1,911 research outputs found

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Fast Neighbor Discovery for Wireless Ad Hoc Network with Successive Interference Cancellation

    Full text link
    Neighbor discovery (ND) is a key step in wireless ad hoc network, which directly affects the efficiency of wireless networking. Improving the speed of ND has always been the goal of ND algorithms. The classical ND algorithms lose packets due to the collision of multiple packets, which greatly affects the speed of the ND algorithms. Traditional methods detect packet collision and implement retransmission when encountering packet loss. However, they does not solve the packet collision problem and the performance improvement of ND algorithms is limited. In this paper, the successive interference cancellation (SIC) technology is introduced into the ND algorithms to unpack multiple collision packets by distinguishing multiple packets in the power domain. Besides, the multi-packet reception (MPR) is further applied to reduce the probability of packet collision by distinguishing multiple received packets, thus further improving the speed of ND algorithms. Six ND algorithms, namely completely random algorithm (CRA), CRA based on SIC (CRA-SIC), CRA based on SIC and MPR (CRA-SIC-MPR), scan-based algorithm (SBA), SBA based on SIC (SBA-SIC), and SBA based on SIC and MPR (SBA-SIC-MPR), are theoretically analyzed and verified by simulation. The simulation results show that SIC and MPR reduce the ND time of SBA by 69.02% and CRA by 66.03% averagely.Comment: 16 pages, 16 figure

    Cluster based jamming and countermeasures for wireless sensor network MAC protocols

    Get PDF
    A wireless sensor network (WSN) is a collection of wireless nodes, usually with limited computing resources and available energy. The medium access control layer (MAC layer) directly guides the radio hardware and manages access to the radio spectrum in controlled way. A top priority for a WSN MAC protocol is to conserve energy, however tailoring the algorithm for this purpose can create or expose a number of security vulnerabilities. In particular, a regular duty cycle makes a node vulnerable to periodic jamming attacks. This vulnerability limits the use of use of a WSN in applications requiring high levels of security. We present a new WSN MAC protocol, RSMAC (Random Sleep MAC) that is designed to provide resistance to periodic jamming attacks while maintaining elements that are essential to WSN functionality. CPU, memory and especially radio usage are kept to a minimum to conserve energy while maintaining an acceptable level of network performance so that applications can be run transparently on top of the secure MAC layer. We use a coordinated yet pseudo-random duty cycle that is loosely synchronized across the entire network via a distributed algorithm. This thwarts an attacker\u27s ability to predict when nodes will be awake and likewise thwarts energy efficient intelligent jamming attacks by reducing their effectiveness and energy-efficiency to that of non-intelligent attacks. Implementing the random duty cycle requires additional energy usage, but also offers an opportunity to reduce asymmetric energy use and eliminate energy use lost to explicit neighbor discovery. We perform testing of RSMAC against non-secure protocols in a novel simulator that we designed to make prototyping new WSN algorithms efficient, informative and consistent. First we perform tests of the existing SMAC protocol to demonstrate the relevance of the novel simulation for estimating energy usage, data transmission rates, MAC timing and other relevant macro characteristics of wireless sensor networks. Second, we use the simulation to perform detailed testing of RSMAC that demonstrates its performance characteristics with different configurations and its effectiveness in confounding intelligent jammers

    Performance Assessment of Routing Protocols for IoT/6LoWPAN Networks

    Get PDF
    The Internet of Things (IoT) proposes a disruptive communication paradigm that allows smart objects to exchange data among themselves to reach a common goal. IoT application scenarios are multiple and can range from a simple smart home lighting system to fully controlled automated manufacturing chains. In the majority of IoT deployments, things are equipped with small devices that can suffer from severe hardware and energy restrictions that are responsible for performing data processing and wireless communication tasks. Thus, due to their features, communication networks that are used by these devices are generally categorized as Low Power and Lossy Networks (LLNs). The considerable variation in IoT applications represents a critical issue to LLN networks, which should offer support to different requirements as well as keeping reasonable quality-of-service (QoS) levels. Based on this challenge, routing protocols represent a key issue in IoT scenarios deployment. Routing protocols are responsible for creating paths among devices and their interactions. Hence, network performance and features are highly dependent on protocol behavior. Also, based on the adopted protocol, the support for some specific requirements of IoT applications may or may not be provided. Thus, a routing protocol should be projected to attend the needs of the applications considering the limitations of the device that will execute them. Looking to attend the demand of routing protocols for LLNs and, consequently, for IoT networks, the Internet Engineering Task Force (IETF) has designed and standardized the IPv6 Routing Protocol for Low Power and Lossy Networks (RPL). This protocol, although being robust and offering features to fulfill the need of several applications, still presents several faults and weaknesses (mainly related to its high complexity and memory requirement), which limits its adoption in IoT scenarios. An alternative to RPL, the Lightweight On-demand Ad Hoc Distancevector Routing Protocol – Next Generation (LOADng) has emerged as a less complicated routing solution for LLNs. However, the cost of its simplicity is paid for with the absence of adequate support for a critical set of features required for many IoT environments. Thus, based on the challenging open issues related to routing in IoT networks, this thesis aims to study and propose contributions to better attend the network requirements of IoT scenarios. A comprehensive survey, reviewing state-of-the-art routing protocols adopted for IoT, identified the strengths and weaknesses of current solutions available in the literature. Based on the identified limitations, a set of improvements is designed to overcome these issues and enhance IoT network performance. The novel solutions are proposed to include reliable and efficient support to attend the needs of IoT applications, such as mobility, heterogeneity, and different traffic patterns. Moreover, mechanisms to improve the network performance in IoT scenarios, which integrate devices with different communication technologies, are introduced. The studies conducted to assess the performance of the proposed solutions showed the high potential of the proposed solutions. When the approaches presented in this thesis were compared with others available in the literature, they presented very promising results considering the metrics related to the Quality of Service (QoS), network and energy efficiency, and memory usage as well as adding new features to the base protocols. Hence, it is believed that the proposed improvements contribute to the state-of-the-art of routing solutions for IoT networks, increasing the performance and adoption of enhanced protocols.A Internet das Coisas, do inglĂȘs Internet of Things (IoT), propĂ”e um paradigma de comunicação disruptivo para possibilitar que dispositivos, que podem ser dotados de comportamentos autĂłnomos ou inteligentes, troquem dados entre eles buscando alcançar um objetivo comum. Os cenĂĄrios de aplicação do IoT sĂŁo muito variados e podem abranger desde um simples sistema de iluminação para casa atĂ© o controle total de uma linha de produção industrial. Na maioria das instalaçÔes IoT, as “coisas” sĂŁo equipadas com um pequeno dispositivo, responsĂĄvel por realizar as tarefas de comunicação e processamento de dados, que pode sofrer com severas restriçÔes de hardware e energia. Assim, devido Ă s suas caracterĂ­sticas, a rede de comunicação criada por esses dispositivos Ă© geralmente categorizada como uma Low Power and Lossy Network (LLN). A grande variedade de cenĂĄrios IoT representam uma questĂŁo crucial para as LLNs, que devem oferecer suporte aos diferentes requisitos das aplicaçÔes, alĂ©m de manter nĂ­veis de qualidade de serviço, do inglĂȘs Quality of Service (QoS), adequados. Baseado neste desafio, os protocolos de encaminhamento constituem um aspecto chave na implementação de cenĂĄrios IoT. Os protocolos de encaminhamento sĂŁo responsĂĄveis por criar os caminhos entre os dispositivos e permitir suas interaçÔes. Assim, o desempenho e as caracterĂ­sticas da rede sĂŁo altamente dependentes do comportamento destes protocolos. Adicionalmente, com base no protocolo adotado, o suporte a alguns requisitos especĂ­ficos das aplicaçÔes de IoT podem ou nĂŁo ser fornecidos. Portanto, estes protocolos devem ser projetados para atender as necessidades das aplicaçÔes assim como considerando as limitaçÔes do hardware no qual serĂŁo executados. Procurando atender Ă s necessidades dos protocolos de encaminhamento em LLNs e, consequentemente, das redes IoT, a Internet Engineering Task Force (IETF) desenvolveu e padronizou o IPv6 Routing Protocol for Low Power and Lossy Networks (RPL). O protocolo, embora seja robusto e ofereça recursos para atender Ă s necessidades de diferentes aplicaçÔes, apresenta algumas falhas e fraquezas (principalmente relacionadas com a sua alta complexidade e necessidade de memĂłria) que limitam sua adoção em cenĂĄrios IoT. Em alternativa ao RPL, o Lightweight On-demand Ad hoc Distance-vector Routing Protocol – Next Generation (LOADng) emergiu como uma solução de encaminhamento menos complexa para as LLNs. Contudo, o preço da simplicidade Ă© pago com a falta de suporte adequado para um conjunto de recursos essenciais necessĂĄrios em muitos ambientes IoT. Assim, inspirado pelas desafiadoras questĂ”es ainda em aberto relacionadas com o encaminhamento em redes IoT, esta tese tem como objetivo estudar e propor contribuiçÔes para melhor atender os requisitos de rede em cenĂĄrios IoT. Uma profunda e abrangente revisĂŁo do estado da arte sobre os protocolos de encaminhamento adotados em IoT identificou os pontos fortes e limitaçÔes das soluçÔes atuais. Com base nas debilidades encontradas, um conjunto de soluçÔes de melhoria Ă© proposto para superar carĂȘncias existentes e melhorar o desempenho das redes IoT. As novas soluçÔes sĂŁo propostas para incluir um suporte confiĂĄvel e eficiente capaz atender Ă s necessidades das aplicaçÔes IoT relacionadas com suporte Ă  mobilidade, heterogeneidade dos dispositivos e diferentes padrĂ”es de trĂĄfego. AlĂ©m disso, sĂŁo introduzidos mecanismos para melhorar o desempenho da rede em cenĂĄrios IoT que integram dispositivos com diferentes tecnologias de comunicação. Os vĂĄrios estudos realizados para mensurar o desempenho das soluçÔes propostas mostraram o grande potencial do conjunto de melhorias introduzidas. Quando comparadas com outras abordagens existentes na literatura, as soluçÔes propostas nesta tese demonstraram um aumento do desempenho consistente para mĂ©tricas relacionadas a qualidade de serviço, uso de memĂłria, eficiĂȘncia energĂ©tica e de rede, alĂ©m de adicionar novas funcionalidades aos protocolos base. Portanto, acredita-se que as melhorias propostas contribuiem para o avanço do estado da arte em soluçÔes de encaminhamento para redes IoT e aumentar a adoção e utilização dos protocolos estudados

    Airborne Directional Networking: Topology Control Protocol Design

    Get PDF
    This research identifies and evaluates the impact of several architectural design choices in relation to airborne networking in contested environments related to autonomous topology control. Using simulation, we evaluate topology reconfiguration effectiveness using classical performance metrics for different point-to-point communication architectures. Our attention is focused on the design choices which have the greatest impact on reliability, scalability, and performance. In this work, we discuss the impact of several practical considerations of airborne networking in contested environments related to autonomous topology control modeling. Using simulation, we derive multiple classical performance metrics to evaluate topology reconfiguration effectiveness for different point-to-point communication architecture attributes for the purpose of qualifying protocol design elements
    • 

    corecore