

1. Searching a uniform grid

2. Radiating out along orthogonal basis vectors and their negatives.
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3. Radiating out along a set of vectors made up of combinations of the n-1 free

variables in Equation 4.2.

4. Radiating out along uniformly distributed vectors made up of combinations

of orthogonal basis vectors.

These four procedures are discussed below. Selecting amongst the procedures for

implementation is then addressed in Section 4.4.1.

Procedure 1 Searching a uniform grid.

Searching a uniform grid would involve discretizing uniformly in the n - 1 dimen-

sional search space defined by Equation 4.2. Such an approach would clearly pro-

duce a very effective search fi'om the standpoint that it would ensure finding a safe

point if one exists (within discretization limitations). However, this approach can

be quickly dismissed due to its computational complexity. For example, an n dof

problem discretized 100 points per axis (approximately every three degrees for a

typical revolute joint) would produce a grid containing 100( n- 1) points. For a nine

dof problem, this would result in 1016 points. Even if one million points could be

mapped every second (far from achievable today) it would take more than 300 years

to exhaustively perform one search of such a uniform grid!

Procedure 2 Radiating out along orthogonal basis vectors and their negatives.

A set of n- 1 n-dimensional linearly independent and orthogonal unit vectors satisfy-

ing Equation 4.2 can be computed. Such a set of ,ectors would constitute a basis for

the search space, i.e., each possible search direction could be represented as a linear

combination of the basis vectors. A set of orthogonal basis vectors will be uniformly

distributed in the space. Referring to the i th basis vector as B i = (bil,... ,bin),
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the basis vectors must satisfy:

D . B i= E_= l dkbi k =0

Bi.Bj = __"k=lbikbjk=O

II Bi II -= 1

i-= 1,...,rz- 1 (4.3)

i,j = 1,...,n - 1 and i # j (4.4)

i= 1,... ,n- 1 (4.5)

where D is the normal vector to the search space as per Equation 4.2, Equation 4.3

ensures that the basis vectors lie in the search hyperplane, and Equations 4.4 and 4.5

require all the basis vectors to be mutually orthogonal unit vectors.

There are, of course, an infinite number of orthogona] bases. Calculation of

search directions requires only one. The following set of vectors could be calculated

in the sequence shown and then normalized to yield one such orthogonal basis:

B 1 = (1,hi,0,...,0)

B2 = (bll'P2'h2'0 .... 0)

B 3 = (b21,b29,P3, b3,0 .... O)

°

(4.6)

Bn-1 = (bT_-21'bn-22 .... 'bn-2n-2'Pn-l'hn-1)

where the Pi are chosen so that the B i and B i_ 1 satisfy Equation 4.4 and then the

h i are chosen so that the B i satisfy Equation 4.3.

Radiating out along the orthogonal basis vectors and their negatives would

amount to considering search directions of the form +Bi. This approach would

yield 2(n-1) search directions for an n dof problem (16 for a nine dof problem).

Thus, the number of search directions using this procedure would increase linearly

with the number of dof, i.e., the complexity of searching with search directions based

on this procedure would be O(n). While this is an attractive feature it could be

expected to perform poorly for cooperating robot path planning problems since such

a reduced set of search vectors might miss the relatively little safe space available.
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This expectation was verified when search directions based on Procedure 2 were

found to be ineffective even for very simple robot path planning problems. The

reason for discussion of this procedure is to illustrate that attempts were made to

utilize as small a set of search directions as possible.

Procedure 3 Radiating out along a set of vectors made up of combinations of the

n-I free variables in Equation 4.2.

The third approach attempts to bridge the gap between the intractability of

Procedure 1 and the oversimplification of Procedure 2. This procedure involves

allowing the n-1 independent variables to take on all combinations of ±sd i and

solving for the dependent variable using Equation 4.2, where the ad i may be chosen

for each joint i as desired to vary the amount of motion being prescribed for joint i.

This approach will yield 2 n- 1 search directions for an n dof problem. While

this procedure results in tractable numbers of search directions (256 for a nine dof

problem), better performance may be possible using still more search directions.

A more extensive set of search directions could be computed by allowing the

n - 1 independent variables to take on all combinations of +sd i and 0 (except all

zeros) and solving for the dependent variable using Equation 4.2, where the sd i may

again be chosen for each joint i. This will result in 3( n- 1) _ 1 search directions for

an n dof problem (6560 for a 9 dof problem).
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This procedurefor computingsearchdirections is equivalent to consideringall

combinationsof :t=sdi (and 0 for the more extensive set) times the following n - 1

vectors:

V1 = (sdl, O, .... O, dld.____.._sdl)

V_ = (0, sd2, O, ..., O, d2d._.__._sd2)

:

d,_-i sd,_-i

Vn_ 1 = (0,..., O, sdn-l, d., )

(4.7)

The potential disadvantage of this procedure is that the search directions will

not, in general, be uniformly distributed in the search space• The degree to which

coverage of the search space is non-uniform will depend upon the coefficients in

Equation 4.2. Uniform distribution will occur only in the special case where dn >>

di, for all i 76 n.

Procedure 4 Radiating out along uniformly distributed vectors made up of combi-

nations of orthogonal basis vectors.

The final approach for computing search directions, radiating out along uniformly

distributed vectors made up of combinations of orthogonal basis vectors, eliminates

the non-uniformity which results using using Procedure 3. A uniformly distributed

set of search directions could be computed by considering all combinations of +1

times the basis vectors. The basis vectors may be calculated per Equation 4.7. This

approach will yield 2 n- 1 search directions for an n dof problem. Note that these

search directions each involve a component along all of the orthogonal basis vectors.

An even more extensive set of search directions could be computed by con-

sidering all combinations +1 and 0 (except all zeros) times the basis vectors. This

will yield 3 (n-l) - 1 search directions for an n dof problem (6560 for a nine dof

problem).
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4.4.1 Selecting a Procedure

As mentioned above, Procedures1 and 2 were eliminated from further con-

sideration due to their computational complexity and apparent inadequacy, respec-

tively.

Procedures 3 and 4 are similar in that they result in tractable numbers of

search directions and in that the search density will automatically decrease with

increasing distance from the center of the trouble region. Since it is impractical

to have a uniform grid, it would seem desirable to decrease search resolution with

distance from the center of the unsafe region since it is generally more desirable

to find a point closer to the center of that region in order to attempt an efficient

circumvention strategy. In other words, given a choice between failing to find a safe

point near the center of the unsafe region and failing to find a safe point far from

the center of the trouble region, one would choose the latter.

The differences between Procedures 3 and 4 are:

• Procedure 3 produces a non-uniformly distributed set of search directions

whereas Procedure 4 guarantees uniform distribution.

• Procedure 3 allows for easy computation of search directions which favor cer-

tain joints whereas it is difficult to achieve such joint favoring using Proce-

dure 4 since the basis vectors will, in general, have components in all joint

directions.

The following example illustrates the uniform versus non-uniform distribution

effect. Consider a three dimensional problem (so the search space will be planar)

and let D = (2, 2, 1). The search directions that would be produced in the search

plane using Procedures 3 and 4 are shown in Figure 4.7, where sd 1 = sd 2 for

Procedure 3. Figure 4.7 shows that Procedure 4 consistently produces uniformly

distributed search directions while Procedure 3 does not.
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(a) Search 011rechelons

using procec_ure :3

(b) Search directions

using prodecure 4

o\/o

Figure 4.7: Procedure 3 vs Procedure 4

Experimentation was done with Procedures 3 and 4 for the cases implemented

in Chapter 6. In all four scenarios considered (single 6 dof, single 9 dof, cooperating

6 dof, and cooperating 9 dof) both procedures were successful in solving a variety of

problems. For more difficult problems, however, Procedure 4 produced noticeably

better results, often with fewer search directions. This was true in spite of the ability

to favor certain joints using Procedure 3.

As discussed in Chapter 6, search directions computed from the more extensive

set based on combinations of +sd i and 0 times the basis vectors proved to be

practical and effective for six dof problems. For 12 dof problems (such as cooperating

nine dof robots), however, this procedure would produce 177146 search directions

and thus could potentially result in very long execution times. In the 12 dof case,

search directions computed from the smaller set based on combinations of ±sd i

times the basis vectors (which yields 2048 for a 12 dof problem) proved to be a good

compromise between practicality and effectiveness.

4.5 Prioritizing Search Directions

This section discusses methods for prioritizing search directions as required for

Step 6 of Section 4.3.
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Recall from above that the searchdirections are to be prioritized basedon

their dot product with the previously successfulsearchdirections. Recall alsothat

the searchesare conductedby looking at successivelyprioritized groups of search

directions. Two methods wereconsideredfor achievingthis prioritization:

• Sorting the searchdirections

• Grouping the searchdirections into bins

The first method would simply involvesorting the entire list of searchdirec-

tions basedon their dot products with the previously successfulsearchdirection.

Followingthe sorting, the searchdirectionswill bedivided into groupsof searchdi-

rections having similar priority. This type of sorting wasfound to be computation-

ally burdensome,unacceptablysofor caseswith severalthousandsearchdirections.

Grouping the searchdirections into bins involvesmuch lesscomputation than

sorting the entire list and would seemto provide similar performance to sorting

since the treatment of each searchdirection within a particular group differs only

in the order in which they are considered(and not in the relative depths considered

in eachdirection). Sorting into bins can beeasily accomplished.If the dot product

of the i th search direction, S i, with the previously successful (or reference) search

direction, Sref, is dpi, and the maxirnum and minimum dot products are dpmax

and dPmin, respectively, then a set of search directions can be grouped into g equal

breadth groups (bins) by the following rule:

S iEbin(j) if j-1 dPi-dPmin j
g < .... < (4.8)- dprnax -dprnin - g

It is this technique of bin sorting which is implemented in Chapter 6.

Another variation on the prioritization method is to consider the past history of

successful search directions rather than simply considering the previous successful

search direction. This can be accomplished by computing dot products with the
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following reference search direction computed following a successful search:

Sre / = A Sre f, + (1 - A) Ss (4.9)

where Sre f, is the previous reference search direction, Ss is the most recent suc-

cessful search direction, and A E [0, 1) represents a forgetting factor which may be

used to vary the emphasis on the past history. With A = 0, the method results in

prioritizing exclusively based on the last successful search direction. The case A = 1

is disallowed since Sre f would be invariant in that case.

Since in cooperating robot cases the role between leading robot and tracking

robot may change (as discussed in the next Chapter), an effective reference search

direction must be calculated for the tracking robot after each successful search. This

effective reference search direction is the search direction which would have yielded

the safe point found had the search been based on the tracking robot rather than

the leading robot.

4.6 Comparison of the Heuristic to the Literature

This heuristic is somewhat similar to many of the c-space graph search tech-

niques in that it is based around selective rather than ex'haustive mapping of c-space.

Aside from that broad similarity, this heuristic is fundamentally and significantly

different from any of the approaches discussed in Chapter 2, with the most significant

difference stemming from the process used to guide the selective mapping process.

Nonetheless, it bares some some resemblance to Dupont's selective mapping [5],

Glavina's goal directed sliding [46], and Warren's vector based approach [58] (see

Section 2.1.1). Specific similarities and differences are discussed below.

The heuristic is similar to Dupont's approach in that both attempt to initially

follow a c-space vector from start to goal and employ heuristics to attempt to min-

imize the amount of mapping required to circumvent unsafe portions of the path.

The key difference is the type of heuristic used to attempt to traverse the trouble
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regions. Interestedonly in single (redundant) robots, Dupont successfullyusedtask

spaceheuristics to build paths from eachend of the trouble region until a feasible

solution wasfound. The approachbeingpresentedhereutilizes the c-spacetraversal

heuristic describedaboveto guide the selectivemapping process.

The resemblanceto Glavina'sapproachis that both performa searchin the n-1

dimensionalhyperplanecontaininga point whichwasunsafein the straight traversal

between two points. Glavina's approach,however,performs those searchesat the

beginningof the trouble regionand is thereforesubjectto blindly followingstrategies

which look locally promising at the beginning of the trouble region but which may

not lead to traversal around that region. Glavina's approach does,however,have

the advantageover the heuristic being presentedin this thesis in that it does not

introduce intermediate points which may be in unreachableregionsof freespace. It

is felt that that advantagedoesnot outweigh the inherent inability of a completely

local strategy to adopt a promising global course. It is expected that Glavina's

approachwould becomeexcessivelycomputationally intensivefor problemswith six

or more dof even if the safec-spacepossessedonly relatively shallow concavities.

The resemblanceto Warren'sapproachis that both aregraph searchtype and

"divide-and-conquer" in nature in that they attempt to identify an intermediate via

point by searching outward from the center of the trouble region. The resemblance

ends, however, when comparing the means used to identify a safe intermediate

point. As discussed in Section 2.1.1, Warren's approach projects a vector from the

centroid of the obstacle through the center of the unsafe region whereas the heuristic

presented in this thesis utilizes structured searches of the hyperplane bisecting the

trouble region. Warren's approach, while relatively new and still under development,

has some potential difficulties:

• Obstacle centroids must be known in the space being considered (typically

c-space). This is computationally intractable for more than a few dof.
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• If the centroid lies on or near the unsafe vector the resulting intermediate

point will lie at or near a previously found point thereby providing no new

information.

• The case for which no safe point is found along the vector is not considered.

As the dimensionality of the problem increases, the likelihood of finding a safe

point along one particular vector would decrease rapidly.

• The case of obtaining an intermediate point in an unreachable region of space

is not addressed.

These potential difficulties are all either addressed or eliminated by the ap-

proach being presented in this thesis.

Some of the potential fields approaches also adopt a "divide-and-conquer" style

solution to attempt to circumvent local minima difficulties. Some techniques used

in conjunction with potential fields approaches to locate intermediate trial points

(via points) include task space heuristics, uniform grids, randomized motions, and

use of potential functions (see Section 2.1.2). The heuristic presented herein does

not resemble any of these approaches beyond the fact that each involve a divide-

and-conquer style strategy.



CHAPTER 5

Utilizing the Heuristic for Robot Path Planning

This chapter explains how the divide-and-conquer c-space traversal heuristic pre-

sented in the preceding chapter may be utilized to solve single and cooperating

robot path planning problems. This chapter is organized into three main sections:

• Single Robot Path Planning

• Cooperating Robot Path Planning

• String Tightening

• Handling Constrained Motions

Sections 5.1 and 5.2 discuss the utilization of the heuristic for single and coop-

erating robot path planning problems, respectively. A "string tightening" method to

improve the efficiency of a path found by the planner is presented in Section 5.3. The

implementation of the path planning strategy for particular single and cooperating

robots is deferred until the following chapter.

5.1 Single Robot Path Planning

The single n dof robot path planning problem as defined in Section 3.4 can

be addressed by direct application of the heuristic presented in Chapter 4 where

the n dimensional space to be traversed is simply the configuration space of the n

dof robot. C-space points are mapped only as needed by updating the geometric

models of the robot links and the payload and performing interference detections as

required to determine whether or not the specified joint variables correspond to a

collision free configuration.

73
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In all cases,the parameter c which determines step size (see Step 2 of Sec-

tion 4.3) should be established for each task such that the largest possible step is

many times smaller than the step size necessary for thinnest part of the robot/payload

to step through the thinnest obstacle in one step.

Some potential issues which arise are:

• Handling robots with mixed joint types

• Joint limit problems

• Choosing A

• Choosing number of bins

• Multiple robot configurations

• Singularity concerns

These issues are addressed below.

5.1.1 Handling Robots with Mixed Joint Types

Mixed unit concerns for robots with mixed joint types (some prismatic and

some revolute) may be eliminated by linearly mapping each joint's actual range onto

the interval [0, 1], i.e.:

0 = qa - qmin (5.1)
qmaz -- qm'n

where qa, 7,i;in, and qmax represent the actual joint value, the lower joint limit, and

the upper joint limit, respectively, all in identical units for each joint. Robots with

revolute joints having no joint limits may be treated by replacing the denominator

on the right hand side of Equation 5.1 with 360 degrees (2rr radians). No multiple

rotations are permitted.
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5.1.2 Joint Limit Problems

The joint limit problem is handled inherently since any point which would

violate a joint limit is simply mapped as unsafe. In addition, the prioritization

of search directions allows a reversal to take place when a potential joint limit is

encountered. The prioritization strategy will then favor the direction away from the

joint limit even after the immediate danger of hitting a joint limit is avoided. This

reversal tendency is more global than the technique often employed with potential

fields methods whereby a joint is repelled if it is in proximity to a joint limit.

5.1.3 Choosing A

Recall from Equation 4.9 that prioritization of search directions utilizes a pa-

rameter denoted as A. Experimentation with the test cases in Chapter 6 indicates

that small A (near or equal to 0) provides the most robust path planner from the

standpoint of finding a path for difficult problems, particularly for single robot prob-

lems. Path efficiency, however, appears to decrease with decreasing A. In addition,

small A does not perform particularly well for cooperating robot cases. This is likely

partially due to the swapping of roles between the leading and tracking robot. The

values used for A for the cases implemented will be presented in Chapter 6.

5.1.4 Choosing Number of Bins

Recall from Equation 4.8 that prioritized searches consider search directions

grouped into bins. For the wide variety of problems considered, either 5 or l0 bins

proved successful. In rm,_t cases, any number of bins in the 5 to 10 range would

yield a solution although the path efficiency may decrease with an increase in the

number of bins. Fewer than 5 bins did not provide robust performance and more

than about 20 bins led to very inefficient paths (if a solution could even be found).
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5.1.5 Multiple Robot Configurations

Recall from the problem definition in Chapter 3 that the start and goal joint

angles are given. In addition, note that the path planner operates exclusively in

c-space. As a result, multiple robot configurations which achieve identical end el-

lector position/orientation need not be explicitly considered by the path planner.

5.1.6 Singularity Concerns

There are no singularity concerns using this approach for single robot path

planning since singularities are a task space phenomena whereas the path planning

approach is strictly configuration space based.

5.2 Cooperating Robot Path Planning

The two cooperating arm path planning problem is essentially equivalent to

the single arm problem with the addition of the closure constraint, Equation 3.3.

The closure constraint requires that, in order for a point in the configuration space of

the one robot to be considered safe, it must correspond to a reachable and collision

free configuration of the second robot. Thus, the basic concept for attacking the

cooperating robot path planning problem is to apply the c-space traversal heuristic

to one of the robots, referred to herein as the lead robot, with the other robot,

referred to herein as the tracking robot, acting as a constraint. For example, the

straight line path in c-space is determined for the lead robot and an attempt is

made to traverse from the start position towards the goal position. If this attempted

traversal is not entirely safe a search is conducted in the c-space of the lead robot

with due consideration to the tracking robot. When the lead robot reaches the global

goal position the entire path planning problem will have been solved. Mapping a

particular point in the c-space of the lead robot involves verifying that the closure

constraint can be met, updating geometric models of the robot links and payload,
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and performing the required interferencedetection calculations.

The above rather simplistic conceptual explanation of applying the c-space

traversal algorithm to two cooperatingrobotsneglectsthe following potential issues:

• Handling robots with mixed joint types

• Joint limit problems

• Choosinga lead robot

• Handling cooperating redundant robots

• Multiple robot configurations

• Singularity concerns

The first two of these issuesare identical for the cooperating robot caseasfor the

singlerobot casediscussedin Section5.1. The remainderof theseissuesarediscussed

below.

5.2.1 Choosing a Lead Robot

The simplest way to choosea lead robot would be to alwayschoosethe same

robot. This simple approachcanbe dismissedfor the following reasons:

• A small changein the configuration of the lead robot might correspondto a

much largerchangein the configurationof the tracking robot thereby makingit

difficult to discretizethe path to ensurethat it is collision free. In an extreme

case, it is possible that tile lead rob_,t may have the samestart and goal

positions for radically different start and goal configurations of the tracking

robot (suchasan arm configuration change).

• It would not allow the tracking robot to easily changeconfiguration sincethis

would typically involve passing the tracking robot through a singularity. It
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is highly unlikely that the traversal heuristic would happen to prescribelead

robot positions which wouldallow the tracking robot to changeconfiguration.

Thesedifficulties maybeeliminated by choosingthe leadrobot for eachcall to

the heuristicbasedon relative distances(in c-space)betweenstart and goal positions

of eachof the robots. This approachcan be representedasfollows:

if JIG1, - Qlg [ < r ][G2, - e2gl[ then robot 1 leads

otherwise robot 2 leads

(5.2)

where r > 1 represents a relative weighting between the two robots. Setting r = 1

would result in simply choosing the lead robot as the one with the greatest distance

to travel. Equation 5.2 is evaluated to select the lead robot for each segment of the

path where the s and g subscripts represent not the global start and goal positions

but rather the start and goal positions for the particular segment of the path being

addressed.

Experimentation with the cases in Chapter 6 revealed that oscillation tends

to occur using this method for 7- = 1. These oscillations resembled a tug-of-war

between the two robots.

Better path planner performance was achieved by choosing the lead robot

based on relative c-space distances with consideration to past history. This approach

favors the robot which led the previous segment unless the other robot has some

multiple r further to go, i.e.:

if robot i had led robot j and

if II®J,-®J_ll < r I[®i_- ®i911 then robot i leads

otherwise robot j leads

(5.3)

where r > 1 represents a relative weighting by which the distance for the formerly

tracking robot must exceed the distance for the formerly leading robot before the
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roles are reversed. Essentially, this method incorporates somehysteresisinto the

determination of the leading robot.

This approachwasusedto selectthe lead robot for the casesimplementedin

Chapter 6.

5.2.2 Handling Cooperating Redundant Robots

The implementation of the c-space traversal heuristic for cooperating robots

as described in Section 5.2 requires that the closure constraint be checked for the

tracking robot. Since each point in the c-space of the lead robot defines a position

of the end effector of the tracking robot, inverse kinematics must be applied to

determine if and how the tracking robot can reach a prescribed position/orientation.

For cooperating non-redundant robots, the teachability of the second robot can

be easily determined using inverse kinematics which are one-to-one. Checking the

closure constraint for cooperating redundant robots, however, can be potentially

difficult since the inverse kinematics are not one-to-one. Two possible methods of

addressing the cooperating redundant robot path planning problem are:

• Applying the heuristic directly to one of the robots

• Applying the heuristic to a composite c-space with dimensionality equal to

total number of degrees of freedom for the cooperating system

These two approaches are discussed below.

5.2.2.1 Applying the Heuristic Directly to One of tne Robots

Application of the procedure directly to one of the robots would require some

means for performing inverse kinematics on the redundant tracking robot. This in-

verse kinematics problem could be handled either by iterative testing of a number of

prescribed positions for all but six of the joints or by utilization of a potential fields
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based inverse kinematics solution. Iterative testing would likely prove very compu-

tationally expensive. A potential fields based inverse kinematic solution would be

computationally tractable. Such an approach, however, has an intuitive disadvan-

tage, namely that it does not treat all the free variables of the path planning problem

in the same fashion. In implementation terms, this means that the treatment of the

tracking robot would not contribute significantly to the overall strategy for solving

the global cooperating robot path planning problem.

In attempt to further clarify this point, consider an example for which a po-

tential fields inverse kinematics solution is used for the tracking robot. The inverse

kinematics applied to each point prescribed by the lead robot must consider the

position of the tracking robot at the previous point. This is necessary to avoid a

discontinuous path for the tracking robot. The difficulty arises when the lead robot

prescribes a point in the progression for which the inverse kinematics fail for the

tracking robot. That failure of the inverse kinematics is contingent upon the path

of the tracking robot up to the point before failure. Since no global path planning

strategy was incorporated into the inverse kinematics of the tracking robot, it seems

likely that better results might be obtained using a different strategy for selecting

the configuration of the tracking robot.

5.2.2.2 Applying the Heuristic to a Composite C-Space

This technique for considering cooperating redundant robots was developed to

enable the heuristic to be applied to a space with dimensionality equal to the effective

number of dof for a cooperating system of robots. To illustrate this method, consider

an n 1 dof robot (Robot l) working cooperatively with an n 2 dof robot (Robot 2),

n i > 6. The mobility of the cooperating system is m = n 1 +n2-6 per Equation 1.1.

The two robots can be conceptually replaced with an m dof lead robot and a six

dof tracking robot by treating 7_2-6 links of Robot 2 as if they belong to Robot 1.



81

In this manner, the c-space traversal heuristic can be applied to the mD c-space

of the composite lead robot while one-to-one inverse kinematics can be applied to

determine if the tracking robot can satisfy the closure constraint.

The main concern regarding this approach is that it results in increased di-

mensionality of the space which must be searched when implementing the c-space

traversal heuristic. This increased dimensionality does, however, accurately reflect

the problem complexity and is therefore considered reasonable. It also seems rea-

sonable to expect that the traversal heuristic would handle the extra dof in a more

logical fashion than considering them in the inverse kinematics of the tracking robot.

Application of this procedure to cooperating nine dof robots would amount

to considering a twelve dof composite robot being tracked by a six dof robot. The

heuristic would then be applied to the 12D c-space of the composite robot. Results

presented in Chapter 6 illustrate that this technique is a practical and effective way

to address the path planning problem for cooperating nine dof robots.

A similar approach could be applied to cooperating robots with less than six

degrees of freedom. For example, consider two five dof manipulators. Since the

inverse kinematics for the five dof robot would be overdetermined {i.e., not every

position and orientation would have a solution), it would appear more effective to

plan based on, for example, the first four joints of a lead robot. The lead robot's

remaining joint and the five joints of the tracking robot would effectively result in a

six degree of freedom robot with one-to-one inverse kinematics. In this case, such an

approach would actually reduce the dimensionality of the search space (from five to

four) as compared to direct application of the heuristic to one of the robots. Once

again, the heuristic is applied to a space with dimensionality equal to the actual

mobility of the cooperating system.
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5.2.3 Multiple Robot Configurations

In general, a six dof robot will possess a finite number of distinct robot con-

figurations which achieve identical end effector position/orientation (such as elbow

up or elbow down for a Puma). This situation is represented mathematically in

Equation 3.5. Multiple configurations are handled inherently for the lead robot just

as in the single robot case. However, special consideration is required to address

this issue for the tracking robot. The following set of rules address this issue:

I° Configurations must be defined such that, for the robot in any one configu-

ration, an infinitesimal change in end effector position/orientation will always

correspond to an infinitesimal change in the corresponding joint angles.

. During progressions forward through safe space (Steps 3 and 9 of Section 4.3),

the tracking robot shall maintain the same configuration as it had at the start

of that segment of the path.

3. While mapping through unsafe space in search of a safe point (Step 4 of

Section 4.3), only the configuration of the tracking robot at the goal position

of the current segment of the path shall be considered.

4. While conducting searches (Step 7 of Section 4.3), all possible configurations

of the tracking robot shall be considered.

These rules will enable full use of all available configurations while prohibiting dis-

continuous motions of the tracking robot for smooth motions of the leading robot.

5.2.4 Singularity Concerns

Robot arm degeneracy at singularities is handled inherently by the path plan-

ning method. For the lead robot, only singularity-free c-space is considered. For

the tracking robot, any region prescribed by the lead robot which cannot be tracked
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by the other robot is mapped out as an unsafe region. This combined with the

ability to swap roles between the leading and tracking robots results in a planner

which inherently handles singularity concerns for cooperating robots. This means

of handling singularities does not attempt to physically avoid singular configura-

tions but rather allows either robot to pass through singularities as necessary when

attempting to solve the path planning problem.

5.3 String Tightening

The path planning procedure presented thus far has a principle objective of

finding a feasible solution. As a result, the paths found will typically be sub-optimal

in some sense and it should be possible to modify a feasible path found by the planner

to produce a better one. This process of path modification may be referred to as

string tightening. This section presents a brief history of approaches used for string

tightening and then presents an approach which can be utilized for string tightening

paths found for two cooperating robots.

5.3.1 History of Smoothing

Once a collision free path has been found by a robot path planner, it can be

further optimized by numerical methods. A commonly used cost function aims to

minimize the length of the path while incorporating safety clearances from obstacles.

The resulting performance index to be minimized can be expressed as:

f _)Og wJ = (1 +--)dO (5.4)
s D(O)

where D(O) is the minimum distance between the robot and obstacles, w is a

weighting factor, and the integral is taken over all configurations connecting Os

and Og. Polytope methods seem to be the current state of the art for computing

robot to obstacle distances. Bryson and Ho [96] note that several numerical methods
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may be used to find a path with minimum J using any feasible path as an initial

guess. Simple gradient methods perform reasonably well for this purpose. The

resulting path, however, is only optimal in the vicinity of the initial guess.

An alternate technique for path smoothing which also attempts to shorten

a path while maintaining due safety clearances is Thorpe's [97] path relaxation

technique. This process begins with a mobile robot path consisting of straight line

connections between a sequence of nodes. The relaxation involves moving one node

at a time in either direction perpendicular to the line connecting the preceding and

following nodes in order to minimize the cost of traversing between the three nodes.

The cost function is similar to Equation 5.4 since it includes length of path segment

with a penalty for proximity to obstacles o1" unmapped (unknown) regions. Since

moving a node may affect its neighbors, the process is repeated until no nodes move

more than some small tolerance.

Another technique which can be used to smooth paths, avoid collisions, and

move paths away from objects is based on potential fields. Krogh [74] presents one

such approach. Krogh uses sensory measurements of obstacles as feedback during

execution of paths planned with another algorithm. This feedback can help to

smooth jagged paths and to steer the path away from obstacles.

5.3.2 String Tightening Algorithm

This section presents a method for improving upon a path produced by the

cooperating robot path planner. Recall fi'om Chapter 3 that the path planner output

consists of a sequence of closely spaced knot points for both robots along a feasible

and collision free path.
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5.3.2.1 Measure of Goodness

A variety of possiblecriterion may be usedto evaluate the quality of a path.

For string tightening purposes,the goodnessof a path may bemeasuredby the sum

of the lengths of the joint spacetrajectories for the two cooperating robots. Since

the path planner producesdiscretizedpaths for both robots, the objective during

string tightening is to reducethe following cost function:

L N = _ + 1)-Orj(i)) 2 (5.5)
r=li=l "

where:

N
L 1 = the sum of the joint space trajectory lengths

N = number of knot points in path

r = robot identifier

nr = number of dof for robot r

0rj(i) = i th knot point fox" robot 7"joint j

If the original path is considered to be a string passing through the knot

points in the joint space of each of the robots, then the objective for improving

upon the path is to shorten the sum of the string lengths while maintaining the

same endpoints. Hence the name string tightening as suggested by Dupont [5].

The tightening algorithm which was implemented involves examining each

sequence of three adjacent knot points and performing whichever of the three options

below produces the most desirable effect on LN:

1. Make no changes to the knot points.

2. Modify the second knot point for robot 1 so that the three knot points are

straight in the joint space of robot 1 (if not ah'eady so).



86

3. Modify the second knot point for robot 2 so that the three knot points are

straight in the joint space of robot 2 (if not already so).

The feasibility of options 2 and 3 must be determined with consideration to

closure and collisions. The procedure described in Section 5.2 can again be used to

simplify the question of closure for cooperating redundant robots. The incremen-

tal effect which each of the above options will have on L u can be assessed using

Equation 5.5 over the appropriate three knot point segment.

These local adjustments are continued until no significant improvement can

be obtained from further adjustments.

A conceptual illustration of the string tightening algorithm for cooperating

robots is shown in Figure 5.1. An initial three knot point segment for the two robots

is shown in Figure 5.1a. These three knot points are a portion of a much longer

many knot point path. Figure 5.1b and c show the effect of options 2 and 3, above.

In this example, option 2 (moving the second knot point of robot 1 in line with

its neighbors) produces the most significant reduction in path length. Thus, this

iteration would move each robot's second knot point to their positions in Figure 5.1b.

(a) Original knot points

1i+ 2 (_ 2i+2

(b) Pull Robot 1 tight (c) Pull Robot 2 tight

Figure 5.1: Local Effect During String Tightening

For single robot problems, Equation 5.5 need only be evaluated for one robot

and the options are reduced to two:
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1. Make no changes to the knot points.

2. Modify the second knot point so that the three knot points are straight in the

robot's joint space (if not already so).

5.3.2.2 Limitations of the String Tightening Algorithm

Because this string tightening method involves a discretized approximation

to continuous deformation, the tightened path may still be far from optimal. For

example, consider Figure 5.2. A safe path may be found as shown in Figure 5.2a.

A shorter path found by continuous deformation of the original path is shown in

Figure 5.2b. However, this path is suboptimal as shown by Figure 5.2c.

(a) Path Found

by planner

I

(b)

o

Path after

string t_ghtenlng
(c) Shor±er pa±h

goes unFound

Figure 5.2: String Tightening May Not Produce Optimal Path

One disadvantage of the approach is that the shortened paths tend to provide

very little obstacle clearance. This property is generally more acceptable for ma-

nipulators than for mobile robots because the manipulator environment is generally

accl:rately known and the manipulator control is typically precise. Possible means

for addressing this limitation are discussed in Section 8.2.1.

This string tightening algorithm is also unable to find any paths which would

require temporary lengthening of the path in order to ultimately achieve a better

path.
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5.3.3 Comparison to Other Path Smoothing Approaches

This approach isvery similarto Thorpe's approach discussed in Section 5.3.1

where the differencesare as follows:

• Cooperating robots are considered.

• The cost function is c-space distance only, whereas Thorpe includes distance

from obstacles in the cost function.

• The sequences of points are closely spaced knot points, whereas Thorpe's node

points may be far apart.

5.4 Handling Constrained Motions

Earlier, it was assumed that the end effector motion between the start and

goal positions may be arbitrary. Though this is a valid assumption for the typical

robot path planning problem in free space, there are cases where contact between

the payload and an obstacle may lead to constrained rather than arbitrary end

effector motion. For example, the payload may come into planar contact with a

table surface. As such, the end effector motion is confined to 3 dof (two translations

and a rotation) as opposed to 6 dof. Although such cases are not considered in

this thesis, the heuristic could be utilized to solve such problems by applying the

heuristic in the task space defined by the reduced degrees of freedom rather than in

the joint space of the robot. The robot must be away from singularities in order for

such an approach to be effective.



CHAPTER 6

Implementation and Results

This chapter presents the implementation details and results of applying the path

planning method described in the preceding chapters to the following single and

cooperating robot scenarios:

• The CIRSSE Testbed (single 6 dof, single 9 dof, cooperating 6 dof, and coop-

erating 9 dof cases)

• The Automated Structure Assembly Lab at NASA Langley (6 dof case)

• Cooperating Pumas Assemble a Truss Structure

The specifics of each of these implementations and sample results are presented

in sections which follow. First, some points common to all of these implementations

are presented in the next section.

6.1 Characteristics Common to All Implementations

All of the implementations that will be discussed in this chapter have the

following common characteristics:

• Heuristic is applied generically

• Geometric modeling is done with polytopes.

• A hierarchical interference detection scheme is used.

• Paths may be visually simulated using CimStation.

• The programs are written in C.

These characteristics are discussed below.

89
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6.1.1 Heuristic is Applied Generically

All of the cases invoke the c-space traversal heuristic in its completely gen-

eral form. In other words, in no case are task or hardware specific assumptions or

modifications utilized. Search direction computation is always done strictly math-

ematically. The ability to directly apply the heuristic generically to a variety of

problems suggests that the planning methodology presented herein could be quickly

and effectively applied to hardware or tasks not addressed herein.

6.1.2 Geometric Modeling with Polytopes

The geometric modeling scheme implemented to enable interference detection

utilizes polytope models of the robot links, payload, and obstacles in the workspace.

Details of the modeling may be found in [6]. A polytope is a set of points whose

convex hull (the smallest volume which encloses all points) describes the object

being represented. The polytope representation incorporates a radius which can be

used to achieve a safety margin. A few simple 2D polytopes are shown in Figure 6.1.

In 3D, a two vertice polytope would correspond to a cylinder with hemispherical

end caps, where the radius of the cylinder and of the end caps is specified by the

polytope radius. A 3D block can be made using eight vertices and a radius of zero.

The polytope representation scheme was chosen because it permits accurate

modeling of the robots and typical obstacles in the workcell while enabling relatively

fast interference checking. Although each polytope represents a convex object, con-

cave objects may be easily modeled as several distinct convex polytopes.

6.1.3 Hierarchical Interference Detection

Collision checking is currently being done in a two level hierarchy. First, spher-

ical approximations for each pair of potentially colliding objects are examined. If

the spherical approximations do not intersect then there is no possibility of collision
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t____O

J

r=0

Figure 6.1: Some 2D Polytopes

between the pair of objects under consideration. If the spherical approximations

do intersect then a polytope distance calculation routine is invoked to determine

whether or not the two objects intersect (collide). The polytope routines being used

were provided by Hamlin and Kelley [98, 99]. The reason for the spherical approxi-

mation level of the hierarchy is to reduce the number of computationally expensive

calls to the polytope distance calculation routine.

Mapping a point in c-space thus reduces to the following steps:

1. Verifying the closure constraint and determining the configuration of the track-

ing robot (not necessary in single robot cases).

2. Updating the coordinates of the sphere centers and polytope vertices based on

the joint angles of the point being mapped.

3. Performing interference detection per the hierarchy discussed above.

The interference detection routine for the path planner simply needs to deter-

mine a yes or a no regarding collision. This enables use of faster routines than would

be required if the path planner needed to know distances and directions between

pairs of objects.
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6.1.4 Animation of Paths

Paths found by the path planner may be visually animated using any suitable

robot simulation package. We use CimStation, a commercially available package,

for path animation purposes. The interface between the path planning programs

and CimStation is a file storing the sequence of knot points determined by the path

planner. CimStation then replays the sequence to animate the path found by the

planner. The CimStation workcell model must, of course, be consistent with the

world model given to the path planner. The CimStation model of the CIRSSE

testbed used for this work was developed by Hron [100]. The CimStation model of

NASA Langley's ASAL lab was provided to us by NASA Langley. The model used

for the cooperating Pumas assembling a truss is an edited version of the model of

the CIRSSE testbed.

For CIRSSE testbed cases, path planning program output may also be run

on the actual hardware by first applying a trajectory generation routine to the

planner output and then running the resulting trajectory in the typical fashion.

For cooperating robot cases, path execution in this manner requires use of active

compliance on one of the two end effectors at any given time to maintain acceptable

internal forces on the payload. Further work to be done in the area of integrating

the path planner into the CIRSSE testbed is discussed in Section 8.2.2.

CimStation was also found to be very useful in defining the start and goal

joint angles for path planning problems, particularly in the cooperating robot case.

Due to the tremendous loss of workspace due to the closure constraint, it is easy

to inadvertently define start and goal positions of the robot which are feasible but

which probably have no path which can connect them. CimStation may be used

to view different robot configurations and to quickly determine the feasibility of a

robot reaching a particular pose. The various robot configurations may be tried as

input to the path planner until a solution is found.
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6.1.5 Description of Programs

All of the path planning programs were implemented in the C programming

language. Portions of the program utilize code developed by Schima [6]. The path

planning programs are similar for all cases considered. A sample flowchart is shown

in Figure 6.2.

Program inputs and outputs are per the problem statements in Chapter 3.

Additional output is included to document and evaluate the performance of the

path planner. This output includes the following:

Ns

AL/L

Lf

Nsph

Npoly

tpath

ttight

tcc

tpoly

ttot

= Number of knot points in path.

= Number of searches required.

= Percent reduction in path length due to string tightening.

= Final path length after string tightening (Eqn. 5.5).

Note that this is dimensionless since joints are

scaled using Equation 5.1

= Calls to spherical interference check function.

= Calls to polytope interference detection function.

= Time to find safe path.

= Time to string tighten.

= Time spent collision checking (both phases).

= Time spent in polytope phase of collision detection.

= Total time.

The condition used to terminate string tightening is that a knot point will be

moved only if doing so will reduce the distance over the three knot point segment

centered at that point by at least 0.5 percent.
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Read in world model

and path planner dela

ITs = global start
I

Tg- _obalgoal

YES

½NO

lraversal

safe?

Progress to points

on stack global goal?

YES

_____ Ta = lasl safe point JTb = first safe point

afterunsafe region

ico_pu_,._ch,:,r_Uo,',sl

Prioritize search

directions

y -

J' ,,,ol_o_

t Pul Tb, Tg on stackTs = Tar Tg - Tc I

Ts = last safe point

achieved?

YES

JStore output files J

Figure 6.2: Flowchart of Path Planning Program
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6.2 CIRSSE Testbed

The path planning method described herein has been implemented for the

robotic testbed system of the Center for Intelligent Robotic Systems for Space Ex-

ploration (CIRSSE) at Rensselaer Polytechnic Institute (RPI). The CIRSSE testbed,

shown earlier in Figure 1.2, consists of two 6R Puma 560's, each of which rides on a

separate Aronson 1P-2S platform. The kinematic parameters including joint limits

may be found in [101] and in Appendix A.

The methods described in this thesis have been implemented for four different

CIRSSE testbed scenarios:

• Single Puma

• Single 9 dof robot (platform plus Puma)

• Cooperating Pumas

• Cooperating 9 dof robots

Numerous path planning problems were contrived for these different scenarios

in attempt to illustrate the effectiveness of the path planner for various potentially

difficult path planning problems. Implementation details and sample results for

each of the scenarios are presented below. Applications of the path planner to more

practical path planning problems are discussed later in Sections 6.3 and 6.4. Except

as noted for the case specifically illustrating the effect of string tightening, all paths

illustrated herein are the final path obtained after string tightening. Start and

goal joint angles and obstacle definitions for the included CIRSSE testbed examples

(Examples 1 through 4) are provided in Appendix B.
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6.2.1 Single Puma 560

The path planner was implemented for such a single Puma path planning

problem. The specific parametersof the implementation are asfollows:

1
c = 20"-'-6 step size (See Step 2 of Section 4.3)

NSD = 242 search directions per Procedure 4

g = 10 bins (see Equation 4.8)

)_ = 0.5 forgetting factor (See Equation 4.9)

6.2.1.1 Example 1

A sample path found by the single Puma path planner is shown in Figure 6.3.

Figure 6.4 provides a top and side view of the start configuration. A trace of the

path followed by the payload is shown in Figure 6.5.

The results for this example are summarized in Table 6.1. The variables in

the Table are as defined in Section 6.1. As shown in the table, the total time

required to find a path and perform string tightening was just over three minutes.

Approximately 60% of the total time involved finding a safe path with the remaining

time utilized for string tightening.

The payload for this example is a 0.7 meter long strut, a scale version of the

type which might be used to construct space structures such as Space Station Free-

dom. A long, thin payload such as this highlights the need for consideration to

rotational as well as translational degrees of freedom. This path planning problem

is potentially difficult because limits on joint 1 prohibit a simple counterclockwise

rotation (viewed from above) which would move the payload from start to goal. As

a result, the prominent motion is clockwise and escaping from the box-like obstacle

near the start requires some backtracking to remove the strut from within the box.

Once the strut is out of the box there is also potential for allowing the strut back
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SinglePuma Coop. Pumas Single9 DOF Coop. 9 DOF
(Example 1) (Example 2) (Example 3) (Example 4)

Np 717 524 1124 1307

Ns 112 154 42 78

AL/L 20.2 16.4 8.4 14.2

L.f 3.04 2.14 9.35 14.27

Nsp h 745K 1.72M 1.60M 3.34M

Npoly 128K 390K 94.5K 189.5K

tpath 114 sec 560 158 167

ttight 71 38 185 384

tcc 101 283 118 247

tpoly 69 201 52 115

tto t 185 598 343 551

Table 6.1: Summary of Results for CIRSSE Testbed Examples (times

in seconds)

into the box. Similarly, achieving the goal position requires passing the triangular

obstacle, aligning the strut for insertion between the sides of the triangle, and per-

forming that insertion. This example also illustrates the fact that concave objects

such as the box and the triangle may be easily modeled as several distinct convex

polytopes whose combined effect defines a concave task space object.
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(a) Start Position

(c)

(e)

(b)

(d)

(f) Goal Position

Figure 6.3: Sample Results for Single Puma (Example 1)



99

(a) top view

+
(b) side view

Figure 6.4: Start Configuration for Example 1

Figure 6.5: Trace of Payload Path for Example 1
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6.2.2 Single 9 DOF Robot

The path planner was implemented for a single nine dof robot consisting of one

of the testbed's platforms plus the attached Puma. The specific parameters of the

implementation are identical to those presented in Section 6.2.1 for a single Puma

except for the number of search directions. In the single 9 dof case, the number of

search directions is:

NSD = 6560 search directions

6.2.2.1 Example 2

A sample path found by the single 9 dof path planner is shown in Figure 6.6.

This problem is identical to the problem in Example 1 except that the extra three

dof of the platform may be utilized. The path found by the planner uses the platform

translation and tilt capabilities to aid in obstacle avoidance.

The results for this example are summarized in Table 6.1. As shown in the

table, the total time required to find a path and perform string tightening was

just under ten minutes. The results also show that the redundancy was utilized to

produce a path whic "_,was approximately 50% shorter than the path obtained for

the Puma alone. O= _0% of the total time involved finding a safe path with the

remainder of the time utilized for string tightening.
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(a) Start Position

(c)

(e)

(b]

(_)

(f) Goal Position

Figure 6.6: Sample Results for Single 9 DOF Robot (Example 2)
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6.2.3 Cooperating Puma 560's

Addressed in this implementation is the path planning problem for the two

CIRSSE testbed Pumas working cooperatively. Thus, the platforms may be used

to initially position the two Pumas but are stationary throughout the planning

problem. The specific parameters of the implementation are as follows:

1
c = -- step size

300

NSD = 242 search directions

g = 5 bins

)_ = 0.5 forgetting factor

r = 4 (See Equation 5.3)

6.2.3.1 Example 3

This example involves a space containing six obstacles arranged in a maze-like

fashion. The path planner successfully finds the path shown in Figure 6.7 which

traverses from start to goal with no collisions. The payload is a 3cm x 3cm x 110

cm box. The clearance between the long horizontal obstacles is 15cm. Figure 6.8

provides a top and side view of the start configuration. Similarly, Figure 6.9 provides

a top and side view of the goal configuration.

The results for this example are summarized in Table 6.1. As shown in the

table, the total time required to find a path and perform string tightening was under

six minutes. Approximately 46% of the total time involved finding a safe path with

the remaining t,ime utilized for string tightening.

This example seems to reflect the maximum level of difficulty which the coop-

erating Puma path planner as presently implemented can solve within a reasonable

amount of time. For example, if the obstacle near the goal end of the passageway

between the two long obstacles is lengthened downward by 0.1 meters the planner
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fails to find a path (when allowed to try for over an hour). This failure to find a

solution occurseven though it is apparent to the user that a solution doesexist.

Example 3 is also a path planning problem which the planner cannot solve if the

start and goal positionsare interchanged. In that casethe planner beginsby going

below the open passagewaybetweenthe long obstaclesand then fails to find a path

which can circumvent the lowest obstacle. Once in this position, it seemslikely

that a planner would needto resort to an impractical exhaustivemapping of a huge

concavity beforedetermining that significant backtrackingwould needto take place

to find the opening to the passageway.

Whendifficulty wasexperiencedwith the cooperatingrobot path planner (co-

operating 6 and cooperating9 dof case),the sourceof the difficulty virtually always

turned out to be in the choiceof the start and goal robot configurations (i.e., the

start and goal joint angles). Suchdifficulties appeardifficult to addressintuitively

but are easily addressedbrute force by trying all combinations of feasible Puma

configurationsat the start and goalpositions. This typically resulted in at leastone

suitable problem definition for which the planner wassuccessful.
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(a) Start Position

(c)

(e)

F--
I

i

(b)

(d)

(f) Goal Position

Figure 6.7: Sample Results for Cooperating Pumas (Example 3)
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(a) top view (b) side view

Figure 6.8: Start Configuration for Example 3

(a) top view (b) side view

E

Figure 6.9: Goal Configuration for Example 3
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6.2.4 Cooperating 9 DOF Robots

Addressed in this implementation is the path planning problem for the two 9

DOF CIRSSE testbed robots working cooperatively. The specific parameters of the

implementation are as follows:

C

NSD =

g =

,k =

1

150 step size

2048 search directions

10 bins

0.5 forgetting factor

r = 10

Recall from Chapter 5 that the c-space traversal heuristic is applied in a 12D

space for cooperating 9 dof path planning problems. As a result, the complexity

of the cooperating 9 dof robot path planning problem is immensely higher than

the complexity of the cooperating 6 dof. This increased complexity would result in

311 _ 1 or 177146 search directions using Procedure 4. Since such a number of search

directions would be computationally impractical, this implementation utilized the

reduced set considering all combination of zl=l times the basis vectors. This results

in 211 or 2048 search directions.

6.2.4.1 Example 4

A sample path found by the cooperating 9 dof robot path planner is shown in

Figure 6.10. The start and goal positions appear in the upper left and lower right,

respectively. Figures 6.11 and 6.12 provide top and side views of the start and goal

configurations, respectively.

The results for this example are summarized in Table 6.1. As shown in the

table, the total time required to find a path and perform string tightening was just
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under 10minutes for this example. Approximately 30% of the total time involved

finding a safe path with the remaining time utilized for string tightening.
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(a) Start Position

(¢)

(e)

(b)

(d)

(f) Goal Position

Figure 6.10: Sample Results for Cooperating 9 DOF (Example 4)
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(a) top view
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_-..'_.,"ix., ..,..._, ,,, ..
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(b) side view

Figure 6.11: Start Configuration for Example 4

(a) top view

z,

):..

fl" ,

(b) side view

Figure 6.12: Goal Configuration for Example 4
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6.2.5 Effect of String Tightening

An example of the effect of string tightening on the payload path for a cooper-

ating nine dof robot path planning problem is shown in Figure 6.13. Parts (a) and (b)

of the figure show traces of load positions along the path before and after string tight-

ening, respectively. The string tightening phase required approximately 30 minutes

computation time and resulted in a 37% reduction in path length.

(a) Start Position

(c) Cripper paths before tightening

d

(b) Goal Position

(d) Gripper paths after tightening

+

Figure 6.13: String Tightening a Path for Cooperating Nine DOF Robots
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C

NSD

9

6.3 NASA Langley's Automated Structure Assembly Lab

A CimStation model of NASA Langley's Automated Structure Assembly Lab

(ASAL) is shown in Figure 6.14. The system consists of a 6 dof Merlin robot, shown

in Figure 6.15, mounted to a xy-positioning table (referred to as the carriage), and

a turntable. The turntable includes a triangular platform which can rotate around

a vertical axis through its center. The Merlin robot is kinematically similar to a

Puma. The objective of the ASAL is to assemble truss structures consisting of 102

2 meter long struts. Such a truss is illustrated in Figure 6.16. The truss is assembled

upon the turntable of the ASAL by positioning the carriage and the turntable such

that the Merlin may take each strut from a canister near the base of the Merlin and

install it in its final position in the assembly.

A single arm path planner was implemented for the ASAL environment. The

implementation parameters are as follows:

1
- step size

4OO

= 242 search directions

= 5 bins

= 0.0 forgetting factor

The assembly sequence considered was provided by NASA. The path planner

quickly found paths for the first 21 struts since there is little possible interference

at that stage. Due to symmetry, the assembly of the remaining 81 struts can be

accomplished using only 21 unique trajectories for the Merlin with the appropriate

carriage and turntable positions for each strut. The path planner was able to find

feasible paths for all 102 struts with solution times ranging from 1 to 30 minutes,

with the vast majority of solution times in the 2 to 5 minute range. Since the final

approach must be in a specified direction, the goal positions used were 10 cm from

the final strut position with the end effector oriented to allow the final insertion to
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be performed by a straight task space move.

This implementation of the path planner for the ASAL assembly task illus-

trates the potential usefulness of the path planning technique presented in this thesis

for solving practical, potentially very difficult real-world path planning problems.

Some particular comments regarding this implementation follow:

• The path planner has no trouble with goal positions placing the load or robot

in very close proximity to obstacles.

• The path planner performs well even with a large number of obstacles. For

example, the final few struts of the assembly involve over 100 workspace ob-

stacles. The additional collision checks required near the end of the assembly

seem to increase execution time by a factor of approximately two.

• The paths found typically include segments which are obstacle boundary trac-

ing. Because of the close tolerances involved, it is not practical to simply model

the objects larger than actual size to provide a safety margin since so doing

may result in an unsolvable problem. This shortcoming was noted earlier in

Section 5.3.2.2 and possible remedies are addressed in Section 8.2.1.

• The nodes to connect the struts were not modeled. As a result, some of the

paths might collide with the nodes if the paths were used in an actual assembly.

This could be remedied simply by modeling the nodes and including them in

the collision checking routine. Due to the small size of the nodes it is expected

that including them would have little impact on the difficulty of the path

planning problems.

• In a few cases the path planner was not always able to solve the problem

quickly in the forward direction but could quickly solve the problem in the

opposite direction. Although a very confined goal position makes it likely that
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solving in reverse may prove easier, trial and error was the only sure way to

decide which direction would yield better performance.

• Return paths for the robot after inserting a strut were not planned.

6.4 Cooperating Pumas Assemble a Truss

This section describes the implementation of the path planner to a task whereby

two Pumas work cooperatively to assemble a 24 strut truss. The workcell for this

implementation with the completed truss is shown in Figure 6.17. The pumas are in

their start position in Figure 6.17. The workcell includes two Puma 560's which are

500 cm apart and mounted to a carriage. The carriage can translate toward or away

from a turntable upon which the truss is assembled. The carriage and turntable

are used to position the Pumas and the partially completed truss structure such

that the Pumas may insert each strut without concurrent motion of the carriage or

turntable. The struts are 133 cm long. The robot end effectors are 100 cm apart

when grasping a strut. The parameters for this path planning implementation are

as described in Section 6.2.3 for the CIRSSE Pumas.

The planner successfully planned paths for all 24 struts with solution times

per strut ranging from less than one minute to approximately 10 minutes. Some

points regarding this implementation are as follows:

• Many of the paths found involve multiple arm configurations for one or both

Pumas. As a result, the robots pass through many task space singularities.

• There is significant potential for collision between the robots due to their

proximity.

• Although the start positions were identical and all the goal task space positions

were known, trial and error was typically necessary in order to determine

suitable goal Puma configurations which would enable a solution to be found.



114

(a) Isometric View

(b) Top View

(c) Side View

Figure 6.14: NASA Langley's Automated Structure Assembly Lab
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Figure 6.15:6 DOF Merlin Robot with End Effector for Truss Assembly

(a) Isometric View (b) Top View

Figure 6.16: 102 Strut Truss Structure
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Figure 6.17: Workcell for Cooperating Pumas Assembling Truss



CHAPTER 7

Discussion of the Path Planning Strategy

This chapter discusses the path planning strategy presented in this thesis. This

chapter is organized into three main sections:

• Completeness

• Computational Complexity

• Overall Effectiveness

Completeness and computational complexity' are discussed in Sections 7.1

and 7.2, respectively. Section 7.3 attempts to judge the overall effectiveness of

the strategy.

7.1 Completeness

Unfortunately, the path planning approach is not complete. In other words,

the approach does not guarantee that a solution will be found or determine that a

solution does not exist. Based on the literature (see Chapter 2), it appears to be

difficult to achieve both completeness and practicality for reasonably difficult yet

practical path planning problems with more than a few degrees of freedom. Since

our emphasis was toward achieving a potentially useful path planner for cooperating

robots with at least 6 dof each, we sacrificed completeness in exchange for the pos-

sibility (with no guarantees) t,f solving some practical problems within a reasonable

amount of computation time.

This lack of completeness was discussed earlier in Section 4.3.1 where it was

shown that the c-space traversal heuristic around which the path planner is based

can fail to find a solution even if one may' exist due to one of the following scenarios:
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• Cycling occurs.

• No safe point is found by the limited set of search directions.

Modifying the heuristic to guarantee finding a safe point if one exists (such

as by continually increasing the search resolution) would still not ensure complete-

ness since cycling might still occur. In addition, it was shown in Section 4.4 that

performing even one thorough search can be computationally intractable.

Many path planning algorithms such as those based on randomized searches

are probabilistically complete, meaning that given sufficient computation time they

will guarantee finding a solution if one exists. However, such algorithms offer little

practical value since they inevitably take a very long time to run for reasonably

difficult problems.

7.2 Computational Complexity

Computational complexity of this work can be analyzed by giving an upper

or a lower bound on the number of elementary computations or the size of memory

required to solve a problem. Recall from Chapter 2 that the n dof robot path

planning problem is PSPACE-hard with an upper bound complexity of O(n n).

This section investigates the computational complexity of the planner in order

to determine how an increase in system dof would be expected to affect solution

time. The computational complexity of the planner can be addressed in three parts:

• Precomputations

• Mapping a c-space point.

• Performing searches

• Overall Complexity
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These parts are discussed below.

The path planning method presented in this thesis requires no precomputa-

tions.

Consider a workspace involving an n link robot and m obstacles. Mapping a

c-space point involves the following operations:

• Updating the link model

• Checking for joint limit violations

• Checking for collisions

Both updating the link model and checking for joint limit violations have an

upper bound complexity O(7_). Checking for collisions has a higher upper bound

complexity O(nm). Thus, c-space mapping computations grow linearly with both

increasing dof and number of obstacles.

The worst case complexity for performing searches will be a linear function of

the number of search directions used. For search directions computed as described

by Procedure 4 in Chapter 4, an upper bound on search complexity for an n dof

problem is O(kn-1), where k < n. For our implementation, k = 3 for problems

with a mobility rn _< 9 and /_"= 2 for problems with mobility rn = 12.

An overall upper limit on computational complexity can be taken to be the

worst case complexity of the above three operations. Thus, the path planner pre-

sented in this thesis has an upper bound on complexity of O(/¢n- 1), where k < n.

7.2.1 Possible Benefits of Parallel Processing

When mapping along a prescribed vector, parallel processing could be used

to map each discretized point along that vector simultaneously. Even more signifi-

cantly, the various possible search directions and even the different depths in those
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directions could be examined simultaneously. Parallel processing could also greatly

speed the interference checking by performing multiple checks simultaneously.

A massively parallel machine, such as the Connection Machine which has

216 (or 65536) 1-bit processors, could radically decrease the execution time of the

path planner presented in this thesis.

7.3 Overall Effectiveness

Relatively few other approaches have appeared in the literature for solving the

cooperating robot path planning problem for robots with six dof each. The path

planning strategy presented in this thesis appears to be capable of solving more

difficult problems than those approaches. In addition, this thesis illustrates that

the strategy presented can be practically applied to cooperating nine dof robots.

Results in the literature for cooperating redundant robots appear to be limited to

planar manipulators. A single arm version of the planner has demonstrated the

ability to solve some practical yet potentially very difficult path planning problems

in a reasonable amount of time. Some general statements regarding the effectiveness

of the path planner follow:

• Solution times are reasonable for off-line programming (typically under 30

minutes).

• Potential problems with joint limits and multiple arm configurations are in-

herently handled.

• The planner performs well and in reasonable time even with over 100 obstacles.

• The planner is effective even for start and/or goal positions involving little

safety clearance.



CHAPTER 8

Conclusions and Future Work

This Chapter presentssomeconclusionson the subject of this thesis, Section 8.1,

and discussessomeareasfor future work, Section8.2.

8.1 Conclusions

The generalproblem of planning collision free paths for an n dof robotic sys-

tems has an upper bound on complexity of O(nn). As a result, exact solutions to

the robot path planning problem will likely remain excessively computationally in-

tensive for some time. As a result, any implementation of autonomous robotic path

planning which is likely to prove successful in the near future will probably involve

some simplifying assumptions, shortcuts, or heuristics. While any inexact solution

may fail for some cases, the advantage of this type of approach is that a solution

may be found for many practical yet potentially difficult path planning problems

with a reasonable amount of computation.

This thesis addressed the problem of planning feasible and obstacle-avoiding

paths for two spatial robots working cooperatively in a known static environment.

Because of the apparent impracticality of developing a general and complete path

planning strategy, the main emphasis of this work involved developing a heuristic

based path planner for cooperating robots which sacrifices completene s in exchange

for a hope of finding a solution in a reasonable amount of time. The path planning

approach presented in this thesis is configuration space (c-space) based and performs

selective rather than exhaustive c-space mapping. A novel, divide-and-conquer type

of heuristic is used to guide the selective mapping process. Also, a configuration

space based algorithm was presented to modify any feasible path found by the

planner into a more efficient one.
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Although the path planner cannot guarantee finding a solution even if one ex-

ists, and in spite of its O(k n - 1 ) complexity for n degree of freedom problems (where

k = 2 or 3 as implemented), it has demonstrated the ability to solve a variety of

practical yet potentially difficult path planning problems with a reasonable amount

of computation. This thesis presented the implementation details and illustrated

sample results for the following four cases: single six dof (6R) robot, single nine dof

(1P-8R) robot, cooperating six dof (6R) robots, and cooperating nine dof (1P-SR)

robots. The path planning program typically requires under 10 minutes to execute

for cooperating six dof robots and under 30 minutes to execute for cooperating nine

dof robots. The planner appears to perform better than other cooperating robot

path planners in the literature.

Some specific advantages and disadvantages of the path planning technique

presented in this thesis are discussed below.

8.1.1 Advantages

1. The planner utilizes selective (non-exhaustive) mapping of c-space thus making

it possible to get solutions in a reasonable amount of time.

2. The planner is global in nature but has provision for local navigation around

obstacles.

3. The approach is completely general and would, in theory, be applicable to any

system of arbitrary dimension. The approach is also independent of the type

of geometric representation employed, so long as the chosen representation

enables mapping of c-space points on an as-needed basis.

4. Unsafe space is handled in the same manor regardless of the reason for it being

unsafe (such as various possible collisions or joint limit violations).
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5. The approach could be applied to either single robot or cooperating robot

path planning problems.

6. Robot degeneracy is not a concern for single arm problems and is inherently

handled for the cooperating arm scenario (see Chapter 5).

7. While the resulting path is generally sub-optimal, it should be feasible to

"tighten up" on any safe path to obtain a shorter one (Chapter 5.3).

8. The potential speed of the collision detection is enhanced by the fact that the

method simply needs a yes or a no regarding collisions and does not require

distance or direction information.

9. Cooperating redundant robot path planning problems may be handled without

requiring use of inverse kinematics for a redundant robot.

10. The bulk of the calculations are such that they could be done in parallel (see

Section 7.2).

i 1. Implementation of the path planner is relatively straightforward and easy.

8.1.2 Disadvantages

1. The planner is heuristic in nature and is not complete, i.e., it cannot guarantee

finding a solution even if one may exist. Other approaches which are complete

are computationally impractical for reasonably difficult yet practical problems

for more than a few dof.

2. Joint angles at the start and goal configurations are required to be specified.

3. There is presently no means to determine that a solution exists other than to

find one.
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4. The number of strategy directions required to achievean effectivesearchin-

creaseexponentially with dimensionality. This effect may be partially offset

by the fact that there may be more acceptablesolutions to systemsof higher

dimensionality making it easierto find oneof them.

5. The resulting path may be longer than necessaryevenafter beingshortened.

6. The planner cannot be directly applied to caseswith dynamic obstacles.

8.2 Future Work

Somepotential areasof future work include:

• Improvement to String Tightening Process

• Integration with the CIRSSEGeometricState Manager

• Utilization of Parallel Processing

• GuaranteeingCompleteness

Theseareasof potential future work arediscussedbelow.

8.2.1 Improvement to String Tightening Process

As discussedin Section 5.3.2.2, the string tightening algorithm presented

herein has the disadvantageof yielding paths which very nearly involve collision.

This issuecould be addressedas part of future work by one of the following means:

• Expanding the obstaclesso that paths with very little clearancein the model

actually provide sufficient clearance. This is not a feasibleoption when the

only safepath involvestight clearances.

• Modifying the cost function (Equation 5.5) to include a penalty for proximity

to obstaclesand consideringknot point movementin any direction orthogonal

to the segmentbetweenthe precedingand following knot points.
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• Implementing an alternate approach to string tightening, such as a poten-

tial fields approachsimilar to that discussedin Section 5.3.1. This is a very

promising approach sincethe local minima problem can be effectively elimi-

nated sincethe path plannerprovidesthe potential fields basedpath smoother

with a feasiblesolution to the global path planning problem.

8.2.2 Integration with the CIRSSE Geometric State Manager

The path planner could be integrated with the CIRSSEGeometricState Man-

ager(GSM) [102]. The purposeof the GSM is to maintain a time-varying geometric

model of the CIRSSE robots and their environment. Once the path planner is in-

tegrated with the GSM, the planner could automatically obtain the current robot

and obstacle information from the GSM when a testbed task determines the need

to utilize the path planner.

8.2.3 Utilization of Parallel Processing

The path planning programs are currently implemented using serial coding.

As such, the path planning program typically requires under 5 minutes to execute for

cooperating six dof robots and under 30 minutes to execute for cooperating nine dof

robots. The algorithm being used is ideally suited for parallel processing since each

search involves a large number of independent calculations. Implementing the path

planning program in parallel could drasticallv reduce the path planning program

execution time.

8.2.4 Guaranteeing Completeness

As discussed earlier, a complete solution to the cooperating spatial robot path

planning problem appear to be impractical at this time. Nonetheless, it might be

possible to modify the c-space heuristic in such a way as to guarantee completeness.
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At present,the usefulnessof such an modification is at best questionable. However,

advances in both the path planning and computer fields might warrant a second

look at the completeness issue sometime in the future.

8.2.5 Decidability

At this time, there does not appear to be an easy answer to the question as to

the existence of a solution to a given general path planning problem. Future research

advances may make it possible to quickly determine whether or not a solution will

exist.



LITERATURE CITED

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[81

[9]

[10]

[11]

Reif, John H. Complexity of the Mover's Problem and Generalizations

Extended Abstract. In Proceedings of the 20th Annual IEEE Conference on

Foundations of Computer Science, pages 421-427, 1979.

Schwartz, J.T. and M. Sharir. On the 'Piano Movers' Problem II. General

Techniques for Computing Topological Properties of Real Algebraic

Manifolds. Computer Science Technical Report No. 41, February 1982.

Courant Institute, New York University.

Canny, J.F. The complexity of robot motion planning. MIT Press, 1988.

Dooley, J.R. and J.M. McCarthy. Parameterized Descriptions of the Joint

Space Obstacles for a 5R Closed Chain Robot. In Proceedings of the IEEE

International Conference on Robotics and Automation, pages 1536-1541,

1990. Vol. 3.

Dupont, Pierre E. Planning Collision-Free Paths for Kinematically

Redundant Robots by Selectively Mapping Configuration Space. PhD thesis,

Rensselaer Polytechnic Institute, Troy, NY, 1988.

Schima, Francis J. Two Arm Robot Path Planning in a Static Environment

Using Polytopes and String Stretching. Master's thesis, Rensselaer

Polytechnic Institute, Troy, NY, 1990.

CimStation User's Manual, CimStation 4.3. Silma Inc., Cupertion, CA, 1992.

Akman, Varol. Shortest Paths Avoiding Polyhedral Obstacles in

3-Dimensional Euclidian Space. PhD thesis, Rensselaer Polytechnic

Institute, Troy, NY, June 1985.

Andresen, F.P. Visual Algorithms for Autonomous Navigation. In

Proceedings of the IEEE International Conference on Robotics and

Automation, pages 856-861, St. Louis, MO, March 1985.

Brooks, Rodney A. and Tomas Lozano-Perez. A Subdivision Algorithm in

Configuration Space for Findpath with Rotation. In IEEE Transactions on

Systems, Man, and Cybernetics, pages 224-233, March/April 1985. Vol.

SMC-15, No. 2.

Brooks, Rodney A. Solving the Findpath Problem by Good Representation

of Free Space. In IEEE Transactions on Systems, Man, and Cybernetics,

pages 190-197, March/April 1983. Vol. SMC-13, No. 3.

127



128

[121

[131

[14]

[15]

[16]

[17]

[18]

[191

[20]

[21]

[22]

[23]

Brooks, Rodney A. Planning Collision-Free Motions for Pick-and-Place

Operations. International Journal of Robotics Research, 1983, Vol. 2, No. 4,

pp 19-44. Winter.

Canny, J.F. and M.C. Lin. An opportunistic global path planner. In

Proceedings of the IEEE International Conference on Robotics and

Automation, pages 1554-1559, 1990.

R.T. Chien, Ling Zhang and Bo Zhang. Planning Collision-Free Paths for

Robotic Arm Among Obstacles. In IEEE Transactions on Pattern Analysis

and Machine Intelligence, January 1984. Vol. PAMI-6, No. 1.

Donald, Bruce R. Hypothesizing Channels Through Free-Space in Solving

the Findpath Problem. In MIT A.I. Memo No. 736, June 1983.

Donald, Bruce R. On Motion Planning With Six Degrees of Freedom:

Solving the Intersection Problem in Configuration Space. In Proceedings of

the IEEE International Conference on Robotics and Automation, pages
536-541, St. Louis, MO, March 1985.

Faverjon, Bernard. Object Level Programming of Industrial Robots. In

Proceedings of the IEEE International Conference on Robotics and

Automation, pages 1403-1411, 1986. Vol. 3.

Faverjon, Bernard. Obstacle Avoidance Using an Octree in the

Configuration Space of the Manipulator. In Proceedings of International

Conference on Robotics, pages 504-512, Atlanta, GA, March 1984.

Gouzenes, Laurent. Strategies for Solving Collision-Free Trajectories

Problems for Mobile and Manipulator Robots. International Journal of

Robotics Research, 1984, Vol. 3, No. 4, pp 51-65. Winter.

Hasegawa, Tsutomu. Collision Avoidance Using Characterized Description of

Free Space. '88 ICAR, 1985, pages 69-76.

Kambhampati, S. and L.S. Davis. Multi-Resolution Path Planning for

Mobile Robots. IEEE Journal of Robotics and Automation, September 1986,

Vol. RA-2, No. 3, pp 135-145.

D.T. Kuan, J.C. Zamiska and R.A. Brooks. Natural Decomposition of Free

Space for Path Planning. In IEEE International Conference on Robotics and

Automation, pages 168-173, St. Louis, MO, March 1985.

Laugier, C. and F. Germain. An Adaptive Collision-Free Trajectory Planner.

'85 ICA R, 1985, pages 33-41.



129

[24] Lozano-Perez, T. Spatial Reasoning in the Planning of Robot Motions.

Proceedings of the 1981 Joint Automatic Control Conference, June 1981,

pages WP-2D.

[25] Lozano-Perez, T. Spatial Planning: A Configuration Space Approach. IEEE

Transactions on Computers, February 1983, Vol. C-32, No. 2, pp 108-120.

[26] Lozano-Perez, Tomas. A Simple Motion Planning Algorithm for General

Robot Manipulators. IEEE Journal of Robotics and Automation, June 1987,

Vol. RA-3, No. 3, pp 224-238.

[27] Park, W.T. State Space Representations for Coordination of Multiple

Manipulators. Proceedings I,_th International Symposium on Industrial

Robots, 7th International Conference on Industrial Robot Technology,

October 1984, pages 397-405.

[28] Red, W.E. Configuration Maps for Robot Task Planning in 3-D. Computers

in Engineering 1984, 1984, pages 115-124.

[29] Udupa, S. Collision Detection and Avoidance in Computer Controlled

Manipulators. Ph.D. Dissertation, Department of Electrical Engineering,

California Institute of Technology, 1977.

[30] Wong, E.K. and K.S. Fu. A Heirarchical-Orthogonal Space Approach to

Collision-Free Path Planning. Proceedings of the IEEE International

Conference on Robotics and Automation, March 1985, pages 506-511. St.

Louis, MO.

[31] Dittenberger, Kurt. Graph Decomposition and Retraction: An Approach to

Collision-Free Path Planning. PhD thesis, Rensselaer Polytechnic Institute,

1990.

[32] Sharir, Micha. Algorithmic Motion Planning in Robotics. IEEE Symposium

on Robotics and Automation, 1989, pages 9-19.

[33] Lozano-Perez, T. and M. Wesley. An Algorithm for Planning Collision Free

Paths Among Polyhedral Objects. Comm. ACM, 1979, Vol. 22, pp 560-570.

[34] T.H. Cormen, C.E. Leiserson and R.I. Rivest. Introduction to Algorithms.

McGraw-Hill Book Company, New York, New York, 1990.

[35] Branicky, M.S. and W.S. Newman. Rapid Computation of Configuration

Obstacles. In ProceediT_gs of the IEEE International Conference on Robotics

and Automation, pages 304-310, 1990.

[36] Paden, B., A. Mees, and M. Fisher. Path planning using a Jacobian-based

freespace generation algorithm. In Proceedings of the IEEE International

Conference on Robotics and Automation, pages 1732-1737, 1989.



130

[37]

[38]

[39]

[4o]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

Kondo, K. Motion planning with six degrees of freedom by multstrategic

bidirectional heuristic free-space enumeration. In IEEE Transactions on

Robotics and Automation, pages 267-277, June 1991. Vol. 7, No. 3.

Chen, Pang C. and Yong K. Hwang. SANDROS: A motion planner with

performance proportional to task difficulty. In Proceedings of the IEEE

International Conference on Robotics and Automation, pages 2346-2353,

Nice, France, May 1992.

Herman, Martin. Fast, Three-Dimensional Collision-Free Motion Planning.

In Proceedings of the IEEE International Conference on Robotics and

Automation, pages 1056-1063, 1986. Vol. 2.

Herman, Martin Fast Path Planning in Unstructured, Dynamic, 3-D

Worlds. unpub; ed manuscript, Robot Systems Division, National Bureau

of Standards, J_: _ary, 1986.

Lee, B.H. and Y.P. Chien. Time-Varying Obstacle Avoidance for Robot

Manipulators Approaches and Difficulties. In Proceedings of the IEEE

International Conference on Robotics and Automation, pages 1610-1615,
1987. Vol. 3.

Lee, B.H. and Y.P. Chien. Time-Varying Obstacle Avoidance for Robot

Manipulators: Approaches and Difficulties. Proceedings of the IEEE

International Conference on Robotics and Automation, 1987, Vol. 3, pp
1610-1615.

Gupta, Kamal Kant. Fast Collision Avoidance for Manipulator Arms: A

Sequential Search Strategy. In Proceedings of the IEEE International

Conference on Robotics and Automation, pages 1724-1729, 1990.

Lewis, R.A. Autonomous Manipulation of a Robot: Summary of

Manipulator Software Functions. Jet Propulsion Laboratory Technical
Memorandum 33-679, March 15 1974.

Pieper, D. The Kinematics of Manipulators Under Computer Control. PhD

thesis, Stanford University, 1969.

Glavina, Bernhard. Solving findpaith by combination of goal-directed and

randomized search. In Proceedings of the IEEE International Conference on

Robotics and Automation, pages 1718-1723, 1990.

Yap, Chee-Keng. How to Move a Chair Through a Door. IEEE Journal of

Robotics and Automation, June 1987, Vol. RA-3, No. 3, pp 172-181.

Rovetta, Alberto and Remo Sala. Robot motion planning with parallel

systems. In Proceedings of the IEEE International Conference on Robotics

and Automation, pages 2224-2229, Nice, France, May 1992.



131

[49] Brooks, R.A. Solving the find-path problem by good representationof free
space.In IEEE Transactions on Systems, Man, and Cybernetics, pages

190-197, March/April 1983. Vol. SMC-13, No. 2.

[50] Canny, John. A Voronoi Method for the Piano Movers Problem. In

Proceedings of the IEEE International Conference on Robotics and

Automation, pages 530-535, St. Louis, MO, March 1985.

[51] Donald, Bruce R. Motion Planning with six degrees of freedom. In MIT A.I.

Memo No. 791, 1984.

[52] Lumelsky, Vladimir J. and K. Sun. Gross Motion Planning for a Simple 3-D
Articulated Robot Arm Moving Amidst Unknown and Arbitrarily Shaped

Objects. Proceedings of the IEEE International Conference on Robotics and

Automation, 1987, Vol. 3. pp 1929-1934.

[53] Lumelsky, Vladimir J. and A. Stepanov. Path Planning Strategies for a

Traveling Automaton in an Environment with Uncertainty. Center for

Systems Science Technical Report No. 8504, Electrical Engineering, Yale

University, April 1985.

[54] Lumelsky, Vladimir J. On Dynamic Path Planning for a Planar Robot Arm.

Center for Systems Science Technical Report No. 8505, Electrical

Engineering, Yale University, April 1985.

[55] Lumelsky, Vladimir J. Continuos Motion Planning in Unknown Environment
for a 3-D Cartesian Robot. Proceedings of the IEEE International

Conference on Robotics and Automation, 1986, Vol. 3, pp 1050-1055.

[56] Lumelsky, Vladimir J. Effect of Kinematics on Motion Planning for Planar

Robot Arms moving Amidst Unknown Obstacles. IEEE Journal of Robotics

and Automation, June 1987, Vol. RA-3, No. 3, pp 207-223.

[57] Petrov, A.A. and I.M. Sirota. Obstacle Avoidance by a Robot Manipulator
Under Limited Information About the Environment. Automatic Remote

Control, April 1983, Vol. 44, No. 4, pp 431-440.

[58] Warren, C.W. Visual Algorithms for Autonomous Navigation. In

Proceedings of the IEEE International Conference on Robotics and

Automation, page_ 1071-1026, Sacramento, CA, April 1991.

[59] Lee, C.T. and P.C.Y.Sheu. A Divide-and-Conquer Approach with Heuristics

of Motion Planning for a Cartesian Manipulator. In IEEE Transactions on

Systems, Man, and Cybernetics, pages 929-944, September/October 1992.

Vol. SMC-15, No. 2.

[60] Koichi Kondo, et al. Motion Planning in Plant CAD Systems. Toshiba Corp.

ME R,_D Center, 4-1, Kanagawa Pref. 210, Japan.



132

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[7o]

[71]

[72]

[73]

Khatib, O. and J.F. Lemaitre. Dynamic Control of Manipulators Operating

in a Complex Environment. 3d CISM IFToMM Symposium on Theory and
Practice of Robot Manipulators, September 1978.

Hogan, N. Impedance Control: An approach to Manipulation. In ASME

Transactions on Dynamic Systems, Measurement, and Control, volume 107,
pages 1-24, March 1985.

Khosla, P. and R. Volpe. Superquadric artificial potentials for obstacle

avoidance and approach. In Proceedings of the IEEE International

Conference on Robotics and Automation, pages 1778-1784, 1988.

Okutomi, M. and M. Mori. Decision of robot movement by means of a

potential field. In Advanced Robotics, volume 1, pages 131-141, 1986.

Warren, Charles W. Global Path Planning Using Artificial Potential Fields.

In IEEE International Conference on Robotics and Automation, pages
316-321, 1989.

Hirukawa, H. and S. Kitamura. A Collision Avoidance Algorithm for Robot

Manipulators Using the Potential Method and Safety First Graph. In

Japan-U.S.A. Symposium on Flexible Automation, pages 99-102.

Aerospace, Martin Marietta Denver. Phase I - Intelligent Task Automation.

Air Force Wright Aeronautical Laboratories, Technical Report

AFWAL-TR-85-4062, Vol. 3, pp. 194-208, 214-215, April 1986.

Meyers, J.K and G.J. Agin. A Supervisory Collision Avoidance System for

Robot Controllers. Robotics Research and Advanced Applications, 1983,

pages 225-232. W.J. Book, editor, ASME, New York, NY.

Myers, J.K. Multi-Arm Collision Avoidance Using a Potential Field

Approach. SRI International, Menlo Park, CA, 1983.

Munger, Rolfe. Path Planning for Assembly of Strut-Based Structures.

Master's thesis, Rensselaer Polytechnic Institute, Troy, NY, May 1991.

Warren, C.W. et al. An approach to manipulator path planning.

International Journal of Robotics Research, October 1989, Vol. 8, No. 5, pp
87-95.

Warren, C.W. A vector based approach to robot path planning. In

Proceedings of the IEEE International Conference on Robotics and

Automation, April 1991. Sacramento, CA.

Kim, Jin-Oh. Real-Time Obstacle Avoidance Using Harmonic Potential

Functions. In IEEE Transactions on Robotics and Automation, pages
338-349, June 1992. Vol. 8, No. 3.



133

[74]

[75]

[76]

[77]

[78]

[79]

[8o]

[81]

[82]

[83]

[84]

[85]

Krogh, B.H. A generalized potential field approach to obstacle avoidance

control. In Proceedings SME Conference on Robotics Research, Bethlehem,

PA, August 1984.

Burns, C.I. Connolly J.B. and R. Weiss. Path lanning using Laplace's

equation. In Proceedings of the IEEE International Conference on Robotics

and Automation, pages 2102-2106, Cincinatti, OH, May 1990.

Rimon, E. and D.E. Koditschek. Exact robot navigation using artificial

potential fields. In IEEE Transactions on Robotics and Automation, pages

501-518, October 1992. Vol. 8, No. 5.

Faverjon, B. and P. Tournassoud. A Local Approach for Path Planning of

Manipulators with a High Number of Degrees of Freedom. In Proceedings of

the IEEE International Conference on Robotics and Automation, pages

1152-1159, 1987.

Barraquand, Jerome and Jean-Claude Latombe. A Monte-Carlo Algorithm

for Path Planning With Many Degrees of Freedom. In Proceedings of the

IEEE International Conference on Robotics and Automation, page 1712,

1990. Vol. 3.

Lozano-Perez, T. et al. Task-Level Planning of Pick-and-Place Robot

Motions. Computer, 1989, Vol. 22, No. 3,.

Derby, Stephen J. Kinematic Elasto-Dynamic Analysis and Computer

Graphics Simulation of General Purpose Manipulators. PhD thesis,

Rensselaer Polytechnic Institute, Troy, NY, 1982.

Hornick, M.L. and B. Ravani. Computer-Aided Off-Line Programming of

Robot Motion. International Journal of Robotics Research, 1986, Vol. 4, No.

4,. Winter.

Stobart, R.K. Geometric Tools for the Off-Line Programming of Robots.

Robotica, 1987, Vol. 5, pp 27:3-280.

Han, D. et al. Computer-aided off-line planning of robot motion. Robotics

and Autonomous Systems, 1991, Vol. 7, pp 67-72.

Weisbin, C.R. and M.D. Montemerlo. NASA's telerobotics research program.

In Proceedings of the IEEE l_ternational Conference on Robotics and

Automation, pages 2653-2666, Nice, France, May 1992.

Chien, Yung-Ping and Qing Xue. Path planning for two planar robots

moving in unknown environment. In IEEE Transactions on Systems, Man,

and Cybernetics, pages 307-317, March/April 1992. Vol. SMC-22, No. 2.



134

[86]

[87]

[88]

[89]

[9o]

[91]

Koga, Yoshihito and Jean-Claude Latombe. Experiments in Dual-Arm

manipulation planning. In Proceedings of the IEEE International Conference

on Robotics and Automation, pages 2238-2245, Nice, France, May 1992. Vol.
3.

Seereeram, Sanjeev and John T. Wen. A global approach to path planning

for redundant manipulators. In Proceedings of the 1992 Regional Control

Conference, pages 101-104, Brooklyn, NY, 1992.

Lim, Joonhong and Dong H. Chyung. Admissible Trajectory Determination

for Two Cooperating Robot Arms. Robotica, 1988, Vol. 6, pp 107-113.

Hu, Yan-Ru and Andrew A. Goldenberg. Dynamic control of multple

coordinated redundant robots. In IEEE Transactions on Systems, Man, and

Cybernetics, pages 568-574. May/June 1992. Vol. SMC-22, No. 3.

Bodduluri, Radhika Mohan. Design and Planned Movement of Multi-Degree

of Freedom Spatial Mechanisms. PhD thesis, University of California, Irvine,
1990.

Chen, Jau-Liang and Joseph Duffy. Path Generation for Two Cooperative

Puma Robots. In Robotics, Spatial Mechanisms. and Mechanical Systems,

AS]tIE, volume DE-45, pages 195-201, 1992.

[92] McKerrow, P.J. Introduction to Robotics. Addison-Wesley, Reading, MA,
1991.

[93]

[94]

[95]

[96]

[97]

[9S]

Hwang, Y.K. and Narendra Ahuja. Gross Motion Planning - A Aurvey.

ACM Computing Surveys, September 1992, Vol. 24, No. 3, pp 219-291.

Fu, K. S., R.C. Gonzalez, and C. S. G. Lee. Robotics: Control, Sensing,

Vision, and Intelligence. McGraw-Hill Book Company, New York, New

York, 1987.

J.E. Bobrow, S. Dubowsky and J.S. Gibson. Time-Optimal Control of

Robotic Manipulators Along Specified Paths. International Journal of

Robotics Research, 1985, Vol. 4, No. 3, pp 3-17. Fall.

Bryson, A.E. Jr. and Y.C. Ho. Applied Optimal Control. Hemisphere

Publishing, Washington, D.C., 1975.

Thorpe, C.E. Path Relaxation: Path Planning for a Mobile Robot.

CMU-RI, TR-84-5, 1984.

A Representation Scheme for Rapid 3-D Collision Detection. CIRSSE

Document No. 9, 1988.



135

[99]

[lOOl

[101]

[lO2]

Hamlin, G.J. and R.B. Kelley. Efficient Distance Calculation using the

Spherically-Extended Polytope (S-tope) Model. In Proceedings of the IEEE

International Conference on Robotics and Automation, pages 2502-2507,

Nice, France, May 1992. Vol. 3.

Hron, Anna B. Graphical Interface Between the Cirsse Testbed and

Cimstation with MCS/CTOS. Master's thesis, Rensselaer Polytechnic

Institute, Troy, NY, 1992.

Testbed Kinematic Frames and Routines. CIRSSE Technical Memo No. 1,

March 1991.

The Geometric State Manager. CIRSSE Technical Memo No. 21, December

1992.



APPENDIX A

CIRSSE Testbed Kinematic Frames

This appendix describes the CIRSSE Testbed kinematic frames and the joint limits.

The first section describes how the coordinate frames are assigned and num-

bered. Section 2 defines the pose names. For reading ease, angular data presented

in this appendix is given in units of degrees.

I

A.1 Coordinate Frames

This section describes the conventions related to the coordinate frame assign-

ments for the 1S-DOF Testbed. This section includes a set of standard labels for

the coordinate frames and numbers for the joints. The joint ranges implied by the

coordinate frame assignment are also given.

A.I.1 Assignment/Labeling of Frames

The consistent numbering of the joints in the Testbed results in a convention

for referring to the joints by a standard set of labels. The designed convention

specifies one uniform assignment of the coordinate frames, whereby each frame is

associated with a single joint and each joint is associated with a single frame, (i.e.,

there are no redundant frames). Although the fi'ame assignments and their asso-

ciation with the joints are unique, there are two different ways to number each

frame/joint. This results in two different sets of frame/joint labels: one to account

for an 18-DOF experiment, and one to account for a 9-DOF experiment.

The assignment of frame 0, i.e., the global origin, is made on top of the back

platform rail in the middle of its length. The positive x-axis of this frame points

towards the other platform rail, the positive y-axis points to the right of the Testbed,

and the positive z-axis points towards the ceiling. Scribe marks will be placed on
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the t_,Lck rail to indicate this coordinate frame's origin, positive x-axis, and positive

y-axis.

The coordinate frame numbering starts with the left cart, continues through

the left PUMA, and then includes the right cart and right PUMA. The coordinate

frames associated with the PUMA joints are ordered in the standard way. During

an 18-DOF experiment, the frame/joint labels Gx through Gas are used sequentially

in the manner just described (G indicates global). During a 6- or 9-DOF experiment,

the framej joint labels are L1 through Lg, or R1 through 1%, depending on whether the

left or right PUMA+cart is used, respectively. Note, there is no reduced classifica-

tion of the frame labels beyond those for a single PUMA+cart. Thus, a PUMA only

experiment will use joints numbered L4 through L9 or R4 through I%. The following

table summarizes the numbering and labeling of the coordinate frames, and gives

the hardware joint limits for the PUMA (rounded to the nearest degree).
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frame

number

0 n/a

4

5

6

10

11

12

13

14

15

16

17

18

name of

associated axis

left cart linear

left cart rotate

left cart tilt

left PUMA shoulder

left PUMA upper-arm

left PUMA fore-arm

left PUMA wrist

left PUMA flange tilt

left PUMA flange rotate

right cart linear

right cart rotate

right cart tilt

right PUMA shoulder

right PUMA upper-arm

right PUMA fore-arm

right

right

right

PUMA wrist

PUMA flange tilt

PUMA flange rotate

global

label

Go

Sl

G_

G3

G4

Gs

G6

G7

Gs

G9

SlO

G,2

GI3

G]4

G,s

G16

Gl7

G18

local

label

Lo, Ro

LI

L2

L3

L4

Ls

L6

Lr

L8

L9

RI

R2

R3

R4

Rs

Rr

Rs

physical limit

associated joint

n/a

(-1.3716, 0.6096) m

(-150, 150) degs

(-45, 45) degs

(-256, 79) degs

(-221", 40 °) degs

(-60, 246) degs

(-126, 150") degs

(-100, 100) degs

(-290", 290") degs

(-0.6096, 1.3716) m

(-150, 150) degs

(-45, 45) degs

(-253, 83) degs

(-221", 43") degs

(-60, 243) degs

(-134, 153") degs

(-100, 100) degs

(-290", 290") degs

The numbers marked with • indicate those limits which are not the mechanical

limits of the joint but the encoder limits. In either case, a hardware limit has been

reached. Beyond an encoder limit, the encoder count exceeds the storage capacity

of a 'C' short, causing a sign change in the encoder value. This would have serious

repercussions for any real-time control code.
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The coordinate frame assignment follows a Modified Denavit-Hartenberg for-

mulation, whereby the i th frame is attached to the i th link and has its origin on the

i th joint axis, (ref., Craig, J. J., "Introduction to Robotics Mechanics and Control, "

Addison-Wesley, 1986, Chapter 3). Note that motion of a given joint throughout its

entire range does not guarantee lack of collisions; this is particularly true with the

linear joints of the carts.

Two figures attached to the end of this memorandum illustrate the coordinate

frame assignment. Figure A.1 shows all 1S coordinate frames and joints for the carts

and PUMAs. Figure A.2 shows a closer view of the coordinate frames for the left

PUMA+cart.

The kinematic parameters for one of the PUMA-t-cart pairs are given in the

following table. Entries preceded by an asterisk indicate the currently accepted

approximate values which may change at a later date.

frame ai-1 ai-i di O,

number, i (m) (m)

1

2

3

4

5

6

7

8

9

-90 °

90 °

-90 °

90 °

-90 °

0 °

90 °

-90 °

90 °

*0.32000

0.00000

0.00000

0.00000

0.00000

0.43182

-0.02031

0.00000

0.00000

ql

*0.54400

0.00000

*0.82800

0.24300

-0.09391

0.43300

0.00000

0.00000

Note that frames 7, 8, and 9 have co-located origins.

frame is not located at the flange of the PUMA's wrist.

0

q2

q3

q4

qs

q6

q7

qs

q9

Specifically, the last

Numerical detail for the
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transformation from frame 9 to the gripper frame havenot asyet beendetermined.

HOME positions have beendefined for the MCS for the PUMAs. This position

correspondsto all zero joint values, and is shown in Figures A.1 and A.2. This

position, becauseof the alignment of two the wrist joint axes, is singular.

A.2 Software Joint Limits for the PUMAs

While the hardware joint limits describe the range of motion physically per-

mitted, it is not possible to utilize this entire range. For example, path planners may

require additional restrictions to provide safe motion. The following table lists the

recommended joint limits for the testbed. These values are based on the hardware

joint limits with consideration given to the link size and range, and a safety region

(nominally 5 degrees, except it is 6 degrees for a joint able to reach its encoder

limit).
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frame

number

name of

associated axis

global

label

0 n/a Go

1

2

3

4

5

6

10

11

12

13

14

15

left cart linear

left cart rotate

left cart tilt

left PUMA shoulder

left PUMA upper-arm

left PUMA fore-arm

left PUMA wrist

left PUMA flange tilt

left PUMA flange rotate

right cart linear

right cart rotate

right cart tilt

right PUMA shoulder

right PUMA upper-arm

right PUMA fore-arm

right PUMA wrist

right PUMA flange tilt

right PUMA flange rotate

16

17

18

G1

G2

G3

G4

G5

G6

G7

Gs

G9

GIO

GII

Gn

GI3

G14

G15

GI6

G17

Gl8

local

label

Lo, Ro

Ll

L2

L3

L4

L5

L6

L7

Ls

L9

R1

R2

R3

R4

R5

P_

RT

Rs

n_

software range of

associated joint

n/a

(-1.3716, 0.6096) m

(-150, 150) degs

(-45, 45) degs

(-251, 74) degs

(-215, 34) degs

(-55, 241) degs

(-121, 144) degs

(-95, 95) degs

(-284, 284) degs

(-0.6096, 1.3716) m

(-150, 150) degs

(-45, 45) degs

(-248, 78) degs

(-215, 37) degs

(-55, 238) degs

(-129, 148) degs

(-95, 95) degs

(-284, 284) degs

The information in the joint limit tables should be used in the following man-

ner:

• Trajectory generators, controllers, path planners, etc, should use the software

joint limits for specifying the manipulator motion ranges.
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• The low levelprotection codein the robe channeldrive,

joint limits.

ould usehardware

This usagepermits a consistent specificationof manipulator motions and provides

two levels of protection against reaching the joint limits: the channel drivers will

disable a joint only when the physical limit is threatened; higher level software will

never request a joint move to these limits. It is expected that the channel drivers

will also include a 3 degree limit on these values to ensure safety.

A.3 Pc: Names

In g, ._eral, thr, ,ose variables, each with two values, are needed to select

the desired solution fr ,n the eight possible solutions of a PUMA inverse kinematic

problem. Selection of the pose definitions was a trade-off between easy visualization

of the pose by human analogy and ease of computation. The labels to be used for

the PUMA poses and their definitions are summarized in the table below--joint

variables referenced are those for the left PUMA.

pose name

right

left

_ex

noflex

flip

noflip

joint range

fthres(q4, qs, q6) < 0

fthres(q4, qs, q6) > 0

q6 < 92.6864 °

q6 > 92.6864 °

qs < 0°

qs > 0 °

Standing on the PUM ', base and looking straight at its wrist, the shoulder

link of the PUMA will be o ' imr the left or right side of your body, corresponding

to the left or right config_, ,on, respectively. It is important to only consider the
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location of the PUMA's wrist coordinateframe, and not the flange of its last joint or

any tool that might be attached to the wrist. The computation involves joints 4, 5,

and 6. The PUMA is in the left configuration when it is in the HOME position, (as

shown in Figures A.1 and A.2). With the other PUMA joints remaining stationary,

this configuration variable changes when either qs or q6 move to cause the wrist to

pass over the "head" of the PUMA. When the wrist is directly above the PUMA,

the robot is neither in the left or right configuration.

Consider, now, that the PUMA is in the left configuration. When the value

of the elbow angle, i.e., q6, is 92.6864 °, the fore-arm and upper-arm align to make

the PUMA stretched. In this position, the PUMA is neither in the flex or noflex

configuration. As the fore-arm is drawn towards the top of the upper-arm by chang-

ing the elbow angle, i.e., the motion achievable with the unbroken human arm, the

PUMA enters the flex configuration (so named since this motion mimics a human

flexing his/her arm). Conversely, the PUMA is in the noflex configuration if the

elbow angle is changed in the other direction. This analogy is reversed when the

PUMA is in the right configuration. In this case, the orientation of the fore-arm

and upper-arm unlikely for humans is the flex configuration.

The last pose label deals with the PUMA's wrist orientation. Because of the

construction of the PUMA wrist, there is no human analogy to this redundancy. A

piece of tape will be placed on the PUMA's wrist near the axis of qs. When qs is

such that the flange of the PUMA's wrist overlaps the tape, then the PUMA will

be in the no flip configuration.
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Figure A.I: Coordinate Frame Assignments
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Figure A.2: Left Half Coordinate Frame Assignments



APPENDIX B

Data for Examples Presented in Thesis

This Appendix provides the task and obstacle descriptions for the examples pre-

sented earlier in Chapter 6. The task description has the form of start and goal

joint angles. Revolute joints are measured in degrees and prismatic joints are mea-

sured in mm. The obstacle descriptions have the following format with dimensions

in ram:

/ obstacle no. / number of points / polytope radius / origin of reference frame

(X,Y,Z) / (X,Y,Z) of first point / ... / (X,Y,Z) of last point /

Solution times and other solution parameters were presented earlier in Chap-

ter 6.

The point coordinates are in local coordinates. The obstacle reference frames

have the same orientation as the world reference frame. The world reference frame

and the robot joint angle definitions are defined in [101].

B.1 Data for Examples 1 and 2

Examples 1 and 2 are identical except that the lower three joints remain fixed

for Example 1 but are allowed to move for Example 2. The start and goal joint

angles for these examples are:

®o = (0, 0, 0, 16.03, -148.79, -8.3._ 0.00, -22.86,106.03) and

Of = (0, 0, 0, - 184.37, - 158.90, 20.22, 0.00, -41.32,265.63), respectively. The eight

obstacles are as follows:

/ 1 / 2 / 40 / (1000,-100,s00)/ (200,0,0)/ (-200,0,0)/

/ 2/ 2/40 / (1000,-100,800) / (200,0,0) / (0,0,346) /
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/3/

/4/

(100,

(lO0,

/5/s/0

(100, -100,

(100, -100,

2 / 40 / (1000,-100, 800) / (-200, 0, 0) / (0, 0, 346) /

8 / 0 / (500, 600, 1250) / (100, 100, 0) / (-100, 100, 0) / (-100,-100, 0) /

-100, O) / (100, 100, 200) / (-100, 100, 200) / (-100,-100, 200) /

-100, 200) /

/ (-200, 200, 1000) / (-100,-100, 0) / (-100, 100, 0) / (100, 100, 0) /

O) / (-100,-100, 100) / (-100, 100, 100) / (100, 100, 100) /

lOO)/

/ 6 / 8 / 0 / (-350, 200, 800) / (-50,-100, 0) / (-50, 100, 0) / (50, 100, 0) /

(50,-100, 0) / (-50,-100, 300) / (-50, 100, 300) / (50, 100, 300) / (50,-100, 300) /

/ 7 / 8 / 0 / (-50, 200, 800) / (-50,-100, 0) / (-50, 100, 0) / (50, 100, 0) /

(50,-100, 0) / (-50, -100, 300) / (-50, 100, 300) / (50, 100, 300) / (50,-100, 300) /

/ 8 / 8 / 0 / (-200,200, 800) / (-100,-100, 0) / (-100, 100, 0) / (100, 100,0) /

(100,-100, O) / (-100,-100, 100) / (-100, 100, 100) / (100, 100, 100) /

(100,-100, 100) /

B.2 Data for Example 3

For this example, platform 1 is fixed at (-900,-90, 0) and platform 2 is fixed

at (900,-90, 0). The start robot 1 and 2 joint angles for this example are:

Olo = (64.40, -178.80,121.20,0.00,57.60,115.60) and

O2o = (-226.97,-185.55,136.58,0.00,48.98,226.97), respectively. The goal joint

angles for this example are:

Olf= (-42.00, -169.46, 115.96, 0.00,53.40,222.00) and

O2f = (- 111.92, - 176.85, 133.07, -0.14,43.75, 112.02), respectively. The six obsta-

cles are as follows:

/ 1 / 8 / 0 / (400, 0, 1750) / (275, 150, 0) / (275,-150, 0) / (-275,-150, 0) /

(-275, 150, 0) / (275,150, 100) / (275,-150, 100) / (-275,-150, 100) / (-275, 150, 100) /
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/ 2 / 8 / 0 / (500, 0, 2000) / (375, 150, 0) / (375,-150, 0) / (-375,-150, 0) /

(-375, 150, 0) / (375, 150, 100) / (375,-150, 100) / (-375,-150, 100) / (-375, 150, 100) /

/ 3 / 8 / 0 / (180,0, 2100)/ (50,

(50, 150,300) / (50,- 150, 300)

/ 4 / 8 / 0 / (180,0, 1450)/ (50,

(50, 150, 300) / (50,- 150,3O0)

/ 5 / 8 / 0 / (825,0, 1850)/ (50,

150, 0) / (50,-150, 0) / (-50,-150, 0) / (-50, 150, 0) /

/ (-50,-150, 300) / (-50, 150, 300) /

150,o) / (50,-150, o) / (-50,-150, o) / (-50, 150,o) /

/ (-50,-150, 300) / (-50, 150, 300) /

150,o) / (50,-150, o) / (-50,-150, o) / (-50, 150,o) /

(50, 150, 150) / (5o,-150, 150) / (-50,-150, 150) / (-50, 150, 150) /

/ 6 / 8 / 0 / (-175,o, 1750)/ (50, 150,o) / (50,-150, o) / (-50,-150, o) / (-50,150, o) /

(50, 150,250) / (50,-150, 250) / (-50, -150,250) / (-50, 150,250) /

B.3 Data for Example 4

The start robot 1 and 2 joint angles for this example are:

Olo = (- 1300.00, 0.00, -40.00, -5.00, - 110.70, 19.20, 4.30, -48.80, 83.40) and

O2o = (-500.00,0.00,-40.00,-184.92,-72.57,170.91,4.76,41.97,82.76), respec-

tively. The goal joint angles for this example are:

Olf = (500.00, 0.00, 40.00, -149.81, -163.61,46.29, 23.80, 72.91,242.14) and

O2f = (1300.00, 0.00, 40.00, -171.09, -157.32, 33.29, 7.09, 74.44, 82.36), respectively.

The eight obstacles are as follows:

/ 1 / 8 / 0 / (-750,-850, 700) / (-50,-100, 0) / (-50, 100, 0) / (50, 100, 0) /

(50,-100, 0) / (-50,-100, 300) / (-50, 100, 300) / (50, 100, 300) / (50,-100, 300) /

/ 2 / 8 / 0 / (-1000,-850, 700) / (-50,-100, 0) / (-50, 100, 0) / (50, 100, 0) /

(50,-100, 0) / (-50,-100, 300) / (-50, 100, 300) / (50, 100, 300) / (50,-100, 300) /

/ 3 / 8 / 0 / (-875-350, 700) / (-100,-50, 0) / (-100, 50, 0) / (100, 50, 0) /

(100,-50, 0) / (-100,-50, 300) / (-100, 50, 300) / (100, 50, 300) / (100,-50, 300) /
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/ 4 / s / 0 / (-s75,-1350, 700) / (-100,-50, o) / (-100, 50, o) / (100, 50, o) /

( 100, -50, O) / (- 100, -50, 300) / (- 100, 50, 300) / (100, 50, 300) / ( 100, -50, 300) /

/ 5 / s / 0 / (-s75,-sso, 600) / (-175,-550, o) / (-175,550, o) / (175, 550, o) /

(175, -550,o) / (-175, -550, 100) / (-175,550, 100) / (175, 550, 100) /

(175, -550, 100) /

/ 6 / 2 / 100 / (1450, 1000,o) / (0, o, o) / (0, o, 650) /

/ 7 / s / 0 / (1550, 100,750) / (-200,-100, o) / (-200,100,o) / (200, 100, o) /

(200,-100, O) / (-200,-100, 100) / (-200, 100, 100) / (200, 100, 100) /

(200,-100, 100) /

/ s / s/0 / (lSOO,1000, 550) / (-100,-50, o) / (-100, 50, o) / (100, 50, o) /

(100, -50, O) / (- 100, -50, 300) / (- 100, 50, 300) / (100, 50, 300) / (100, -50, 300) /




