6,236 research outputs found

    Sample Complexity Analysis for Learning Overcomplete Latent Variable Models through Tensor Methods

    Full text link
    We provide guarantees for learning latent variable models emphasizing on the overcomplete regime, where the dimensionality of the latent space can exceed the observed dimensionality. In particular, we consider multiview mixtures, spherical Gaussian mixtures, ICA, and sparse coding models. We provide tight concentration bounds for empirical moments through novel covering arguments. We analyze parameter recovery through a simple tensor power update algorithm. In the semi-supervised setting, we exploit the label or prior information to get a rough estimate of the model parameters, and then refine it using the tensor method on unlabeled samples. We establish that learning is possible when the number of components scales as k=o(dp/2)k=o(d^{p/2}), where dd is the observed dimension, and pp is the order of the observed moment employed in the tensor method. Our concentration bound analysis also leads to minimax sample complexity for semi-supervised learning of spherical Gaussian mixtures. In the unsupervised setting, we use a simple initialization algorithm based on SVD of the tensor slices, and provide guarantees under the stricter condition that kβdk\le \beta d (where constant β\beta can be larger than 11), where the tensor method recovers the components under a polynomial running time (and exponential in β\beta). Our analysis establishes that a wide range of overcomplete latent variable models can be learned efficiently with low computational and sample complexity through tensor decomposition methods.Comment: Title change

    A Constrained EM Algorithm for Independent Component Analysis

    Get PDF
    We introduce a novel way of performing independent component analysis using a constrained version of the expectation-maximization (EM) algorithm. The source distributions are modeled as D one-dimensional mixtures of gaussians. The observed data are modeled as linear mixtures of the sources with additive, isotropic noise. This generative model is fit to the data using constrained EM. The simpler “soft-switching” approach is introduced, which uses only one parameter to decide on the sub- or supergaussian nature of the sources. We explain how our approach relates to independent factor analysis

    The Use of Features Extracted from Noisy Samples for Image Restoration Purposes

    Get PDF
    An important feature of neural networks is the ability they have to learn from their environment, and, through learning to improve performance in some sense. In the following we restrict the development to the problem of feature extracting unsupervised neural networks derived on the base of the biologically motivated Hebbian self-organizing principle which is conjectured to govern the natural neural assemblies and the classical principal component analysis (PCA) method used by statisticians for almost a century for multivariate data analysis and feature extraction. The research work reported in the paper aims to propose a new image reconstruction method based on the features extracted from the noise given by the principal components of the noise covariance matrix.feature extraction, PCA, Generalized Hebbian Algorithm, image restoration, wavelet transform, multiresolution support set
    corecore