910 research outputs found

    Blockchain for Genomics:A Systematic Literature Review

    Get PDF
    Human genomic data carry unique information about an individual and offer unprecedented opportunities for healthcare. The clinical interpretations derived from large genomic datasets can greatly improve healthcare and pave the way for personalized medicine. Sharing genomic datasets, however, pose major challenges, as genomic data is different from traditional medical data, indirectly revealing information about descendants and relatives of the data owner and carrying valid information even after the owner passes away. Therefore, stringent data ownership and control measures are required when dealing with genomic data. In order to provide secure and accountable infrastructure, blockchain technologies offer a promising alternative to traditional distributed systems. Indeed, the research on blockchain-based infrastructures tailored to genomics is on the rise. However, there is a lack of a comprehensive literature review that summarizes the current state-of-the-art methods in the applications of blockchain in genomics. In this paper, we systematically look at the existing work both commercial and academic, and discuss the major opportunities and challenges. Our study is driven by five research questions that we aim to answer in our review. We also present our projections of future research directions which we hope the researchers interested in the area can benefit from

    Blockchain for Genomics:A Systematic Literature Review

    Get PDF
    Human genomic data carry unique information about an individual and offer unprecedented opportunities for healthcare. The clinical interpretations derived from large genomic datasets can greatly improve healthcare and pave the way for personalized medicine. Sharing genomic datasets, however, pose major challenges, as genomic data is different from traditional medical data, indirectly revealing information about descendants and relatives of the data owner and carrying valid information even after the owner passes away. Therefore, stringent data ownership and control measures are required when dealing with genomic data. In order to provide secure and accountable infrastructure, blockchain technologies offer a promising alternative to traditional distributed systems. Indeed, the research on blockchain-based infrastructures tailored to genomics is on the rise. However, there is a lack of a comprehensive literature review that summarizes the current state-of-the-art methods in the applications of blockchain in genomics. In this paper, we systematically look at the existing work both commercial and academic, and discuss the major opportunities and challenges. Our study is driven by five research questions that we aim to answer in our review. We also present our projections of future research directions which we hope the researchers interested in the area can benefit from

    Visions and Challenges in Managing and Preserving Data to Measure Quality of Life

    Full text link
    Health-related data analysis plays an important role in self-knowledge, disease prevention, diagnosis, and quality of life assessment. With the advent of data-driven solutions, a myriad of apps and Internet of Things (IoT) devices (wearables, home-medical sensors, etc) facilitates data collection and provide cloud storage with a central administration. More recently, blockchain and other distributed ledgers became available as alternative storage options based on decentralised organisation systems. We bring attention to the human data bleeding problem and argue that neither centralised nor decentralised system organisations are a magic bullet for data-driven innovation if individual, community and societal values are ignored. The motivation for this position paper is to elaborate on strategies to protect privacy as well as to encourage data sharing and support open data without requiring a complex access protocol for researchers. Our main contribution is to outline the design of a self-regulated Open Health Archive (OHA) system with focus on quality of life (QoL) data.Comment: DSS 2018: Data-Driven Self-Regulating System

    BLA2C2: Design of a Novel Blockchain-based Light-Weight Authentication & Access Control Layer for Cloud Deployments

    Get PDF
    Cloud deployments are consistently under attack, from both internal and external adversaries. These attacks include, but are not limited to brute force, masquerading, improper access, session hijacking, cross site scripting (XSS), etc. To mitigate these attacks, a wide variety of authentication & access control models are proposed by researchers, and each of them vary in terms of their internal implementation characteristics. It was observed that these models are either highly complex, or lack in terms of security under multiple attacks, which limits their applicability for real-time deployments. Moreover, some of these models are not flexible and cannot be deployed under dynamic cloud scenarios (like constant reconfigurations of Virtual Machines, dynamic authentication use-cases, etc.). To overcome these issues, this text proposes design of a novel blockchain-based Light-weight authentication & access control layer that can be used for dynamic cloud deployments. The proposed model initially applies a header-level light-weight sanitization layer that removes Cross Site Scripting, SQL Injection, and other data-level attacks. This is followed by a light-weight authentication layer, that assists in improving login-level security for external attacks. The authentication layer uses IP matching with reverse geolocation mapping in order to estimate outlier login attempts. This layer is cascaded with an efficient blockchain-based access control model, which assists in mitigating session hijacking, masquerading, sybil and other control-level attacks. The blockchain model is developed via integration of Grey Wolf Optimization (GWO) to reduce unnecessary complexities, and provides faster response when compared with existing blockchain-based security deployments. Efficiency of the model was estimated in terms of accuracy of detection for different attack types, delay needed for detection of these attacks, and computational complexity during attack mitigation operations. This performance was compared with existing models, and it was observed that the proposed model showcases 8.3% higher accuracy, with 10.5% lower delay, and 5.9% lower complexity w.r.t. standard blockchain-based & other security models. Due to these enhancements, the proposed model was capable of deployment for a wide variety of large-scale scenarios

    Fog computing security and privacy issues, open challenges, and blockchain solution: An overview

    Get PDF
    Due to the expansion growth of the IoT devices, Fog computing was proposed to enhance the low latency IoT applications and meet the distribution nature of these devices. However, Fog computing was criticized for several privacy and security vulnerabilities. This paper aims to identify and discuss the security challenges for Fog computing. It also discusses blockchain technology as a complementary mechanism associated with Fog computing to mitigate the impact of these issues. The findings of this paper reveal that blockchain can meet the privacy and security requirements of fog computing; however, there are several limitations of blockchain that should be further investigated in the context of Fog computing
    • …
    corecore