65,308 research outputs found

    Automatic Software Repair: a Bibliography

    Get PDF
    This article presents a survey on automatic software repair. Automatic software repair consists of automatically finding a solution to software bugs without human intervention. This article considers all kinds of repairs. First, it discusses behavioral repair where test suites, contracts, models, and crashing inputs are taken as oracle. Second, it discusses state repair, also known as runtime repair or runtime recovery, with techniques such as checkpoint and restart, reconfiguration, and invariant restoration. The uniqueness of this article is that it spans the research communities that contribute to this body of knowledge: software engineering, dependability, operating systems, programming languages, and security. It provides a novel and structured overview of the diversity of bug oracles and repair operators used in the literature

    The model and method of SCADA diagnostics as an object with partially defined parameters

    Get PDF
    Modern SCADA are widely spread all over the world to control technological processes in different industries such as power engineering, military, transport, etc. These systems have strict requirements to ensure their fault tolerance and reliability. Therefore, a very important problem is to perform real time self-diagnostics for mission critical SCADA. We propose a diagnostic model based on expert system methodology to solve this issue

    Log-based Anomaly Detection of CPS Using a Statistical Method

    Full text link
    Detecting anomalies of a cyber physical system (CPS), which is a complex system consisting of both physical and software parts, is important because a CPS often operates autonomously in an unpredictable environment. However, because of the ever-changing nature and lack of a precise model for a CPS, detecting anomalies is still a challenging task. To address this problem, we propose applying an outlier detection method to a CPS log. By using a log obtained from an actual aquarium management system, we evaluated the effectiveness of our proposed method by analyzing outliers that it detected. By investigating the outliers with the developer of the system, we confirmed that some outliers indicate actual faults in the system. For example, our method detected failures of mutual exclusion in the control system that were unknown to the developer. Our method also detected transient losses of functionalities and unexpected reboots. On the other hand, our method did not detect anomalies that were too many and similar. In addition, our method reported rare but unproblematic concurrent combinations of operations as anomalies. Thus, our approach is effective at finding anomalies, but there is still room for improvement

    Software that Learns from its Own Failures

    Full text link
    All non-trivial software systems suffer from unanticipated production failures. However, those systems are passive with respect to failures and do not take advantage of them in order to improve their future behavior: they simply wait for them to happen and trigger hard-coded failure recovery strategies. Instead, I propose a new paradigm in which software systems learn from their own failures. By using an advanced monitoring system they have a constant awareness of their own state and health. They are designed in order to automatically explore alternative recovery strategies inferred from past successful and failed executions. Their recovery capabilities are assessed by self-injection of controlled failures; this process produces knowledge in prevision of future unanticipated failures

    Automated Dynamic Firmware Analysis at Scale: A Case Study on Embedded Web Interfaces

    Full text link
    Embedded devices are becoming more widespread, interconnected, and web-enabled than ever. However, recent studies showed that these devices are far from being secure. Moreover, many embedded systems rely on web interfaces for user interaction or administration. Unfortunately, web security is known to be difficult, and therefore the web interfaces of embedded systems represent a considerable attack surface. In this paper, we present the first fully automated framework that applies dynamic firmware analysis techniques to achieve, in a scalable manner, automated vulnerability discovery within embedded firmware images. We apply our framework to study the security of embedded web interfaces running in Commercial Off-The-Shelf (COTS) embedded devices, such as routers, DSL/cable modems, VoIP phones, IP/CCTV cameras. We introduce a methodology and implement a scalable framework for discovery of vulnerabilities in embedded web interfaces regardless of the vendor, device, or architecture. To achieve this goal, our framework performs full system emulation to achieve the execution of firmware images in a software-only environment, i.e., without involving any physical embedded devices. Then, we analyze the web interfaces within the firmware using both static and dynamic tools. We also present some interesting case-studies, and discuss the main challenges associated with the dynamic analysis of firmware images and their web interfaces and network services. The observations we make in this paper shed light on an important aspect of embedded devices which was not previously studied at a large scale. We validate our framework by testing it on 1925 firmware images from 54 different vendors. We discover important vulnerabilities in 185 firmware images, affecting nearly a quarter of vendors in our dataset. These experimental results demonstrate the effectiveness of our approach
    corecore