519 research outputs found

    Investigating Genotype-Phenotype relationship extraction from biomedical text

    Get PDF
    During the last decade biomedicine has developed at a tremendous pace. Every day a lot of biomedical papers are published and a large amount of new information is produced. To help enable automated and human interaction in the multitude of applications of this biomedical data, the need for Natural Language Processing systems to process the vast amount of new information is increasing. Our main purpose in this research project is to extract the relationships between genotypes and phenotypes mentioned in the biomedical publications. Such a system provides important and up-to-date data for database construction and updating, and even text summarization. To achieve this goal we had to solve three main problems: finding genotype names, finding phenotype names, and finally extracting phenotype--genotype interactions. We consider all these required modules in a comprehensive system and propose a promising solution for each of them taking into account available tools and resources. BANNER, an open source biomedical named entity recognition system, which has achieved good results in detecting genotypes, has been used for the genotype name recognition task. We were the first group to start working on phenotype name recognition. We have developed two different systems (rule-based and machine-learning based) for extracting phenotype names from text. These systems incorporated the available knowledge from the Unified Medical Language System metathesaurus and the Human Phenotype Onotolgy (HPO). As there was no available annotated corpus for phenotype names, we created a valuable corpus with annotated phenotype names using information available in HPO and a self-training method which can be used for future research. To solve the final problem of this project i.e. , phenotype--genotype relationship extraction, a machine learning method has been proposed. As there was no corpus available for this task and it was not possible for us to annotate a sufficiently large corpus manually, a semi-automatic approach has been used to annotate a small corpus and a self-training method has been proposed to annotate more sentences and enlarge this corpus. A test set was manually annotated by an expert. In addition to having phenotype-genotype relationships annotated, the test set contains important comments about the nature of these relationships. The evaluation results related to each system demonstrate the significantly good performance of all the proposed methods

    Knowledge Expansion of a Statistical Machine Translation System using Morphological Resources

    Get PDF
    Translation capability of a Phrase-Based Statistical Machine Translation (PBSMT) system mostly depends on parallel data and phrases that are not present in the training data are not correctly translated. This paper describes a method that efficiently expands the existing knowledge of a PBSMT system without adding more parallel data but using external morphological resources. A set of new phrase associations is added to translation and reordering models; each of them corresponds to a morphological variation of the source/target/both phrases of an existing association. New associations are generated using a string similarity score based on morphosyntactic information. We tested our approach on En-Fr and Fr-En translations and results showed improvements of the performance in terms of automatic scores (BLEU and Meteor) and reduction of out-of-vocabulary (OOV) words. We believe that our knowledge expansion framework is generic and could be used to add different types of information to the model.JRC.G.2-Global security and crisis managemen

    On the Use of Parsing for Named Entity Recognition

    Get PDF
    [Abstract] Parsing is a core natural language processing technique that can be used to obtain the structure underlying sentences in human languages. Named entity recognition (NER) is the task of identifying the entities that appear in a text. NER is a challenging natural language processing task that is essential to extract knowledge from texts in multiple domains, ranging from financial to medical. It is intuitive that the structure of a text can be helpful to determine whether or not a certain portion of it is an entity and if so, to establish its concrete limits. However, parsing has been a relatively little-used technique in NER systems, since most of them have chosen to consider shallow approaches to deal with text. In this work, we study the characteristics of NER, a task that is far from being solved despite its long history; we analyze the latest advances in parsing that make its use advisable in NER settings; we review the different approaches to NER that make use of syntactic information; and we propose a new way of using parsing in NER based on casting parsing itself as a sequence labeling task.Xunta de Galicia; ED431C 2020/11Xunta de Galicia; ED431G 2019/01This work has been funded by MINECO, AEI and FEDER of UE through the ANSWER-ASAP project (TIN2017-85160-C2-1-R); and by Xunta de Galicia through a Competitive Reference Group grant (ED431C 2020/11). CITIC, as Research Center of the Galician University System, is funded by the Consellería de Educación, Universidade e Formación Profesional of the Xunta de Galicia through the European Regional Development Fund (ERDF/FEDER) with 80%, the Galicia ERDF 2014-20 Operational Programme, and the remaining 20% from the Secretaría Xeral de Universidades (Ref. ED431G 2019/01). Carlos Gómez-Rodríguez has also received funding from the European Research Council (ERC), under the European Union’s Horizon 2020 research and innovation programme (FASTPARSE, Grant No. 714150)

    A Rule-based Methodology and Feature-based Methodology for Effect Relation Extraction in Chinese Unstructured Text

    Get PDF
    The Chinese language differs significantly from English, both in lexical representation and grammatical structure. These differences lead to problems in the Chinese NLP, such as word segmentation and flexible syntactic structure. Many conventional methods and approaches in Natural Language Processing (NLP) based on English text are shown to be ineffective when attending to these language specific problems in late-started Chinese NLP. Relation Extraction is an area under NLP, looking to identify semantic relationships between entities in the text. The term “Effect Relation” is introduced in this research to refer to a specific content type of relationship between two entities, where one entity has a certain “effect” on the other entity. In this research project, a case study on Chinese text from Traditional Chinese Medicine (TCM) journal publications is built, to closely examine the forms of Effect Relation in this text domain. This case study targets the effect of a prescription or herb, in treatment of a disease, symptom or body part. A rule-based methodology is introduced in this thesis. It utilises predetermined rules and templates, derived from the characteristics and pattern observed in the dataset. This methodology achieves the F-score of 0.85 in its Named Entity Recognition (NER) module; 0.79 in its Semantic Relationship Extraction (SRE) module; and the overall performance of 0.46. A second methodology taking a feature-based approach is also introduced in this thesis. It views the RE task as a classification problem and utilises mathematical classification model and features consisting of contextual information and rules. It achieves the F-scores of: 0.73 (NER), 0.88 (SRE) and overall performance of 0.41. The role of functional words in the contemporary Chinese language and in relation to the ERs in this research is explored. Functional words have been found to be effective in detecting the complex structure ER entities as rules in the rule-based methodology
    corecore