43 research outputs found

    On the modeling of WCDMA system performance with propagation data

    Get PDF
    The aim of this study was to develop calculation methods for estimating the most important system level performance characteristics of the WCDMA radio network (i.e. network capacity and coverage) in the presence of interference from various sources. The calculation methods described in this work enable the fast design of radio systems with a reasonable degree of accuracy, where different system parameters, propagation conditions and networks as well as frequency scenarios can be easily tested. The work also includes the development and verification of a propagation model for a microcellular environment. Traditionally, system level performance figures have been retrieved using system simulations where the radio network has been modeled as accurately as possible. This has included base stations and mobile stations, propagation models, traffic models and mobility models. Various radio resource management (RRM) algorithms, such as power controls and handovers have also been modeled. However, these system simulations are very complex and time consuming and typically the models are difficult to modify. The idea behind this work is to use the main statistical parameters retrieved from accurate, case specific propagation models and to use these statistics as input for the developed analytical radio network models. When used as output from these analytical models we are able to obtain the performance measures of the network. The specific application area for the developed methods is the evaluation of the effect of the interference from the adjacent frequency channels. Adjacent channel interference decreases the efficiency of the usage of the electromagnetic spectrum i.e. the spectral efficiency. The aim of a radio system design is to ensure that the reduction in the spectral efficiency is as low as possible. This interference may originate from the same or a different radio system and from the same or another operator's network. The strength of this interference is dependent on the system parameters and the network layout. The standard questions regarding adjacent system interference between different operators' network are what guard band is needed between the radio carriers in order to maintain the quality of the network or what are the main mobile and network parameters, such as adjacent channel emission levels or adjacent channel selectivity, required in order to achieve satisfactory network performance. With the developed method proposed here it is possible to answer these questions with reasonable accuracy. One important aspect of network performance is the radio wave propagation environment for which the radio systems are designed. This thesis presents methods evaluating radio wave propagation, especially for cases where the base station antenna is below the rooftops, i.e. in the case of microcellular network environments. The developed microcellular propagation model has been developed for network planning purposes and it has been verified using numerous field propagation measurements. The model can be used in cases where the mobile station is located either indoors or outdoors.reviewe

    5.9 GHz inter-vehicle communication at intersections: a validated non-line-of-sight path-loss and fading model

    Get PDF
    Inter-vehicle communication promises to prevent accidents by enabling applications such as cross-traffic assistance. This application requires information from vehicles in non-line-of-sight (NLOS) areas due to building at intersection corners. The periodic cooperative awareness messages are foreseen to be sent via 5.9 GHz IEEE 802.11p. While it is known that existing micro-cell models might not apply well, validated propagation models for vehicular 5.9 GHz NLOS conditions are still missing. In this article, we develop a 5.9 GHz NLOS path-loss and fading model based on real-world measurements at a representative selection of intersections in the city of Munich. We show that (a) the measurement data can very well be fitted to an analytical model, (b) the model incorporates specific geometric aspects in closed-form as well as normally distributed fading in NLOS conditions, and (c) the model is of low complexity, thus, could be used in large-scale packet-level simulations. A comparison to existing micro-cell models shows that our model significantly differs

    A realistic path loss model for real-time communication in the urban grid environment for Vehicular Ad hoc Networks

    Get PDF
    Wireless signal transmission is influenced by environmental effects. These effects have also been challenging for Vehicular Ad hoc Network (VANET) in real-time communication. More specifically, in an urban environment, with high mobility among vehicles, a vehicle’s status from the transmitter can instantly trigger from line of sight to non-line of sight, which may cause loss of real-time communication. In order to overcome this, a deterministic signal propagation model is required, which has less complexity and more feasibility of implementation. Hence, we propose a realistic path loss model which adopts ray tracing technique for VANET in a grid urban environment with less computational complexity. To evaluate the model, it is applied to a vehicular simulation scenario. The results obtained are compared with different path loss models in the same scenario based on path loss value and application layer performance analysis. The proposed path loss model provides higher loss value in dB compared to other models. Nevertheless, the performance of vehicle-vehicle communication, which is evaluated by the packet delivery ratio with different vehicle transmitter density verifies improvement in real-time vehicle-vehicle communication. In conclusion, we present a realistic path loss model that improves vehicle-vehicle wireless real-time communication in the grid urban environment

    Propagation Modelling for Urban Source Localization and Navigation

    Get PDF

    Propagation Aspects in Vehicular Networks

    Get PDF

    Robust Video Communication over an Urban VANET

    Get PDF
    corecore