3 research outputs found

    Anomaly Detection and Exploratory Causal Analysis for SAP HANA

    Get PDF
    Nowadays, the good functioning of the equipment, networks and systems will be the key for the business of a company to continue operating because it is never avoidable for the companies to use information technology to support their business in the era of big data. However, the technology is never infallible, faults that give rise to sometimes critical situations may appear at any time. To detect and prevent failures, it is very essential to have a good monitoring system which is responsible for controlling the technology used by a company (hardware, networks and communications, operating systems or applications, among others) in order to analyze their operation and performance, and to detect and alert about possible errors. The aim of this thesis is thus to further advance the field of anomaly detection and exploratory causal inference which are two major research areas in a monitoring system, to provide efficient algorithms with regards to the usability, maintainability and scalability. The analyzed results can be viewed as a starting point for the root cause analysis of the system performance issues and to avoid falls in the system or minimize the time of resolution of the issues in the future. The algorithms were performed on the historical data of SAP HANA database at last and the results gained in this thesis indicate that the tools have succeeded in providing some useful information for diagnosing the performance issues of the system

    A Study on Data Filtering Techniques for Event-Driven Failure Analysis

    Get PDF
    Engineering & Systems DesignHigh performance sensors and modern data logging technology with real-time telemetry facilitate system failure analysis in a very precise manner. Fault detection, isolation and identification in failure analysis are typical steps to analyze the root causes of failures. This systematic failure analysis provides not only useful clues to rectify the abnormal behaviors of a system, but also key information to redesign the current system for retrofit. The main barriers to effective failure analysis are: (i) the gathered sensor data logs, usually in the form of event logs containing massive datasets, are too large, and further (ii) noise and redundant information in the gathered sensor data that make precise analysis difficult. Therefore, the objective of this thesis is to develop an event-driven failure analysis method in order to take into account both functional interactions between subsystems and diverse user???s behaviors. To do this, we first apply various data filtering techniques to data cleaning and reduction, and then convert the filtered data into a new format of event sequence information (called ???eventization???). Four eventization strategies: equal-width binning, entropy, domain knowledge expert, and probability distribution estimation, are examined for data filtering, in order to extract only important information from the raw sensor data while minimizing information loss. By numerical simulation, we identify the optimal values of eventization parameters. Finally, the event sequence information containing the time gap between event occurrences is decoded to investigate the correlation between specific event sequence patterns and various system failures. These extracted patterns are stored in a failure pattern library, and then this pattern library is used as the main reference source to predict failures in real-time during the failure prognosis phase. The efficiency of the developed procedure is examined with a terminal box data log of marine diesel engines.ope
    corecore